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Abstract

Bioconductor is a widely used R-based platform for genomics, but its host of complex genomic data structures places
a cognitive burden on the user. For most tasks, the GRanges object would suffice, but there are gaps in the API that
prevent its general use. By recognizing that the GRanges class follows “tidy” data principles, we create a grammar of
genomic data transformation, defining verbs for performing actions on and between genomic interval data and
providing a way of performing common data analysis tasks through a coherent interface to existing Bioconductor
infrastructure. We implement this grammar as a Bioconductor/R package called plyranges.
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Background
High-throughput genomics promises to unlock new dis-
ease therapies and strengthen our knowledge of basic
biology. To deliver on those promises, scientists must
derive a stream of knowledge from a deluge of data.
Genomic data is challenging in both scale and complex-
ity. Innovations in sequencing technology often outstrip
our capacity to process the output. Beyond their com-
mon association with genomic coordinates, genomic data
are heterogeneous, consisting of raw sequence read align-
ments, genomic feature annotations like genes and exons,
and summaries like coverage vectors, ChIP-seq peak
calls, variant calls, and per-feature read counts. Genomic
scientists need software tools to wrangle the different
types of data, process the data at scale, test hypotheses,
and generate new ones, all while focusing on the biol-
ogy, not the computation. For the tool developer, the
challenge is to define ways to model and operate on
the data that align with the mental model of scientists
and to provide an implementation that scales with their
ambition.
Several domain-specific languages (DSLs) enable sci-

entists to process and reason about heterogeneous
genomics data by expressing common operations, such
as range manipulation and overlap-based joins, using the
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vocabulary of genomics. Their implementations either
delegate computations to a database or operate over col-
lections of files in standard formats like BED. An example
of the former is the Genome Query Language (GQL)
and its distributed implementation GenAp which use a
SQL-like syntax for fast retrieval of information of unpro-
cessed sequencing data [1, 2]. Similarly, the Genometric
Query Language (GMQL) implements a DSL for combin-
ing genomic datasets [3]. The command line application
BEDtools develops an extensive algebra for performing
arithmetic between two or more sets of genomic regions
[4]. All of the aforementioned DSLs are designed to be
evaluated either at the command line or embedded in
scripts for batch processing. They exist in a sparse ecosys-
tem, mostly consisting of UNIX and database tools that
lack biological semantics and operate at the level of files
and database tables.
The Bioconductor/R packages IRanges and

GenomicRanges [5–7] define a DSL for analyzing
genomics data with R, an interactive data analysis envi-
ronment that encourages reproducibility and provides
high-level abstractions for manipulating, modeling, and
plotting data, through state of the art methods in sta-
tistical computing. The packages define object-oriented
(OO) abstractions for representing genomic data and
enable interoperability by allowing users and developers
to use these abstractions in their own code and packages.
Other genomic DSLs that are embedded in programming
languages include pybedtools and valr [8, 9]; however,
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these packages lack the interoperability provided by the
aforementioned Bioconductor packages and are not easily
extended.
The Bioconductor infrastructure models the genomic

data and operations from the perspective of the power
user, one who understands and wants to take advantage
of the subtle differences in data types. This design has
enabled the development of sophisticated tools, as evi-
denced by the hundreds of packages depending on the
framework. Unfortunately, the myriad of data structures
have overlapping purposes and important but obscure dif-
ferences in behavior that often confuse the typical end
user.
Recently, there has been a concerted, community effort

to standardize R data structures and workflows around
the notion of tidy data [10]. A tidy dataset is defined as
a tabular data structure that has observations as rows
and columns as variables, and all measurements per-
tain to a single observational unit. The tidy data pat-
tern is useful because it allows us to see how the data
relate to the design of an experiment and the variables
measured. The dplyr package [11] defines an appli-
cation programming interface (API) that maps notions
from the general relational algebra to verbs that act on
tidy data. These verbs can be composed together on
one or more tidy datasets with the pipe operator from
the magrittr package [12]. Taken together, these fea-
tures enable a user to write human readable analysis
workflows.
We have created a genomic DSL called plyranges

that reformulates notions from existing genomic algebras
and embeds them in R as a genomic extension of dplyr.
By analogy, plyranges is to the genomic algebra, as
dplyr is to the relational algebra. The plyranges Bio-
conductor package implements the language on top of
a key subset of Bioconductor data structures and thus
fully integrates with the Bioconductor framework, gaining
access to its scalable data representations and sophisti-
cated statistical methods.

