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There is growing interest in using genetic variants to augment the reference genome into a graph genome, with
alternative sequences, to improve read alignment accuracy and reduce allelic bias. While adding a variant has the
positive effect of removing an undesirable alignment score penalty, it also increases both the ambiguity of the
reference genome and the cost of storing and querying the genome index. We introduce methods and a software
tool called FORGe for modeling these effects and prioritizing variants accordingly. We show that FORGe enables a
range of advantageous and measurable trade-offs between accuracy and computational overhead.

Introduction

Assembled genomes are typically stored and under-
stood as strings, simple sequences of base pairs. High-
throughput technologies have brought an explosion of
population genetics information, including from projects
like HapMap [1], the 1000 Genomes Project [3], and
UK10K [52]. The question is emerging: how can we use
population genetics information to improve accuracy of
genomic analyses? This has fueled interest in techniques
that depart from a linear string as point of reference for
all individuals and toward pan-genome representations
[36, 50] more inclusive of genetic variation.

While methods for including variants in the reference
are growing in number [18, 21, 25, 43, 44, 48, 49], there
is little or no work on how to choose which variants to
include. Past studies have made such decisions in ad hoc
ways, with some filtering according to allele frequency
[21, 31], ethnicity [43], or both [49].

Here, we examine the advantages and disadvantages of
adding variants to the reference. We show that the disad-
vantages are important to measure, since simply adding
more variation to the reference eventually reduces align-
ment accuracy. We suggest efficient models for scoring
variants according to the effect on accuracy and “blowup”
(computational overhead), and further show that these
scores can be used to achieve a balance of accuracy and
overhead superior to current approaches. For example,
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extrapolating to a whole-human DNA sequencing experi-
ment at 40-fold average coverage, we estimate that a well-
engineered augmented reference can yield about 4.8 M
more correctly aligned reads and 1.2 M fewer incorrectly
aligned compared to the linear reference. Our methods
for selecting variants also reduce reference bias, a chief
goal of graph genomes. Finally, we compare the accuracy
yielded by our methods to that achieved using an ideal
personalized graph genome. We show that our methods
approach the ideal much more closely than both linear
genomes—even when they are modified to contain only
major alleles—and graph genomes built on different sets
of variants.

These methods are implemented in a new open source
software tool called FORGe. We demonstrate FORGe
in conjunction with the HISAT2 [25] graph aligner and
with another aligner based on the Enhanced Reference
Genome [43]. But FORGe’s models and methods are
suitable for any aligner that can include variants in the
reference.

Read alignment with variants

Read alignment is the process of determining each read’s
point of origin with respect to a reference genome. The
origin can be ambiguous, and reported alignments can be
incorrect [29]. Repetitive genomes and sequencing errors
contribute to this problem [26, 29]. Importantly, genetic
differences between donor and reference genomes also
contribute. Alignments overlapping positions where the
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genomes differ—i.e., where the donor genome has a non-
reference allele—are systematically penalized. This can (a)
reduce the correct alignment’s score below the threshold
considered significant by the aligner, (b) cause the aligner’s
heuristics to miss the correct alignment, and (c) cause
the correct alignment’s score to fall below the score at
a different, incorrect location. The problem is magnified
in hyper-variable regions such as the major histocom-
patibility complex (MHC) [12, 17]. It is also problematic
when individuals differ dramatically, e.g., if they are from
distinct inbred strains [44], or when downstream analy-
ses are vulnerable to allelic bias, such as when detecting
allele-specific expression [4, 9, 43] or calling heterozygous
variants [10, 15].

Augmenting the reference genome with known variants
helps in two major ways. First, it reduces the genetic dis-
tance between donor and reference genomes, removing
the tendency to penalize correct alignments that overlap
non-reference alleles. Second, it avoids the allelic bias, also
called “reference bias,” [9] that results when one donor
haplotype resembles the reference more closely than the
other(s).

There are many proposals for how to include and
index genetic variants along with the reference genome.
Two early approaches were GenomeMapper [44] and
the Enhanced Reference Genome [43]. GenomeMapper
came from a project to sequence many inbred strains of
Arabidopsis thaliana, and it used a graph representation
and an accompanying k-mer index to represent and align
to a graph representing all strains. The Enhanced Refer-
ence Genome [43], which specifically addresses reference
bias for allele-specific expression, included variants by
taking the non-reference allele along with flanking bases
and appending these “enhanced segments” to the linear
reference genome. Since the resulting reference is linear, a
typical read aligner like Bowtie [27] can be used.

Several studies have expanded on these ideas. deBGA
[30] uses a colored De Bruijn graph [22] and accom-
panying hash-table index. BWBBLE [21] and gramtools
[31] use an FM Index [16] with an expanded alphabet
and modified backward-search algorithm to account for
variants. GCSA [49] generalizes the compressed suffix
array to index not a single reference but a multiple align-
ment of several references. HISAT2 [25] combines GCSA
with the hierarchical FM Index implemented in HISAT
[24]. GCSA2 [48] indexes paths in arbitrary graphs and is
implemented in the VG software tool [18] which can align
reads to such indexes. MuGI [8] and GraphTyper [15] use
k-mer-based indexes.

Genome assemblies are also evolving along these lines.
The GRCh37 and GRCh38 human assemblies [6, 7]
include “alt loci,” alternate assemblies of hypervariable
regions including MHC. Other studies suggest modifying
the linear genome by replacing each non-major allele with
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its major alternative [11, 23]. This leverages population-
level information while keeping a linear representation.

While including variants in the reference incurs a com-
putational cost, the nature and magnitude of the cost
depends on the method. For some methods, the most
direct manifestation is in the size of the reference genome
and index. The Enhanced Reference Genome [43] and
its index both grow with the number and length of the
“enhanced segments” added to cover all windows con-
taining non-reference alleles. The number of segments
required to cover a set of k variants within the span of
a single read is 2¥ — 1. Even if this phenomenon is iso-
lated in a few areas of the genome (e.g., hypervariable
regions), the appearance of k in the exponent means it
can be very significant. The GCSA method [49] used in
HISAT?2 [25] incurs similar blowup in its “path doubling”
step. We elaborate in Additional file 1: Note S1, Additional
file 1: Figure S1, and Additional file 1: Figure S2, including
specific discussions of how the cost manifests in different
methods, how it leads to more ambiguity in the reference
genome which can ultimately lead to reduced accuracy,
and how it can be controlled.

