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Abstract

We assembled the sequences from deep RNA sequencing experiments by the Genotype-Tissue Expression (GTEx)
project, to create a new catalog of human genes and transcripts, called CHESS. The new database contains 42,611 genes,
of which 20,352 are potentially protein-coding and 22,259 are noncoding, and a total of 323,258 transcripts. These
include 224 novel protein-coding genes and 116,156 novel transcripts. We detected over 30 million additional transcripts
at more than 650,000 genomic loci, nearly all of which are likely nonfunctional, revealing a heretofore unappreciated
amount of transcriptional noise in human cells. The CHESS database is available at http://ccb.jhu.edu/chess.
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Background
Scientists have been attempting to estimate the number
of human genes for more than 50 years, dating back to
1964 [1]. In the decade preceding the initial publication
of the human genome, multiple estimates were made
based on sequencing of short messenger RNA frag-
ments, and most of these estimates fell in the range of
50,000–100,000 genes [2–5]. When the human genome
was published in 2001, the estimates of the gene count
were dramatically lower, with one paper reporting
31,000 genes [6] and the other 26,588 plus ~ 12,000
genes with “weak supporting evidence” [7]. As the gen-
ome was gradually made more complete and the annota-
tion improved, the number continued to fall; when the
first major genome update was published in 2004, the
estimated gene count was revised to 24,000 [8]. Later ef-
forts suggested that the true number of protein-coding
genes was even smaller: a 2007 comparative genomics

analysis suggested 20,500 [9], and a proteomics-based
study in 2014 estimated 19,000 [10].
One striking feature of most early attempts to catalog

all human genes was their lack of precision. Most esti-
mates have only one to two significant digits, indicating
major uncertainty about the exact number. As we re-
ported in 2010, the estimates of the human gene count
at that time averaged ~ 22,500 genes [11]. As of late
2017, one of the most reliable catalogs of human genes,
the curated reference set from NCBI’s RefSeq database
[12], contained 20,054 distinct protein-coding genes, and
another widely used human gene catalog, GENCODE
[13], contained 19,817. The international CCDS data-
base, an ongoing effort to identify all human and mouse
genes [14], listed 18,894 human protein-coding genes in
March 2018 (release 20).
The human gene list has a tremendous impact on bio-

medical research. A huge and still growing number of
genetic studies depend on this list, for example:

� Exome sequencing projects use exon capture kits
that target most “known” exons. Any exons that are
not listed in standard human annotation are
ignored.
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� Genome-wide association studies (GWAS) attempt
to link genetic variants to nearby genes, relying on
standard catalogs of human genes.

� Many software packages that analyze RNA
sequencing (RNA-seq) experiments, which measure
gene expression, rely on a database of known genes
and cannot measure genes or splice variants unless
they are included in the database.

� Efforts to identify cancer-causing mutations usually
focus on mutations that involve known genes, ignor-
ing mutations that occur in other regions.

These and other examples encompass thousands of ex-
periments and an enormous investment of time and ef-
fort. The creation of a more complete, accurate human
gene catalog will have an impact on many of these stud-
ies. For example, exome sequencing studies targeting
Mendelian diseases, which should be the easiest diseases
to solve, have reported diagnostic success in only about
25% of cases [15, 16], perhaps because many exons and
genes are excluded from exome capture kits. A better
gene list may also help to explain the genetic causes of
the many complex diseases that have thus far remained
largely unexplained, despite hundreds of large GWAS
and other experiments.
As part of the creation of a human gene list, we must

first define what is meant by the term “gene.” During the
Human Genome Project, most efforts to estimate and an-
notate genes focused on protein-coding genes, i.e., regions
of the genome that are transcribed into RNA and then
translated into proteins. At the time, most scientists as-
sumed that non-coding genes represented only a very
small portion of the functional elements of the human
genome and that most RNA genes (e.g., transfer RNAs
and ribosomal RNA genes) were already known. A few
years after the initial publication of the human genome,
though, scientists began to uncover a large and previously
unappreciated complement of long noncoding RNA
genes, lncRNAs [17, 18], which quickly grew to include
thousands of novel genes. These genes have a wide range
of functions that are just as vital to human biology as
many protein-coding genes [19], and any comprehensive
list of human genes should include them.
Thus, for the purposes of our study, genes will include