Results
Genomic Relational Algebra
Datamodel
The plyranges DSL is built on the core Bioconductor
data structure GRanges, which is a constrained table, with
fixed columns for the chromosome, start and end coordi-
nates, and the strand, along with an arbitrary set of addi-
tional columns, consisting of measurements or metadata
specific to the data type or experiment (Fig. 1). GRanges
balances flexibility with formal constraints, so that it
is applicable to virtually any genomic workflow, while
also being semantically rich enough to support high-level
operations on genomic ranges. As a core data structure,
GRanges enables interoperability between plyranges

Fig. 1 An illustration of the GRanges data model for a sample from an
RNA-seq experiment. The core components of the data model
include a seqname column (representing the chromosome), a ranges
column which consists of start and end coordinates for a genomic
region, and a strand identifier (either positive, negative, or
unstranded). Metadata are included as columns to the right of the
dotted line as annotations (gene_id) or range level covariates (score)

and the rest of Bioconductor. Adhering to a single data
structure simplifies the API and makes it easier to learn
and understand, in part because operations become endo-
morphic, i.e., they return the same type as their input.
GRanges follows the intuitive tidy data pattern: it is a

rectangular table corresponding to a single biological con-
text. Each row contains a single observation and each
column is a variable describing the observations. GRanges
specializes the tidy pattern in that the observations always
pertain to some genomic feature, but it largely remains
compatible with the general relational operations defined
by dplyr. Thus, we define our algebra as an extension
of the dplyr algebra, and borrow its syntax conventions
and design principles.

Algebraic operations
The plyranges DSL defines an expressive algebra
for performing genomic operations with and between
GRanges objects (see Table 1). The grammar includes
several classes of operation that cover most use cases
in genomics data analysis. There are range arithmetic
operators, such as for resizing ranges or finding their
intersection, and operators for merging, filtering, and
aggregating by range-specific notions like overlap and
proximity.
Arithmetic operations transform range coordinates, as

defined by their start, end, and width. The three dimen-
sions are mutually dependent and partially redundant, so
direct manipulation of them is problematic. For exam-
ple, changing the width column needs to change either
the start, end, or both to preserve integrity of the object.
We introduce the anchor modifier to disambiguate these
adjustments. Supported anchor points include the start,
end and midpoint, as well as the 3’ and 5’ ends for strand-
directed ranges. For example, if we anchor the start, then
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Table 1 Overview of the plyranges grammar

Verb Description

Aggregate summarize() Aggregate over column(s)

disjoin_ranges() Aggregate column(s) over
the union of end
coordinates

reduce_ranges() Aggregate column(s) by
merging overlapping and
neighboring ranges

Modify (Unary) mutate() Modifies any column

select() Select columns

arrange() Sort by columns

stretch() Extend range by fixed
amount

shift_(direction) Shift coordinates

flank_(direction) Generate flanking regions

%intersection% Row-wise intersection

%union% Row-wise union

compute_coverage Coverage over all ranges

Modify (Binary) %setdiff% Row-wise set difference

between() Row-wise gap range

span() Row-wise spanning range

Merge join_overlap_*() Merge by overlapping
ranges

join_nearest Merge by nearest
neighbor ranges

join_follow Merge by following ranges

join_precedes Merge by preceding
ranges

union_ranges Range-wise union

intersect_ranges Range-wise intersect

setdiff_ranges Range-wise set difference

complement_ranges Range-wise set
complement

Operate anchor_direction() Fix coordinates at
direction

group_by() Partition by column(s)

group_by_overlaps() Partition by overlaps

Restrict filter() Subset rows

filter_by_overlaps() Subset by overlap

filter_by_non_overlaps() Subset by no overlap

The core verbs are briefly described and categorized into one of the following
higher level categories: aggregate, modify, merge, operate, or restrict. A verb is
given bold text if its origin is from the dplyr grammar

setting the width will adjust the end while leaving the start
stationary.
The algebra also defines conveniences for relative coor-

dinate adjustments: shift (unanchored adjustment to both
start and end) and stretch (anchored adjustment of
width). We can perform any relative adjustment by some

combination of those two operations. The stretch oper-
ation requires an anchor and assumes the midpoint by
default. Since shift is unanchored, the user specifies a suf-
fix for indicating the direction: left/right or, for stranded
features, upstream/downstream. For example, shift_right
shifts a range to the right.
The flank operation generates new ranges that are adja-