Variant selection and evaluation
Past efforts that evaluated graph aligners have been selec-
tive about what variants to include in the graph, but
without a clear rationale. Some included all variants from
a defined subset of strains or haplotypes [8, 30, 44] or
from a database such as the 1000 Genomes Project callset
[3] or dbSNP [46]. In some cases, variants were filtered
according to ethnicity, e.g., keeping just the Finnish 1000
Genomes individuals [49] or the Yoruban HapMap [1]
individuals [43]. The ERG study (concerned with allele-
specific expression) excluded variants outside annotated
genes. The gramtools study [31] used 1000 Genomes vari-
ants but excluded those with observed allele frequency
less than 5%. GraphTyper [15] used dbSNP variants in one
experiment, excluding single-nucleotide variants (SN'Vs)
with under 1% frequency in all populations. HISAT2’s
software for selecting variants to include filters out SN'Vs
with an allele frequency of under 10% in some cases [25].
Here we explicitly model the variants according to their
effects on alignment, and we provide methods for choos-
ing an optimal set based on those models. We apply these
methods in combination with two different augmented-
reference alignment methods and compare to a range of
relevant competing methods, including a linear reference
with reference alleles, a linear reference with all-major
alleles, and an ideal “personalized” reference that cus-
tomized to fit the donor individual’s alleles (including at
heterozygous positions) as closely as possible. This exper-
imental design allows us to make statements about how
our methods affect accuracy, how those effects vary with
genomic region, how close the methods come to achieving
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ideal accuracy, and how practical current graph alignment
methods are overall.

Results

Strategy

FORGe works in cooperation with a variant-aware read
aligner (graph aligner) such as HISAT2 [25]. Consider
the alignment process as being divided into offline (index
building) and online (alignment) stages. FORGe operates
in the offline stage. Specifically, FORGe takes a refer-
ence genome (FASTA format) and catalog of variants and
their frequencies in the population (Variant Call Format).
FORGe can also use phasing information when provided
in the VCE. FORGe then uses a mathematical model to
score each variant according to its expected positive and
negative impacts on alignment accuracy and computa-
tional overhead. The model could consider factors such
as the variant’s frequency in a population, its proxim-
ity to other variants, and how its inclusion affects the
repetitiveness of the graph genome. Using these scores—
together with a parameter for the overall percentage or
number of variants to include—FORGe outputs the top-
scoring subset of variants, which can then be fed to the
index-building component of a graph alignment tool like
HISAT2’s hisat2-build program. In the online stage,
the aligner uses this FORGe-customized index to align the
sequencing reads.

Simulation

We used Mason 0.1.2 [20] to simulate reads (details in
Additional file 1: Note S2). Mason simulates sequencing
errors and base quality values. Mason also annotates each
read with information about its true point of origin. We
disabled Mason’s facility for adding genetic variants, since
we simulate from already-individualized references. We
classify an alignment as correct if its aligned position in
the reference is within 10 nt of the true point of origin.
If the aligner reports several alignments for a read, we
consider only the primary alignment—of which there is
exactly one per aligned read, usually with alignment score
equal to or greater than all the others—when determining
correctness.

Alignment

We tested FORGe with two read alignment strategies
capable of including variants in the reference: HISAT2
[25] and the Enhanced Reference Genome (ERG) [43].
HISAT?2 is a practical graph aligner that we hypothesized
would benefit from careful selection of genetic variants
to include. The ERG is simple and compatible with lin-
ear aligners like Bowtie. We use ERG only with short
unpaired reads (25 nt) to test the hypothesis that the
seed-finding step of an aligner can benefit from includ-
ing FORGe-selected variants. Adapting the ERG approach
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to paired-end alignment is probably not practical (see the
“Discussion” section).

In its offline stage, HISAT2 takes a linear reference
genome and a VCF file with single-nucleotide variants
and indels. HISAT2 uses GCSA indexing [49] to build a
graph-genome index. The resulting graph is the gener-
ating graph for all combinations of reference (REF) and
included alternate (ALT) alleles. HISAT2 also provides
software that, starting from a VCF file (or the UCSC
“Common SNPs” track, derived from dbSNP [46]), selects
a subset of variants to include. It filters in two ways.
First, it excludes variants with allele frequency under 10%.
Second, where variants are densely packed, it imposes
artificial haplotype constraints to avoid the exponential
blowup that results from considering all combinations
of REF and ALT alleles. We call this the HISAT2 auto
method.

We also tested FORGe with our implementation of the
ERG [43]. ERG’s offline phase starts with a linear refer-
ence genome and a variant file. It builds an augmented
reference genome by adding enhanced segments: refer-
ence substrings that include ALTS and flanking context.
The amount of context depends on a user-specified win-
dow size, r, which typically equals the maximum read
length. When # variants co-occur in a window, 2”7 — 1
enhanced segments are added to cover all combinations
of ALT and REF alleles. The original ERG study lim-
ited growth by considering only the leftmost k variants
per length-r window, with k = 5 in practice. We use a
variation on this limit: if a window contains more than
k variants, we consider (a) the leftmost variant, and (b)
the k — 1 other variants with highest allele frequency
according to the input VCEF. Including the leftmost guar-
antees that each variant has its ALT included in at least
one of the overlapping enhanced segments. We also set
the limit higher (k = 15) by default. While k is con-
figurable, we used the default in all experiments here.
After adding enhanced segments to the reference, we
indexed it with Bowtie [27]. In the online stage, we
used Bowtie to align to the enhanced reference. Details
on our ERG implementation are in Additional file 1I:
Note S3.

In all experiments, we ran HISAT2 with the -k
10, --no-spliced-alignment, and --no-temp-
splicesite options. In the ERG experiments, we
ran Bowtie with the -v 1 option to allow alignments
with up to one mismatch. Note that HISAT2 is able
to find alignments with mismatches, insertions, or dele-
tions, whereas Bowtie can only find alignments with
mismatches. In all cases, we used Python’s rusage
module to measure peak resident memory usage and
we used the Linux time utility to measure real (“wall
clock”) running times. All tools were run using a
single thread.
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Variant models

As detailed in the “Methods” section, FORGe has two
main models for ranking and selecting variants to include
in the reference. First is Population Coverage (Pop Cov),
which scores variants according to allele frequency. Sec-
ond is Hybrid, which weighs both a variant’s allele fre-
quency and the degree to which its addition would make
the reference more repetitive. Additionally, we evaluated
versions of these two models enhanced with a blowup
avoidance strategy that, at variant adding time, dynami-
cally down-weights candidates that are close to already-
added variants. These versions are called Pop Cov+
and Hybrid+. All of these strategies are detailed in the
“Methods” section.