any interval along the chromosomal DNA that is tran-
scribed and then translated into a functional protein or
that is transcribed into a functional RNA molecule. By
“functional,” we mean to include any gene that appears
to perform a biological function, even one that might
not be essential. We recognize that the proper determin-
ation of function can be a lengthy, complex process and
that at present, the function of many human genes is
unknown or only partially understood. Our definition
intentionally excludes pseudogenes, which are gene-like

sequences that may arise through DNA duplication events
or through reverse transcription of processed mRNA tran-
scripts. Following previous conventions [11], when mul-
tiple proteins or RNA genes are produced from the same
region through alternative splicing or alternative tran-
scription initiation, we will count these variants as part of
a single gene. Our total gene count, therefore, corresponds
to the total number of distinct chromosomal intervals, or
loci, that encode either proteins or noncoding RNAs; in
addition, we report the total number of gene variants,
which includes all alternative transcripts expressed at each
locus. (In the few cases where distinct genes occupy over-
lapping intervals, we count these as separate genes.)

Construction and contents of CHESS
The basis for our human gene catalog is a new analysis
of a large, comprehensive survey of gene expression in
human tissues, the genotype-tissue expression (GTEx)
study, which included samples from dozens of tissues
collected from hundreds of individuals [20]. All of these
samples were subjected to deep RNA-sequencing, with
tens of millions of sequences (“reads”) captured from
each sample, in an effort to measure gene expression
levels across a broad range of human cell types. This ex-
ceptionally large set of transcript data—just under 900
billion reads—provided an opportunity to construct a
new set of human genes and transcripts. We accom-
plished this by assembling all of the samples, merging
the results, and applying a series of computational filters
to remove transcripts with insufficient evidence.
During the Human Genome Project, the gold standard

for identifying a gene was evidence that it was tran-
scribed into messenger RNA. This was the basis for the
first large-scale effort to capture and catalog human
genes [21] and for many subsequent efforts. However,
over time, it has become clear that the mere fact that a
region of the genome is transcribed is insufficient to
prove that it has a function, especially in light of evi-
dence that random mutations can easily create transcrip-
tional start sites [22]. A second, arguably more powerful
piece of evidence that a sequence is a gene is evolution-
ary conservation: if a protein sequence has been con-
served in other species, this provides strong evidence
that the sequence provides a useful function, i.e., that it
is a gene. A third line of evidence is reproducibility: if
we observe a transcript in multiple samples from mul-
tiple individuals, then it is less likely be the result of ran-
dom transcription. We used each of these lines of
evidence in constructing the new gene catalog.

Novel genes and transcripts
We assembled all 9795 RNA-seq samples from the
GTEx collection (see the “Methods” section) and re-
moved all transcripts that overlapped with known
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protein-coding genes, noncoding genes, or pseudogenes
from RefSeq [12] or GENCODE [13]. This process gener-
ated 5,081,171 novel transcripts at 668,018 loci, where
“novel” means that the transcripts did not overlap any an-
notated genes in either the RefSeq or GENCODE data-
bases. We then used a variety of criteria, described below,
to eliminate transcripts due to “noise” [23], i.e., transcripts
produced by low-level transcriptional activity that appears
to have no functional utility. This noise is so ubiquitous
that some computational methods for analyzing RNA-seq
experiments automatically impose a threshold below
which they will not report a transcript, even if reads are
present [24, 25]. We also eliminated novel transcripts with
no introns, which we assumed to be either noise or pseu-
dogenes unless they had high expression levels and con-
tained a potential protein-coding gene, as detailed below.
Out of the 5,081,171 novel transcripts, only 139,289 (2.7%)
in 41,979 (6.3%) distinct loci had at least one intron.

Protein-coding genes
To identify potentially novel protein-coding genes, we
eliminated transcripts based on a series of relatively
strict criteria designed to remove noise, pseudogenes,
and alignment artifacts. For each transcript, we used
blastx [26] to search all open reading frames against all
mammalian proteins in GenBank and in UniProtKB/
Swiss-Prot to determine whether any were conserved in
other species or elsewhere in the human genome. We
required that any novel protein-coding transcript satisfy
at least the following criteria:

� The transcript must contain at least one intron, and
it must have expression level TPM > 1 in at least one
tissue, or alternatively, it may be a single-exon tran-
script with expression level at least as high as the
outliers for known transcripts, defined as TPM >
13.87 (see Additional file 1).

� The transcript must not be contained in another
transcript, unless it is expressed in more samples
than all transcripts that contain it.

� The length of the open reading frame (ORF) must
be at least 60 amino acids.

� The ORF cannot overlap known LINE or LTR
repeat elements or overlap ribosomal RNA genes.