cent to existing ones. This is useful, for example, when
generating upstream promoter regions for genes. Analo-
gous to shift, a suffix indicates the side of the input range
to flank.
As with other genomic grammars, we define set opera-

tions that treat ranges as sets of integers, including inter-
sect, union, difference, and complement. There are two
sets of these: parallel and merging. For example, the par-
allel intersection (x %intersect% y) finds the intersecting
range between xi and yi for i in 1. . . n, where n is the
length of both x and y. In contrast, the merging intersec-
tion (intersect_ranges(x, y)) returns a new set of disjoint
ranges representing wherever there was overlap between
a range in x and a range in y. Finding the parallel union
will fail when two ranges have a gap, so we introduce a
span operator that takes the union while filling any gap.
The complement operation is unique in that it is unary. It
finds the regions not covered by any of the ranges in a sin-
gle set. Closely related is the between parallel operation,
which finds the gap separating xi and yi. The binary oper-
ations are callable from within arithmetic, restriction, and
aggregation expressions.
To support merging, our algebra recasts finding over-

laps or nearest neighbors between two genomic regions
as variants of the relational join operator. A join acts on
two GRanges objects: x and y. The join operator is rela-
tional in the sense that metadata from the x and y ranges
are retained in the joined range. All join operators in the
plyranges DSL generate a set of hits based on overlap
or proximity of ranges and use those hits to merge the
two datasets in different ways. There are four supported
matching algorithms: overlap, nearest, precede, and follow
(Fig. 2). We can further restrict the matching by whether
the query is completely within the subject, and adding the
directed suffix ensures thatmatching ranges have the same
direction (strand).
For merging based on the hits, we have three modes:

inner, intersect, and left. The inner overlap join is simi-
lar to the conventional inner join in that there is a row in
the result for every match. A major difference is that the
matching is not by identity, so we have to choose one of
the ranges from each pair.We always choose the left range.
The intersect join uses the intersection instead of the left
range. Finally, the overlap left join is akin to left outer join
in Codd’s relational algebra: it performs an overlap inner
join but also returns all x ranges that are not hit by the y
ranges.
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a b c

Fig. 2 Illustration of the three overlap join operators. Each join takes two GRanges objects, x and y as input. A “Hits” object for the join is computed
which consists of two components. The first component contains the indices of the ranges in x that have been overlapped (the rectangles of x that
cross the orange lines). The second component consists of the indices of the ranges in y that overlap the ranges in x. In this case a range in y
overlaps the ranges in x three times, so the index is repeated three times. The resulting “Hits” object is used to modify x by where it was “hit” by y
and merge all metadata columns from x and y based on the indices contained in the “Hits” object. This procedure is applied generally in the
plyranges DSL for both overlap and nearest neighbor operations. The join semantics alter what is returned: a for an inner join the x ranges that
are overlapped by y are returned. The returned ranges also include the metadata from the y range that overlapped the three x ranges. b An intersect
join is identical to an inner join except that the intersection is taken between the overlapped x ranges and the y ranges. c For the left join all x ranges
are returned regardless of whether they are overlapped by y. In this case, the third range (rectangle with the asterisk next to it) of the join would
have missing values on metadata columns that came from y

Since the GRanges object is a tabular data struc-
ture, our grammar includes operators to filter, sort,
and aggregate by columns in a GRanges. These oper-
ations can be performed over partitions formed using
the group_by modifier. Together with our algebra for
arithmetic and merging, these operations conform to the
semantics and syntax of the dplyr grammar. Conse-
quently, plyranges code is generally more compact
than the equivalent GenomicRanges code (Fig. 3).

Developing workflows with plyranges
Here we provide illustrative examples of using the
plyranges DSL to show how our grammar could be
integrated into genomic data workflows. As we construct
the workflows, we show the data output intermittently
to assist the reader in understanding the pipeline steps.
The workflows highlight how interoperability with exist-
ing Bioconductor infrastructure, enables easy access to
public datasets andmethods for analysis and visualization.