Chromosome 9 simulation

We tested FORGe in a series of simulation experiments.
We used human chromosome 9 from the GRCh37 assem-
bly [6]. GRCh37 was chosen to match the coordinates for
the official 1000 Genomes Project Phase-3 variants [3].
We simulated sequencing reads from chromosome 9 of
NA12878, a female from the CEPH (Utah residents with
Northern and Western European ancestry) group studied
in the 1000 Genomes Project. Specifically, we generated
10 million unpaired Illumina-like reads from each hap-
lotype of NA12878 for a total of 20 million reads. Each
read comes from one of the two haplotypes. We created a
VCEF file containing all single-nucleotide variants (SN'Vs)
appearing in chromosome 9 in at least one 1000-Genomes
individual, excluding NA12878 and family members. The
resulting file contained 3.4 million SNVs. Details on how
this set of SN'Vs was obtained are presented in Additional
file 1: Note S4. We used the Pop Cov, Hybrid, Pop Cov+,
and Hybrid+ models to score the 3.4 M SNVs. The Hybrid
and Hybrid+ models used phasing information, whereas
the Pop Cov and Pop Cov+ models did not (explained in
Methods). We compiled subsets of SN'Vs consisting of the
top-scoring 0%, 2%, 4%, 6%, 8%, 10%, 15%, and 20% up to
100% in 10 point increments.

HISAT2 Figure 1 shows alignment rate and accuracy
when using HISAT? to align our simulated 100 nt reads to
the genome indexes created with hisat2-build. The
leftmost point (or in the case of Fig. 1c, the point labeled
0%) corresponds to a HISAT2 index with no SN'Vs added,
i.e., a linear reference genome. The diamond labeled
Major Allele corresponds to a linear reference with all
major alleles; i.e., with every SNV set to the allele that was
most most frequent among CEU individuals in the filtered
callset. The diamond labeled HISAT2 auto corresponds
to the pruned set obtained by running HISAT?2’s scripts.
The diamond-labeled Personalized shows results when
aligning to a personalized NA12878 genome with all non-
reference homozygous (HOM) alleles replaced by their
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ALT versions and all heterozygous (HET) SNVs added as
variants, so that neither REF nor ALT are penalized at
alignment time. This is not a realistic scenario, but help-
ful for assessing how close the tested methods come to
the personalized-genome ideal. Plotted lines show results
obtained when adding progressively larger subsets of
SNVs to the graph genome, prioritized by model score.

Figure 1a, b shows alignment rate and fraction of align-
ments that are correct (henceforth “correctness”) as a
function of the number of SNVs included in the genome.
For all models except Hybrid+, peak alignment rate and
correctness occur in the 8—12% range of SN'Vs included.
All the FORGe models at their peak achieve higher
alignment rate and correctness than the major-allele and
HISAT2 methods. When greater fractions of variants
are included—more than around 12%—alignment rate
and correctness generally decrease. Correctness eventu-
ally decreases to a level only somewhat higher than that
achieved by the linear reference, showing that alignment
suffers when too many variants are included. Figure 1d, e
is similar to a and b but show alignment rate and cor-
rectness as a function of HISAT2’s memory footprint at
alignment time. While FORGe’s models at their peak have
aroughly 50% larger memory footprint than the linear ref-
erences (both major-allele and reference-allele), they use
roughly half the memory of the “HISAT?2 auto” method.

Figure 1c plots a point or a parametric curve for each
indexing strategy and model. The vertical axis is the frac-
tion of reads (not alignments) that aligned correctly, and
the horizontal axis is the fraction of reads that aligned
incorrectly. Notable points on the curves are labeled with
the fraction of SNVs included. Diamonds mark points on
the curves with maximal y — x, where y is fraction correct
and x is fraction incorrect. This is a combined measure
for alignment rate and accuracy, and maximal values are
reached in the 8-10% range of SNVs included (except
Hybrid+, which peaked at 30%). The best performing are
superior to (above and to the left of) the linear-genome
methods, the “HISAT?2 auto” method, and to the genome
obtained by adding all of the SN'Vs (labeled 100%). The
best-performing graph genomes come much closer to the
personalized-genome ideal than the other methods.

It is notable that the alignment rate curves in Fig. 1a,
b, d and e eventually trend downward. Like most read
aligners, HISAT?2 uses heuristics to limit the effort spent
aligning reads to many repetitive regions of the same ref-
erence genome. HISAT?2 is unusual in that when a read has
too many repetitive alignments, it will abort and leave the
read unaligned. Bowtie does not have this heuristic; rather,
Bowtie chooses one best-scoring alignment to report
even when the read has many repetitive alignments.
Because of this, HISAT2’s alignment rate decreases as
more variants are included and the genome becomes more
repetitive.
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Fig. 1 Results from NA12878 simulation for GRCh37 Chromosome 9. 100 nt unpaired reads were simulated from Chromosome 9 with NA12878's
variants included. FORGe and HISAT2 created and indexed augmented reference genomes with various variant sets. Besides the Pop Cov and Hybrid
rankings, we also included a strategy that gave variants random ranks (‘Random”). a and d show the fraction of reads aligned. b and e show the
fraction that aligned correctly to the simulated point of origin. ¢ plots a parametric curve of the fraction of reads with a correct alignment (vertical)
versus the fraction with an incorrect alignment (horizontal). Lines follow measurements made over a range of fractions of SNVs, with points for 0%,
2%, 4%, 6%, 8%, 10%, 15%, and 20% up to 100% in 10 point increments. The diamond labeled HISAT2 auto is an augmented genome produced
using HISAT2's pruning scripts. The diamond labeled Major allele ref is a linear reference with all positions set to the most frequent allele. Other
diamonds indicate the SNV fraction maximizing y — x, where y is the fraction of reads aligned correctly and x is the fraction aligned incorrectly. The
HISAT2 and Major allele diamonds are excluded from panels a, b, and f because there is no clear way to measure the fraction of variants included by
these methods. The black filled circle and square in panel € represent measurements when 0% and 100% of variants are included, respectively