� The BLAST e-value of the best protein alignment
must be 10−15 or smaller.

� If the predicted protein matches another protein,
the length of the ORF must be at least 75% of the
length of the matching protein (in order to eliminate
pseudogenes, which tend to be truncated).

� If predicted transcripts are in conflicting loci (i.e.,
overlapping transcripts on opposite strands), we
only keep those that align to proteins with known
functions.

After applying these filters, we were left with 1335
transcripts. Seventy of these transcripts (in 55 genes)
contained domains that matched either the Pfam pro-
tein families database [27] or the NCBI Conserved
Domain Database (CDD) [28] (see Additional files 2
and 3). Upon further screening, we found that the
majority of the remaining transcripts overlapped Alu
elements [29] or SVA repeat elements [30]. While it
is possible that some of these transcripts could en-
code true protein-coding genes, we chose the conser-
vative approach of eliminating any such transcript if
it did not have a Pfam or CDD hit. After this step,
the remaining 317 transcripts (which include the 70
that contain Pfam domains) clustered into 224 poten-
tially new protein-coding genes (see Additional files 4
and 5). Combining the 224 new genes with the
20,054 from RefSeq yielded a total of 20,278 poten-
tially protein-coding genes.
Figure 1 illustrates one of the novel genes, CHS.7402,

discovered by this process. This four-exon gene occurs
on chromosome 10 and spans the range 122,657,410–
122,679,509, approximately 14 Kb downstream from
the nearest known gene, DMBT1. It is highly conserved
in multiple other species, with the closest homologs in
macaques (94% identical over the full length of the pro-
tein, BLAST e value 1e−38), followed by marmoset,
capuchin, ass, Przewalski’s horse, rhinoceros, wild boar,
and others (Fig. 1).
Interestingly, we found no homologous proteins an-

notated in primates much more closely related to
humans such as chimpanzee, gorilla, and orangutan.
We searched the transcript sequence of CHS.7402
against the DNA of chimpanzee (Pan troglodytes) and
found that the sequence matches nearly perfectly, at
97% identity over its entire length, and that chimpan-
zee also has four exons. Thus, the gene is clearly
present, though un-annotated, in Pan troglodytes. This
illustrates a broader problem with gene annotation:
when annotation is created for a new genome, which
is typically done through a highly automated process,
previously annotated genes from other species provide
critical evidence to support the new annotation. Thus,
if a gene is missing from the human annotation, it
may be omitted from the annotation of other species,
especially close human relatives. Multiple sequence
alignments for additional novel CHESS proteins are
shown in Additional file 1: Figures S6–S8.
We then evaluated the 15,779 lncRNA genes in RefSeq

to determine if any of these might instead be
protein-coding genes. From all RefSeq lncRNAs, we
selected those containing an ORF at least 180 bp (60
amino acids) long and searched these against the mam-
malian protein database. After excluding read-through
transcripts, we found 2762 potential protein sequences
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that matched a mammalian protein with an e-value of
10−15 or less and were at least 75% as long as the best
matching protein, using the same criteria as used above
for novel protein-coding genes.
Because this step was intended only to recover

mis-annotated lncRNAs that are likely to be proteins,
we retained only those genes for which the
best-matching protein had a named function, i.e., we
excluded any lncRNA whose best hit was to a protein
annotated as hypothetical, unknown, or uncharacter-
ized (see the “Methods” section). After removing hits
to proteins that had no associated function, we were
able to rescue 53 genes containing 85 transcripts that
passed all our criteria for protein-coding regions.
Adding these 53 new protein-coding genes to our
total, the number of potential protein-coding genes in
the human gene catalog increased to 20,331.
Finally, we considered genes from the GENCODE

database [13] (releases 25 and 27) that were annotated
as “known” protein-coding genes but were missing
from RefSeq. Based on proteins that remained in re-
lease 27 of GENCODE (see Additional file 6), we found
26 more protein-coding genes, for a total of 20,357. Fi-
nally, we subtracted five genes that are present in
RefSeq but that appear to be false (discussed below), to
yield 20,352 potentially protein-coding genes (Table 1).