Peak finding
In the workflow of ChIP-seq data analysis, we are inter-
ested in finding peaks from islands of coverage over
chromosome. Here we will use plyranges to call peaks
from islands of coverage above 8 then plot the region
surrounding the tallest peak.

a

b

Fig. 3 Idiomatic code examples for plyranges (a) and
GenomicRanges (b) illustrating an overlap and aggregate
operation that returns the same result. In each example, we have two
BED files consisting of SNPs that are genome-wide association study
(GWAS) hits and reference exons. Each code block counts for each
SNP the number of distinct exons it overlaps. The plyranges code
achieves this with an overlap join followed by partitioning and
aggregation. Strand is ignored by default here. The GenomicRanges
code achieves this using the “Hits” and “List” classes and their methods
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Using plyranges and the the Bioconductor package
AnnotationHub [13], we can download and read Big-
Wig files from ChIP-Seq experiments from the Human
Epigenome Roadmap project [14]. Here we analyze a Big-
Wig file corresponding to H3 lysine 27 trimethylation
(H3K27Me3) of primary T CD8+ memory cells from
peripheral blood, focussing on coverage islands over chro-
mosome 10.
First, we extract the genome information from the Big-

Wig file and filter to get the range for chromosome 10.
This range will be used as a filter when reading the file.

library(plyranges)
chr10_ranges <- bw_file %>%

get_genome_info() %>%
filter(seqnames == "chr10")

Then we read the BigWig file only extracting scores
if they overlap chromosome 10. We also add the
genome build information to the resulting ranges.
This book-keeping is good practice as it ensures the
integrity of any downstream operations such as finding
overlaps.

chr10_scores <- bw_file %>%
read_bigwig(overlap_ranges = chr10_ranges) %>%

set_genome_info(genome = "hg19")
chr10_scores

#> GRanges object with 5789841 ranges
and 1 metadata column:
#> seqnames ranges strand | score
#> <Rle> <IRanges> <Rle> | < numeric>
#> [1] chr10 1-60602 * |
0.0422799997031689
#> [2] chr10 60603-60781 * |
0.163240000605583
#> [3] chr10 60782-60816 * |
0.372139990329742
#> [4] chr10 60817-60995 * |
0.163240000605583
#> [5] chr10 60996-61625 * |
0.0422799997031689
#> ... ... ... ... . ...
#> [5789837] chr10 135524723-135524734

* | 0.144319996237755
#> [5789838] chr10 135524735-135524775

* | 0.250230014324188
#> [5789839] chr10 135524776-135524784

* | 0.427789986133575
#> [5789840] chr10 135524785-135524806

* | 0.730019986629486
#> [5789841] chr10 135524807-135524837

* | 1.03103005886078
#> -----
#> seqinfo: 25 sequences from hg19 genome

We then filter for regions with a coverage score greater
than 8, and following this reduce individual runs to ranges
representing the islands of coverage. This is achieved with
the reduce_ranges() function, which allows a sum-
mary to be computed over each island: in this case, we
take the maximum of the scores to find the coverage peaks
over chromosome 10.

all_peaks <- chr10_scores %>%
filter(score > 8) %>%
reduce_ranges(score = max(score))

all_peaks

#> GRanges object with 1085 ranges and
1 metadata column:
#> seqnames ranges strand | score
#> <Rle> <IRanges> <Rle> | < numeric>
#> [1] chr10 1299144-1299370 * |
13.2264003753662
#> [2] chr10 1778600-1778616 * |
8.20512008666992
#> [3] chr10 4613068-4613078 * |
8.76027011871338
#> [4] chr10 4613081-4613084 * |
8.43659973144531
#> [5] chr10 4613086 * | 8.11507987976074
#> ... ... ... ... . ...
#> [1081] chr10 135344482-135344488 * |
9.23237991333008
#> [1082] chr10 135344558-135344661 * |
11.843409538269
#> [1083] chr10 135344663-135344665 * |
8.26965999603271
#> [1084] chr10 135344670-135344674 * |
8.26965999603271
#> [1085] chr10 135345440-135345441 * |
8.26965999603271
#> -----
#> seqinfo: 25 sequences from hg19 genome

Returning to the GRanges object containing normal-
ized coverage scores, we filter to find the coordinates
of the peak containing the maximum coverage score.
We can then find a 5000-nt region centered around
the maximum position by anchoring and modifying the
width.

chr10_max_score_region <- chr10_scores %>%
filter(score == max(score)) %>%
anchor_center() %>%
mutate(width = 5000)