A known drawback of graph aligners is that accuracy
and overhead can suffer when many variants co-occur in
a small window of the genome. To measure the impact
this has on FORGe’s models, we also plotted results using
blowup avoiding versions of the Pop Cov and Hybrid
models (Fig. 1, dotted lines), called Pop Cov+ and Hybrid+.
These versions will, when selecting variants to add, depri-
oritize variants that are near already-added variants. We
observed that blowup avoidance had a minimal impact
on the shape of the Pop Cov curve; e.g., Fig. 1d, e shows
the solid and dotted lines for Pop Cov on top of each
other. Notably, blowup avoidance did cause the alignment
memory to increase more slowly with respect to the num-
ber of added variants for the Pop Cov ranking (Fig. 1f).
For the Hybrid model, blowup avoidance did not change
the relationship between memory footprint and num-
ber of variants added (Fig. 1f) and had an adverse effect

on alignment rate and correctness. This is likely because
the Hybrid model already takes clustered variants into
account in its k-mer counts.

We repeated these experiments for paired-end reads
(Additional file 1: Figure S3) and the results closely fol-
lowed those in Fig. 1. Alignment rate and accuracy both
increased when using paired-end reads, since an accu-
rate alignment for one end can “rescue” the other in the
presence of ambiguity. Peak accuracy (maximal y — x)
was achieved at the same SNV fraction except in the case
of the Hybrid ranking, which peaked at 15% rather than
at 10%.

We also repeated these experiments for reads simulated
from Yoruban (YRI) individual NA19238, also sequenced
in the 1000 Genomes Project (Additional file 1: Figure S4).
As we did for NA12878, we excluded variant calls for
NA19238 and family members before providing variants
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to the model for scoring. These results also closely fol-
lowed those in Fig. 1, with accuracy and recall peaking at
a somewhat higher percentage of variants included (15%
for YRI compared to 8—10% for CEU), likely due to YRI’s
greater divergence from the reference. We return to this
in the “Discussion” section.

Finally, we repeated the unpaired NA12878 experiment
including both SNVs and indels in the FORGe analysis
(Additional file 1: Figure S5). Whereas previous experi-
ments modeled and scored 3.4 M SN'Vs, here we modeled
and scored 3.4 M SNVs and 131k indels, composed of 49k
insertions ranging in length up to 411 nt and 82k dele-
tions up to 92 nt. Given these variant scores, we selected
top-scoring fractions, built indexes, simulated reads from
NA12878 (both SNVs and indels included) and performed
alignments as before. When assessing correctness of the
resulting read alignments, we took coordinate shifts due
to indels into account. Overall the results are similar to
those in Fig. 1. While there is a slight drop in peak align-
ment and correctness rate, the rates varied over a wider
range of percentages relative to the SNV-only experiment.
Maximal y — x occurred at slightly higher variant fractions
relative to the SNV-only experiment: 10% for Pop Cov and
Pop Cov+, 15% for Hybrid and 30% for Hybrid+.
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Enhanced Reference Genome Figure 2 shows alignment
rate and correctness when using Bowtie [27] to align simu-
lated 25 nt reads to enhanced references constructed with
the ERG method [43]. We used shorter reads and con-
figured Bowtie to find alignments with up to 1 mismatch
(-v 1) to mimic the seed alignment step of seed-and-
extend aligners.

Unlike HISAT?2, Bowtie always reports an alignment if
one is found, regardless of how repetitively the read aligns.
Consequently, the alignment rate shown in Fig. 2a and
d strictly increases as variants are added to the graph.
Apart from that, the results reinforce those from Fig. 1.
Peak correctness occurs at a relatively small fraction of
SNVs (6—20%). As more variants are added, correctness
eventually decreases, though the Hybrid ranking does not
suffer this drop until over 70% of SN'Vs are included. The
alignment-time memory footprint of the best-performing
FORGe indexes is higher than that of the linear refer-
ence; e.g., including the top 6% of Pop Cov+-scored SNVs
increases the footprint 29%, from 127.9 MB to 165.0 MB.
But it is a fraction of the size of the index when 100% of
variants are included (1.87 GB). Blowup avoidance (Fig. 2,
dotted lines) had a somewhat minor effect on alignment
rate and correctness for Pop Cov, and a clear negative
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effect for Hybrid. On the other hand, it slowed the rate
of index growth for both models at low and intermediate
fractions of SNVs (Fig. 2f).

Stratification by variant density, variant rarity, and
repetitiveness

Figure 1c showed that when we move from 0 to 8% of
variants included in the augmented reference, the number
of correct alignments increases by about 0.4 percent-
age points (as a fraction of reads) and the number of
incorrect decreases by about 0.1 points. Though these
may seem like small differences, in a study with 1.2 bil-
lion reads—approximately the number of unpaired 100
nt unpaired reads required to cover the human genome
to 40-fold average depth—this would yield about 4.8 M
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more correctly aligned reads and 1.2 M fewer incorrectly
aligned.

Still, we hypothesized that certain read subsets might
be affected more dramatically by the inclusion of variants.
To this end, we measured alignment rate and correctness
when we varied the number of alternate alleles overlapped
by a read (Fig. 3a—c), whether the alternate allele was com-
mon or rare (Fig. 3d—f) and what kind of genomic region
or repeat the read originated from Fig. 3g—i. The mea-
surements studied here are the same as those presented in
Fig. 1, but filtered as described below.

Figure 3a—c shows alignment rate and correctness strat-
ified by the number of non-reference SNVs overlapped
by a read. To obtain these subsets, we first removed
reads originating from reference-genome regions deemed
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repetitive by DangerTrack [13] (score over 250). We did
this after finding that these regions had a combination of
low SNV density and repetitive content that caused the
0-SNV stratum to behave very differently from the oth-
ers. Reads containing 1 or more SNVs undergo a rapid
increase in alignment rate and correctness from 0 to 10%
of SN'Vs. Beyond 10%, all strata experience a slow decrease
in alignment rate and correctness up to 100% of SNVs
added. The 0-SNV stratum has decreasing alignment rate
and correctness across the whole range, as expected since
the addition of variants cannot help (since the reads lack
alternate alleles) but can harm alignment by increasing
the repetitiveness of the reference. Strata with more SN'Vs
experience a more dramatic rising-and-falling pattern;
for the 3-SNV stratum, alignment rate varies from about
80-98%. While curves for the various strata have different
shapes, all peak at a relatively low SNV fraction: 20% or
lower.