Finally, the overlap inner join is used to restrict the
chromosome 10 coverage islands, to the islands that are
contained in the 5000-nt region that surrounds the max
peak (Fig. 4).
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Fig. 4 The final result of the plyranges operations to find a 5000-nt region surrounding the peak of normalized coverage scores over
chromosome 10, displayed as a density plot

peak_region <- chr10_scores %>%
join_overlap_inner(chr10_max_score_region)

peak_region

#> GRanges object with 890 ranges and 2
metadata columns:
#> seqnames ranges strand | score.x
#> <Rle> <IRanges> <Rle> | < numeric>
#> [1] chr10 21805891-21805988 * |
0.0206599999219179
#> [2] chr10 21805989-21806000 * |
0.0211200006306171
#> [3] chr10 21806001-21806044 * |
0.022069999948144
#> [4] chr10 21806045-21806049 * |
0.0215900000184774
#> [5] chr10 21806050-21806081 * |
0.0211200006306171
#> ... ... ... ... . ...
#> [886] chr10 21810878 * |
5.24951982498169
#> [887] chr10 21810879 * |
5.83534002304077
#> [888] chr10 21810880-21810884 * |
6.44267988204956
#> [889] chr10 21810885-21810895 * |
7.07054996490479
#> [890] chr10 21810896-21810911 * |
6.44267988204956
#> score.y
#> < numeric>
#> [1] 29.9573001861572
#> [2] 29.9573001861572
#> [3] 29.9573001861572
#> [4] 29.9573001861572
#> [5] 29.9573001861572
#> ... ...

#> [886] 29.9573001861572
#> [887] 29.9573001861572
#> [888] 29.9573001861572
#> [889] 29.9573001861572
#> [890] 29.9573001861572
#> -----
#> seqinfo: 25 sequences from hg19
genome

Computing windowed statistics
Another common operation in genomics data analy-
sis is to compute data summaries over genomic win-
dows. In plyranges, this can be achieved via the
group_by_overlaps() operator. We bin and count
and find the average GC content of reads from
a H3K27Me3 ChIP-seq experiment by the Human
Epigenome Roadmap Consortium.
We can directly obtain the genome information from

the header of the BAM file: in this case, the reads were
aligned to the hg19 genome build and there are no reads
overlapping the mitochondrial genome.

locations <- h1_bam_sorted %>%
read_bam() %>%
get_genome_info()

Next we only read in alignments that overlap the
genomic locations we are interested in and select the
query sequence. Note that the reading of the BAM file is
deferred: only alignments that pass the filter are loaded
into memory. We can add another column represent-
ing the GC proportion for each alignment using the
letterFrequency() function from the Biostrings
package [15]. After computing the GC proportion as the
score column, we drop all other columns in the GRanges
object.
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alignments <- h1_bam_sorted %>%
read_bam() %>%
filter_by_overlaps(locations) %>%
select(seq) %>%
mutate(

score = as.numeric(letterFrequency
(seq, "GC", as.prob = TRUE))

) %>%
select(score)

alignments

#> GRanges object with 8275595 ranges
and 1 metadata column:
#> seqnames ranges strand | score
#> <Rle> <IRanges> <Rle> | < numeric>
#> [1] chr10 50044-50119 - |
0.276315789473684
#> [2] chr10 50050-50119 + | 0.25
#> [3] chr10 50141-50213 - |
0.447368421052632
#> [4] chr10 50203-50278 + |
0.263157894736842
#> [5] chr10 50616-50690 + |
0.276315789473684
#> ... ... ... ... . ...
#> [8275591] chrY 57772745-57772805 - |
0.513157894736842
#> [8275592] chrY 57772751-57772800 + |
0.526315789473684
#> [8275593] chrY 57772767-57772820 + |
0.565789473684211
#> [8275594] chrY 57772812-57772845 + |
0.25
#> [8275595] chrY 57772858-57772912 + |
0.592105263157895
#> -----
#> seqinfo: 24 sequences from an
unspecified genome

Finally, we create 10,000-nt tiles over the genome and
compute the number of reads and average GC content
over all reads that fall within each tile using an overlap join
and merging endpoints.

bins <- locations %>%
tile_ranges(width = 10000L)

alignments_summary <- bins %>%
join_overlap_inner(alignments) %>%
disjoin_ranges(n = n(), avg_gc = mean(score))

alignments_summary

#> GRanges object with 286030 ranges
and 2 metadata columns:
#> seqnames ranges strand | n avg_gc
#> <Rle> <IRanges> <Rle> | < integer> <
numeric>

#> [1] chr10 49999-59997 * | 88
0.369019138755981
#> [2] chr10 59998-69997 * | 65
0.434210526315789
#> [3] chr10 69998-79996 * | 56
0.386513157894737
#> [4] chr10 79997-89996 * | 71
0.51297257227576
#> [5] chr10 89997-99996 * | 64
0.387746710526316
#> ... ... ... ... . ... ...
#> [286026] chrY 57722961-57732958 * |
36 0.468201754385965
#> [286027] chrY 57732959-57742957 * |
38 0.469529085872576
#> [286028] chrY 57742958-57752956 * |
38 0.542936288088643
#> [286029] chrY 57752957-57762955 * |
42 0.510651629072682
#> [286030] chrY 57762956-57772954 * |
504 0.526942355889723
#> -----
#> seqinfo: 24 sequences from an
unspecified genome; no seqlengths

Quality control metrics
We have created a GRanges object from genotyping per-
formed on the H1 cell line, consisting of approximately
two million single nucleotide polymorphisms (SNPs) and
short insertion/deletions (indels). The GRanges object
consists of 7 columns, relating to the alleles of a SNP or
indel, the B-allele frequency, log relative intensity of the
probes, GC content score over a probe, and the name
of the probe. We can use this information to compute
the transition-transversion ratio, a quality control metric,
within each chromosome in GRanges object.
First, we filter out the indels andmitochondrial variants.

Then we create a logical vector corresponding to whether
there is a transition event.

h1_snp_array <- h1_snp_array %>%
filter(!(ref %in% c("I", "D")),
seqnames != "M") %>%
mutate(transition = (ref %in% c("A", "G")
& alt %in% c("G","A"))|

(ref %in% c("C","T")
& alt %in% c("T", "C")))

We then compute the transition-transversion ratio over
each chromosome using group_by() in combination
with summarize() (Fig. 5).

ti_tv_results <- h1_snp_array %>%
group_by(seqnames) %>%
summarize(n_snps = n(),

ti_tv = sum(transition) / sum(!transition))
ti_tv_results
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Fig. 5 The final result of computing quality control metrics over the SNP array data with plyranges, displayed as a dot plot. Chromosomes are
ordered by their estimated transition-transversion ratio. A white reference line is drawn at the expected ratio for a human exome

#> DataFrame with 24 rows and 3 columns

#> seqnames n_snps ti_tv

#> <Rle> < integer> < numeric>

#> 1 Y 2226 1.4381161007667

#> 2 6 154246 3.32013219807305

#> 3 13 83736 3.40669403220714

#> 4 10 120035 3.49400973418195

#> 5 4 153243 3.29528828096533

#> ... ... ... ...

#> 20 16 77538 3.19827819589583

#> 21 12 113208 3.47851887016378

#> 22 20 57073 3.7121036988111

#> 23 21 32349 3.50480434479877

#> 24 X 55495 3.58219800181653

Discussion
The design of plyranges adheres to well understood
principles of language and API design: cognitive consis-
tency, cohesion, endomorphism and expressiveness [16].
To varying degrees, these principles also underlie the
design of dplyr and the Bioconductor infrastructure.
We have aimed for plyranges to have a simple and

direct mapping to the user’s cognitive model, i.e., how the
user thinks about the data. This requires careful selec-
tion of the level of abstraction so that the user can express
workflows in the language of genomics. This motivates
the adoption of the tidy GRanges object as our central
data structure. The basic data.frame and dplyr tibble
lack any notion of genomic ranges and so could not eas-
ily support our genomic grammar, with its specific verbs
for range-oriented datamanipulation. Another example of
cognitive consistency is how plyranges is insensitive to
direction/strand by default when, e.g., detecting overlaps.
GenomicRanges has the opposite behavior. We believe

that defaulting to purely spatial overlap is most intuitive to
most users.
To further enable cognitive consistency, plyranges

functions are cohesive. A function is defined to be cohe-
sive if it performs a singular task without producing
any side-effects. Singular tasks can always be broken
down further at lower levels of abstraction. For exam-
ple, to resize a range, the user needs to specify which
position (start, end, midpoint) should be invariant over
the transformation. The resize() function from the
GenomicRanges package has a fix argument that sets
the anchor, so calling resize() coalesces anchoring and
width modification. The coupling at the function call level
is justified since the effect of setting the width depends on
the anchor. However, plyranges increases cohesion and
decouples the anchoring into its own function call.
Increasing cohesion simplifies the interface to each