Figure 3d-f show alignment rate and correctness for
reads containing a single rare SNV allele (1000 Genomes
frequency < 0.5) versus reads containing a single common
SNV allele (> 0.5). In both cases, we considered only reads
with a single non-reference allele. Rare-SNV reads peak
lower and at a higher SNV fraction than common-SNV
reads for both alignment rate and correctness (Fig. 3d—f).
This is expected, since the Pop cov model prioritizes com-
mon over rare SNVs. In other words, by the time a rare
variant is added, many common variants have already
been added, making the genome more repetitive.

Figure 3h-j shows alignment rate and correctness
for reads stratified by feature of origin. We analyzed
reads originating from (a) RepeatMasker-annotated
repetitive regions (http://www.repeatmasker.org), (b)
RepeatMasker-annotated “Alu” repeats, (c) regions cap-
tured by the Nextera exome sequencing protocol, and (d)
all reads.

Reads from repetitive regions generally had lower align-
ment rate and correctness compared to all reads. As
before, alignment rate and correctness curves peaked at
low SNV fractions: 10% or lower. Reads from more repeti-
tive features were more sensitive to the number of variants
included in the reference, as evidenced by the vertical
spans of the curves.

In a related experiment, we examined the graph
genome’s effect specifically on the hypervariable MHC
region. We simulated reads from NA12878 Chromosome
6 and used HISAT? to align to both a linear and a graph
genome augmented with the top-scoring 10% of SNVs.
We visualized the read-alignment pileup in the hyper-
variable MHC region using IGV [51] (Additional file 1:
Figure S6). Qualitatively, the pileup for the augmented
reference looks superior—with more coverage in variant-
dense regions and with more even overall coverage—to
the pileup for the linear reference.
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Ethnicity specificity

We also studied how ethnicity-specific augmented refer-
ences, advocated in other studies [2, 33, 47], can improve
alignment. We used FORGe to select variants from two
lists: one with variants drawn from and scored with
respect to the overall 1000-Genomes phase-3 callset,
and another drawn from and scored for just the CEU
individuals. In both cases, variants private to NA12878
and family members were excluded and reads were simu-
lated from NA12878.

Figure 4 shows alignment rate and correctness when
aligning to CEU-specific and pan-ethnic references. As
expected, the CEU-specific reference yielded higher align-
ment rate and correctness. CEU-specific curves also
peaked at lower numbers of SNVs compared to pan-
ethnic. However, the differences were only a few hun-
dredths of a percentage point and cover only a small
fraction of the remaining distance to the ideal point. Look-
ing at this another way, if we extrapolate the results to
a whole-genome DNA sequencing experiment with 40-
fold average coverage, around 250,000 alignments would
be affected. We return to these small differences in the
“Discussion” section.

Whole human genome

Simulated reads To show our methods generalize to
whole genomes, we repeated experiments like those pre-
sented in Fig. 1 using the full GRCh37 reference. We
gathered 80.0 million SN'Vs from the Phase-3 callset of the
1000 Genomes Project [3]. We used FORGe’s Pop Cov+
model to score SN'Vs and compiled subsets consisting of
the top-scoring 2%, 4%, 6%, 8%, 10%, 15%, and 20% up
to 100% in 10 point increments. We built graph-genome
indexes for each using HISAT2.

We used the Pop Cov+ model because the others
required excessive time and/or memory; specifically, the
Pop Cov model (without blowup avoidance) produced a
set of variants that HISAT2 was unable to index in a prac-
tical time and space budget (Additional file 1: Note S5) and
the Hybrid and Hybrid+ models required excessive time
for the step that generates the FASTA file for Gx due to
exponential blowup (Additional file 1: Note S6).

Figure 5a, b plots HISAT?2 alignment rate and correct-
ness as a function of the SNV fraction. We aligned 20 mil-
lion 100 nt unpaired reads from simulated from NA12878.
We omitted NA12878 and family members from variant
selection. Results using the ideal personalized index are
also shown for comparison. Maximal y — x, where y is
the fraction of reads aligned correctly and x is the frac-
tion aligned incorrectly, occurred at 10% of SN'Vs (Fig. 5¢).
Interestingly, the maximal point does not approach the
personalized-genome ideal point as closely here as it did
for the chromosome-9 experiment (Fig. 1). This seems to
be due to the added ambiguity that comes when variants
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in all non-chromosome-9 portions of the genome are
added (Additional file 1: Figure S7).

Platinum reads, SNVs We conducted further experi-
ments using a set of 1.57 billion real 100 nt unpaired
sequencing reads from the Platinum Genomes Project
[14] (accession: ERR194147). Like the simulated reads,
these also come from NA12878. We gathered a set of 80.0
million SNVs from the 1000 Genomes phase-3 callset,

omitting variants private to NA12878 and family mem-
bers. We again used the Pop Cov+ model to select variants.

We cannot assess correctness since the reads were
not simulated. Following a prior study [34], we mea-
sured the number of reads that align uniquely—where
HISAT?2 reported exactly one alignment—yversus the num-
ber that aligned perfectly, matching the reference exactly
with no differences. The goal was to capture the variant-
inclusion trade-off; we hypothesized that adding more
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Fig. 5 Results from aligning NA12878-simulated reads to HISAT2 graph genome for the whole GRCh37 genome. Variants were selected using
FORGe's Pop Cov+ model. Plots have the same axes as the plots in Fig. 1 panels a-c. The green diamond in panel (c) shows the result when aligning
to a personalized graph genome with exactly the individual's variants
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variants will remove the alignment-score penalty associ-
ated with known genetic variants (increasing the number
of perfect matches) without increasing reference ambi-
guity (decreasing the number of unique alignments). As
shown in Fig. 6a, the points that achieved the peak num-
ber of unique plus perfect alignments corresponded to
30% of the SN'Vs. This fraction is higher than most of our
simulated results, perhaps due to the fact that unique-
plus-perfect is an imperfect proxy for correct-minus-
incorrect (Additional file 1: Figure S8).