operation, makes the meaning of arguments more intu-
itive, and relies on function names as the primary means
of expression, instead of a more complex mixture of
function and argument names. This results in the user
being able to conceptualize the plyranges DSL as a flat
catalog of functions, without having to descend further
into documentation to understand a function’s arguments.
A flat function catalog also enhances API discoverabil-
ity, particularly through auto-completion in integrated
developer environments (IDEs). One downside of push-
ing cohesion to this extreme is that function calls become
coupled, and care is necessary to treat them as a group
when modifying code.
Like dplyr, plyranges verbs are functional: they

are free of side effects and are generally endomorphic,
meaning that when the input is a GRanges object they
return a GRanges object. This enables chaining of verbs
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through syntax like the forward pipe operator from the
magrittr package. This syntax has a direct cognitive
mapping to natural language and the intuitive notion of
pipelines. The low-level object-oriented APIs of Biocon-
ductor tend to manipulate data via sub-replacement func-
tions, like start(gr) <- x. These ultimately produce
the side-effect of replacing a symbol mapping in the cur-
rent environment and thus are not amenable to so-called
fluent syntax.
Expressiveness relates to the information content in

code: the programmer should be able to clarify intent
without unnecessary verbosity. For example, our overlap-
based join operations are more concise than the multiple
steps necessary to achieve the same effect in the original
GenomicRanges API. In other cases, the plyranges
API increases verbosity for the sake of clarity and cohe-
sion. Explicitly calling anchor() can require more typing,
but the code is easier to comprehend. Another example
is the set of routines for importing genomic annota-
tions, including read_gff(), read_bed(), and read_bam().
Compared to the generic import() in rtracklayer,
the explicit format-based naming in plyranges clari-
fies intent and the type of data being returned. Similarly,
every plyranges function that computes with strand
information indicates its intentions by including suffixes
such as directed, upstream, or downstream in its name;
otherwise, strand is ignored. The GenomicRanges API
does notmake this distinction explicit in its function nam-
ing, instead relying on a parameter that defaults to strand
sensitivity, an arguably confusing behavior.
The implementation of plyranges is built on top

of Bioconductor infrastructure, meaning most functions
are constructed by composing generic functions from
core Bioconductor packages. As a result, any Bioconduc-
tor packages that use data structures that inherit from
GRanges will be able to use plyranges for free. Another
consequence of building on top of Bioconductor gener-
ics is that the speed and memory usage of plyranges
functions are similar to the highly optimized methods
implemented in Bioconductor for GRanges objects.
A caveat to constructing a compatible interface with

dplyr is that plyranges makes extensive use of non-
standard evaluation in R via the rlang package [17].
Simply, this means that computations are evaluated in
the context of the GRanges objects. Both dplyr and
plyranges are based on the rlang language, because
it allows for more expressive code that is free of repeated
references to the container. Implicitly referencing the
container is particularly convenient when programming
interactively. Consequently, when programming with
plyranges, a user needs to generally understand the
rlang language and how to adapt their code accordingly.
Users familiar with the tidyverse should already have such
knowledge.

Conclusion
We have shown how to create expressive and repro-
ducible genomic workflows using the plyranges DSL.
By realizing that the GRanges data model is tidy, we
have highlighted how to implement a grammar for per-
forming genomic arithmetic, aggregation, restriction, and
merging. Our examples show that plyranges code is
succinct, is human readable, and can take advantage of the
interoperability provided by the Bioconductor ecosystem
and the R language.
We also note that the grammar elements and design

principles we have described are programming language
agnostic and could be easily be implemented in another
language where genomic information could be repre-
sented as a tabular data structure.We chose R because it is
what we are familiar with and because the aforementioned
Bioconductor packages have implemented the GRanges
data structure.
We aim to continue developing the plyranges pack-

age and to extend it for use with more complex data
structures, such as the SummarizedExperiment class, the
core Bioconductor data structure for representing exper-
imental results (e.g., counts) from multiple sample exper-
iments in conjunction with feature and sample metadata.
Although the SummarizedExperiment is not strictly tidy,
it does consist of three tidy data structures that are related
by feature and sample identifiers. Therefore, the grammar
and design of the plryanges DSL is naturally extensible
to the SummarizedExperiment.
As the plyranges interface encourages tidy data

practices, it integrates well with the grammar of
graphics [18]. To achieve responsive performance, inter-
active graphics rely on lazy data access and com-
puting patterns, so the deferred mechanisms within
plyranges should help support interactive genomics
applications.
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