Platinum reads, SNVs, and indels To highlight the
effect of including indels in the reference, we repeated
the previous experiment but using both SNVs and indels
from the 1000 Genomes phase-3 callset. Specifically, we
gathered 83.1 million variants, both SNVs and indels,
but omitting variants private to NA12878 and family
members. We again used the Pop Cov+ model to select
variants. We again plotted the number of reads that
aligned uniquely versus the number that aligned perfectly
(Fig. 6a). The graph genome built from both SNVs and
indels achieved peak unique+perfect at 30% of variants,
like the graph built from SNVs alone. However, at every
percentage it yields more unique and perfect alignments.

Reference bias We measured how reference bias varies
with the fraction of variants included. We analyzed the
alignments of the ERR194147 reads to the whole human
genome with both SNVs and indels included in in refer-
ence. Figure 6b shows a series of boxplots summarizing
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bias at a set of 2.07 million HET SNVs called in NA12878
by the Platinum Genomes Project [14]. The set of 2.07M
HETs was chosen by taking all HETs covered by at least
25 reads in all of our experiments. Each boxplot summa-
rizes the fraction of REF alleles (REF/(REF + ALT)) at the
HET site for all 2.07M HETs. As expected, bias decreased
as more variants were included. The decrease plateaued at
10-20% of variants. Beyond 20%, including more variants
did further reduce bias, but only slightly. From 20 to 70%
of variants the mean decreased by only 0.00011.

This is consistent with previous results showing that
most of the benefit is achieved at a small fraction of
variants.

HLA typing accuracy Finally, to measure FORGe’s effect
on downstream results, we measured how HLA typing
recall vary with the fraction of variants included in the
reference. We used the same NA12878/ERR194147 align-
ments evaluated in previous sections, extracted align-
ments in the MHC region, then provided those alignments
to the Kourami [28] HLA typing tool to make HLA calls.
We repeated this with indexes for all the same variant-
inclusion fractions evaluated previously. More details on
the HLA typing methodology are described in Additional
file 1: Note S7. In comparison with linear genome, HLA
typing recall and accuracy increased substantially when
the highest-scoring 10% of SN'Vs were included in the aug-
mented reference. Recall and average coverage plateaued
atlarger SNV fractions (Additional file 1: Figure S9). Over-
all, we see that—as we observed in other results—HLA
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allele recall benefits from the addition of a carefully-
chosen fraction of variants, and that a fraction of only 10%
is sufficient to achieve peak recall.

Methods

FORGe works in cooperation with a variant-aware read
aligner such as HISAT?2 [25] or the ERG [43]. The strategy
has two stages. In the offline stage, FORGe selects variants
to include in the augmented reference based on a variant
model — which predicts the pros and cons of includ-
ing a variant — and a variant limit. The model and limit
together constitute a variant inclusion strategy (VIS) that
aims for a balance between accuracy and overhead. Once
variants have been selected, the aligner software is used to
create an index of the augmented reference. The second
stage is an online stage where the read aligner aligns reads
to the augmented reference using the index.

Offline stage

Inputs to the offline stage consist of (a) a reference
genome, (b) variants in VCF format, (c) a VIS, and (d)
a window size s. The variant inclusion strategy (VIS)
consists of a variant model and a limit on the number
or fraction of variants to include. The VIS is the user’s
most direct means for balancing blowup and alignment
accuracy in the augmented reference. We now propose
multiple variant models, each aiming to give higher scores
to variants that will impart a greater net benefit when con-
sidering accuracy and blowup. The window size s is used
in three separate places in the software (described below)
and should typically be set to the maximum read length.

Variant models

Let G denote the linear reference genome and G* the
complete augmented genome including all variants in the
population. Let G be a possible result of a VIS, ie., an
augmented genome that includes a subset of population
variants. For simplicity, assume all variants are SN'Vs (sub-
stitutions). Let a localized s-mer (s, [) be a string of length
s (the configurable windows size) that matches some com-
bination of alleles in an augmented genome G starting at
offset /; we also call these simply (s, [)-mers. For instance, if
G is GATYACR, where Y can be either ¢ or T, then (GAT, 0),
(TCAa, 2), and (TTA, 2) are all (3, [)-mers of G.

For an (s,/)-mer o, let p(o) be the probability a ran-
dom (s,[)-mer drawn from a random individual in the
population equals o.

This can be calculated as:

S )l
ps ) = pid) - p((s, ) ~ 228D
|Gref|

where p;(o) is the probability a random s-mer begins
at o’s offset, which we approximate by ‘G—lf‘ ps(o) is
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the probability a localized s-mer starting at / has alleles
matching o’s.

We approximate ps(c) by assuming independence and
multiplying the frequencies of each allele, or, if phas-
ing information is available, by using allele co-occurrence
frequencies.

Population coverage The population coverage C(G) of
an augmented reference G is proportional to the pop-
ulation variation included, weighted by allele frequency.
Specifically:

CG = )Y plsh)

(sl)eG

Note that C(G,er) < C(G) < C(G*) = 1.

We want to prioritize alleles according to how much
they increase C(G). To do so accurately, each variant’s
effect on C(G) must be calculated according to which
nearby variants (within s — 1 positions) are already in G.
While this is possible, it requires much recalculation of
scores as variants are added to G. It also means there
is no way to produce a single, static list of per-variant
model scores. For these reasons, we instead compute each
variant’s effect on C(G) assuming that all surrounding
variants are already in G; in other words, we compute the
decrease in C(G) caused by removing the variant from Gx.
We call this the complete graph assumption.

Although FORGe is capable of wusing phasing
data—describing which alleles co-occur on the same
haplotype—the complete graph assumption makes this
irrelevant for our calculation here. We do make (optional)
use of phasing data in the Hybrid model, discussed below.

Uniqueness The uniqueness U(G) of a genome G
decreases as the multiplicities of its k-mers increase, i.e.,
as the genome becomes more repetitive. Let f(s) be the
number of (s, ')-mers in genome G with s = s’. We define
uniqueness of the genome as:

1
HO= 2 R

(s,l)eG

Adding a variant to the genome can either increase or
decrease U(G). Specifically, an (s, /)-mer overlapping the
variant increases U(G) if there is no other (s, /)-mers
with s = . Alternately, an {s,)-mer overlapping the
variant decreases U(G) if there are any other (s, !)-mers
withs = .

While we rely on this definition below, we do not expect
uniqueness alone to be an effective variant model. This
is because for most variants all the added (overlapping)
(s, [)-mers are unique. All such variants therefore receive
an identical score. The hybrid measure, presented next,
effectively breaks ties by also considering allele frequency.
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Hybrid score The hybrid score H(G) of a genome G
considers both population coverage and uniqueness.

Again let f;(s) be the number of (s',/')-mers in G with
s = s and let p({(s,!')) be the probability a random
(s,l)-mer drawn from a random individual equals (s, /).
We define the hybrid measure H(G) of an augmented
reference G as

H(G) = Z

Note that this is simply the dot product of the terms from
the C(G) and U(G) sums.

For a variant v, we wish to compute the increase in H(G)
caused by adding v. For each (s, /)-mer overlapping v and
containing the alternate allele, let (s, /1), (s, 2), ..., (s, 1) be
all other (s,/)-mers with the same sequence s. Before
adding v, the hybrid score can be written as

c+y P((S’;li»
i=1

where C is the hybrid-score portion due to the (s', [)-mers
with s’ # s. After adding (s, [) to G, the score becomes

pUs, )
Z n+1

fG(S)

P((s, )
n+1

The change in hybrid score due to the addition of (s, /) is

p(s, I p( s, 1 p( s, 1
AHs) _Z n+1 n+1 Z
_p(<s,l)—%Zi=1p( s, 1))
- n+1

Assuming each (s, [)-mer overlapping variant v has a dis-
tinct sequence s, their AH,; terms are independent. Thus
the total change in hybrid score due to the addition of v is
the sum of the AH;’s for each (s, [)-mer overlapping and
including v.

There are a couple caveats to how FORGe implements
the hybrid model. First, As with the Pop Cov model, we
make the complete graph assumption, allowing us to pro-
duce a scored variant list without dynamic re-scoring of
variants as they are added.

Second, computing AH,’s for all variants is expen-
sive, since it involves calculating the read probability for
each other occurrence of sequence s for every overlapping
(s, [)-mer.

Instead, we approximate it using average probabilities.
Specifically, we pre-calculate p,, the average p({s,[)) for
all (s,[)-mers in G, and py, the average p((s,/)) for all
(s,l)-mers in G* but not in G,,. We approximate the
summation with a weighted average:
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Whereas the complete graph assumption rendered phas-
ing data irrelevant to the Pop Cov model, we can use
phasing data in the Hybrid model. This is because the
Hybrid model weights the terms of the sum according to
their frequency in the genome. By default, FORGe uses
phasing information when it is available.

= 5 (00 o, ) B+, 9]

Hybrid score implementation The Uniqueness and
Hybrid models are concerned with s-mer counts both in
the linear reference genome (G,,r) and in the complete
augmented reference (G*). FORGe uses Jellyfish v2.2.6
[32] to calculate these counts. Since Jellyfish counts s-mers
in a FASTA input file, FORGe must first construct an aug-
mented FASTA such that (s, /)-mers in this FASTA map
one-to-one to (s, /)-mers in G*. This is also the goal of the
Enhanced Reference Genome [43] representation, which
accomplishes this by adding 2€ — 1 “enhanced segments”
for every length-s window containing k variants. Thus, to
obtain s-mer counts for Gx, we first constructed such as
FASTA file using our implementation of the ERG, then
counted s-mers using Jellyfish.

Once s-mers have been counted, FORGe computes the
average probability for reads in the linear reference (p;er)
and in the complete augmented reference (p.), for use in
the Hybrid model formula. Finally, we compute the change
in H(G) for each s-mer in both and update the Hybrid
model scores for every variant with an alternate allele in
that read. After this, we have the full set of Hybrid model
scores for all variants.

Considering blowup Adding variants to the augmented
reference increases computational costs, including (a) size
of the index on disk, (b) memory footprint during read
alignment, and (c) time required for read alignment. We
collectively refer to these as “blowup” Blowup is most
drastic in genomic regions where variants are densely
clustered, driving a exponential increase in the number
of allelic combinations possible. A model based purely on
minimizing blowup would prioritize isolated variants over
those in clusters. We do not expect such a model to per-
form well on its own, though, since (like the Uniqueness
model described above) it would fail to prioritize among
the isolated variants. For this reason, we sought a way
to combine a blowup avoidance strategy with the models
already described above.

Selecting variants with blowup avoidance After rank-
ing variants, FORGe selects the subset of variants to
include in the augmented reference. The user specifies
either a number or a fraction of all variants to include.
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In the simplest case, variants are chosen in order, start-
ing with the highest-scoring variant, until the desired
number have been included.

As an additional defense against blowup, we also pro-
pose a dynamic re-scoring scheme that can be added to an
existing model. In this scheme, when a variant is added to
the reference, FORGe searches for other variants within
s nt (the window length) of the added variant that have
not yet been selected for addition. These nearby variants
are re-scored by multiplying their score by a penalty fac-
tor w, where 0 < w < 1. By letting w be variable, FORGe
can trade off between maximizing the model score and
minimizing blowup. w = 1 maintains the original scores,
whereas a penalty near w = 0 would ensure all isolated
variants were added before any neighboring variants. We
found that a penalty of w = 0.5 performed well in practice,
and this is FORGe’s default, used in all experiments per-
formed here. Pop Cov+ and Hybrid+ are how we refer to
those models when they are combined with this dynamic
re-scoring scheme.

Breaking ties Variants can be given identical scores
using these models. For instance, variants with the same
allele frequency will receive the same score by the Pop
Cov model. These ties are broken according to the vari-
ants’ position on the genome. We define variant A to be
upstream of (and higher priority than) variant B if it is on
a lower-numbered chromosome or if its offset is to the
left of Bs.

Discussion

FORGe’s modeling of positive and negative effects of
including genetic variants in an augmented reference
yields accuracy-blowup tradeoffs superior to current
approaches. We proposed models for prioritizing variants
with distinct rationales and strengths. We found repeat-
edly that the most advantageous set of variants consisted
of a fraction (6-30%) of the variants called in the 1000
Genomes project. This was true across a variety of align-
ment scenarios: for two different graph alignment meth-
ods (HISAT2 and ERG), for both unpaired and paired-end
alignment modes, when just SN'Vs and when both SNVs
and indels are included, for both a single human chro-
mosome and for the whole human genome, and for both
CEPH and YRI individuals. We also showed that FORGe’s
modeling can substantially improve downstream results
related to reference bias and HLA typing, also at relatively
low variants-inclusion fractions.

To test if FORGe’s results yield a simple filtering rule, we
can translate the peak-performing variant inclusion frac-
tions for the Pop Cov model into allele frequency thresh-
olds. For the Chromosome-9 NA12878 experiments, the
8% variant inclusion fraction performed best in both
the unpaired (Fig. 1) and paired-end (Additional file 1:
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Figure S3) experiments. This translates to an allele fre-
quency threshold of > 7.42%. For the Chromosome-9
YRI experiment (Additional file 1: Figure S4), the best-
performing fraction of 10% translated to an allele fre-
quency threshold of > 3.76%. While these fall on either
side of the 5% threshold used in at least one prior study
[31], further work is needed to establish whether that
or any other simple threshold is justifiable in general. A
finer-grained sweep over variant inclusion fractions would
yield a sharper threshold, for example. For now, our strat-
egy of gradually introducing variants in the context of a
simulation study is both principled and practical.

FORGe and HISAT2 combine to make a practical graph
aligner that works with human data with large vari-
ant databases like the 1000 Genomes Phase 3 call set.
Using hisat2-build to index a GRCh37-based graph
genome with the top 8% of variants from Phase-3 set
required 4 h and 165 GB of memory. Aligning 20 mil-
lion reads to this graph required 19 min and 6.5 GB
of memory, about 50% more time and 50% more mem-
ory than HISAT?2 requires to align to the linear GRCh37
genome. (To prioritize the variants prior to indexing,
FORGe required about 110 min on a single processor.)
This is competitive with the performance of aligners
like Bowtie 2 and BWA-MEM when aligning to the lin-
ear reference, suggesting graph-based tools are ready for
broader use.

Though we estimate that the overall improvement
in alignment accuracy for a 40x whole-genome DNA
sequencing experiment would lead to 4.8M more correctly
aligned reads and 1.2M fewer incorrectly aligned reads,
the magnitude of the improvement imparted by modeling
variants depends on the genomic region. For some regions
and variant classes (rare, isolated SNVs), the benefit is
small.

To improve alignment to these regions might require an
iterative approach that aligns to a graph containing known
variants, calls donor-specific variants, then realigns to a
graph that includes both. Strategies like this are imple-
mented in the GATK HaplotypeCaller [10], GraphTyper
[15] and other tools [35]. Better variant models might also
benefit these hard cases. Even so, the effects we measured
translate into substantial net increases in the number of
correctly aligned reads, and the results are pronounced
in regions such as MHC as shown by Additional file 1:
Figures S6 and S9.

An ethnicity-specific reference conferred a slight accu-
racy improvement compared to a pan-ethnic reference
with a similar number of variants. This is notable in light
of proposals to use ethnicity-specific references [2, 33].
It suggests that the advantages of an inclusive reference,
applicable regardless of the donor individual’s ethnicity,
might outweigh the slight accuracy gain that comes with
ethnicity-specificity. Also, ethnicity-specific references
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could be counterproductive or misleading in cases where
donor ethnicity is reported incorrectly or where the donor
is admixed [19].

The accuracy achieved at relatively small fractions of the
1000 Genomes variants has implications for the design of
graph aligners. A central challenge for these tools is to
operate efficiently even when variants are densely clus-
tered, causing local explosion in the number of allelic
combinations. But our observations that peak accuracy
occurs at a relatively small fraction of variants, and that
memory footprint increases by a factor of 2 or less at
peak accuracy, suggests that this is not a major barrier to
practical graph-genome alignment as long as variants are
chosen carefully.

It should also be possible to adapt FORGe to study
how including structural variants can improve alignment.
A common observation of studies that have assembled
human genomes from long reads is that the assemblies
contain many megabases of sequence not present in the
standard human reference [2, 5, 45, 47]. The models
we propose are equally applicable to structural variants,
assuming the variants are called in enough individuals to
estimate allele frequencies accurately.

While we primarily investigated unpaired alignment
here, we also showed that the chromosome-9 results
generalized to paired-end alignment (Additional file 1:
Figure S3). Generally speaking, this work can be adapted
to paired-end alignment, with the main issue being how
to adjust the method’s window lengths as a function of
the paired-end dataset’s read and fragment lengths. The
windows in question are (a) the s-mer length used in the
model, (b) the maximum window length used when form-
ing enhanced segments for ERG-based alignment, and (c)
for blowup avoidance in the Pop Cov+ and Hybrid+ mod-
els, the radius to look within when seeking nearby variants
to deprioritize. While one option is to simply increase the
window size to the maximum fragment length, that can
easily lead to an unacceptable blowup penalty. For this rea-
son, we suspect that there is no practical way to adapt our
ERG-based to paired-end alignment; rather, as we explain,
we think it is best viewed as a model for the seed-finding
step of a seed-and-extend aligner that might itself handle
paired ends. Initial experiments suggest that it is practical
to leave the window lengths relatively short—the length
of a read rather than a fragment—when using HISAT2
for paired-end alignment (Additional file 1: Figure S3).
Further exploration is needed to more fully character-
ize the relationship between FORGe window length and
fragment and read lengths for paired-end reads.

While we found that including FORGe-selected vari-
ants improved results for a downstream HLA-typing
method, we also found the method failed to achieve
perfect accuracy based only on HISAT2+FORGe’s align-
ments. This was likely because one of NA12878’s HLA
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alleles (DQB1*02:01) was so different from the reference—
even after including the FORGe-selected variants—that
its identifying reads failed to align (see Additional file 1:
Note S7). This highlights the continued importance of
other alignment methods that use alternate assemblies
such as the GRCh38 ALT loci [7] or that can align to
graphs that include larger-scale variation [18] in addition
to relatively small variants studied here and in the 1000
Genomes Project.

Additional file

Additional file 1: Supplementary information. Contains Notes S1-S7 and
Figures S1-S9. (PDF 620 kb)
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