Previously annotated proteins not observed in assembled
GTEx transcripts
We analyzed the entire set of protein-coding genes in
RefSeq to determine how many of them lacked support
from any of the 9795 GTEx samples. We considered a
gene to be supported if any GTEx transcript matched any
of the gene’s exons; we did not require support for the
precise exon-intron structure. Out of all 20,054 RefSeq
genes, just 10 were not expressed in any of our samples
(Table 2). We examined each of these 10 genes further
and determined that five of them are likely to be errors in
RefSeq, as we explain below. We deleted these five genes
and their (five) transcripts from the CHESS gene set.
The first four genes in Table 2—101927562,

101929097, 107987231, and 101928589—were predicted
by computational pipelines at least 10 years ago. All loci
are entirely contained in the 5′ UTRs of other
well-characterized protein-coding genes. GenBank re-
cords indicate that the original computational predic-
tions were based on EST evidence and on the presence
of open reading frames, but no other evidence supports
them. Their position in UTR regions explains the tran-
script (EST) evidence, but there is no reason to believe
these are distinct protein-coding genes, and we did not
include them in CHESS. (Note that the first three have
recently been deleted from RefSeq.)

Fig. 1 One of 224 new protein-coding genes (CHS.7402) discovered in this study. This 4-exon gene occurs on the forward strand of chromosome
10 at the coordinates shown. The exon lengths are 134, 30, 136, and 663 bp (left to right), with the narrower rectangles indicating the 5′ and 3′
UTR regions. The intron lengths (not shown to scale) are 18,098, 1086, and 1956 bp. The sequence alignment at the bottom shows, top to
bottom, the protein sequences from CHS.7402, long-tailed macaque, rhesus macaque, marmoset, white-faced capuchin, ass, Przewalski’s horse,
white rhinoceros, and wild boar. The full-length human protein sequence is shown
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The next three genes in Table 2, CT47A5, CT47A8, and
CT47A9, are genes that are normally expressed in germ
cells and reactivated and expressed in some tumors [31].
Thus, it was not surprising that these genes were not
expressed in the GTEx samples, which did not include ei-
ther of these tissue types. Genes DEFB113 and GP6 both
appear to be genuine. Both have multiple hits to other
proteins, have known functions, and have strong experi-
mental evidence supporting them. It is not clear why they
were not present in the GTEx experiments, but it is pos-
sible they have highly tissue-specific expression.
Gene 102723822, the final entry in Table 2, is by far the

most intriguing of the missing RefSeq proteins. This is a
14-exon gene with a well-characterized product (protein
accession XP_006725006), with numerous orthologous
proteins in other species. The protein resides on an un-
placed scaffold (KI270752) in the current human reference
genome, GRCh38. What is surprising about this protein is
that its best alignments are to Chinese hamster (Cricetulus

griseus) and other rodents. It is 98% identical to the ham-
ster protein, but only 95% identical to the most similar hu-
man protein. It would be extraordinary for a human
protein to have multiple hits to rodents that are all closer
than any match to primates.
The KI270752 scaffold is 27,745 bp long, and upon in-

vestigation, we discovered that this scaffold is derived
from a cosmid (accession AF065393) deposited in
GenBank in 1998. The scaffold does not match any se-
quence on an alternate human assembly, CHM1_1.1
(GCA_000306695.2), which was built from whole-genome
sequencing of a haploid cell line derived from a human
hydatidiform mole. Given this evidence, we concluded
that this unplaced scaffold represents contamination in
the current human assembly. (Note: GenBank deleted this
scaffold after learning of our findings.)
We also looked at protein-coding genes that were

present in GENCODE but not RefSeq. In GENCODE re-
lease 25, we found 76 genes that were not in RefSeq of

Table 1 The number of human genes and transcripts in the new CHESS (Comprehensive Human Expressed SequenceS) database
built from 9795 RNA-seq experiments, with comparisons to the RefSeq database. ncRNA noncoding RNA, lncRNA long noncoding
RNA gene, miscRNA miscellaneous RNA

Type of gene Number in RefSeq Number in CHESS

Protein-coding genes 20,054 20,352

ncRNA genes

- lncRNA 14,788 18,887

- Antisense 23 2144

- miscRNA 1217 1228

Total gene counts 36,082 42,611

Transcripts in protein-coding genes 127,718 266,331

Transcripts in ncRNA genes

- lncRNA 28,015 49,892

- Antisense 28 2688

- miscRNA 2005 4347

Total transcripts 157,766 323,258

Table 2 Protein-coding genes from RefSeq that were not expressed in any of the 9795 RNA-seq samples from GTeX

NCBI gene ID Gene name Location Product

101927562 LOC101927562 chr11 1554607–1556457 Uncharacterizeda

101929097 LOC101929097 chr19 2511219–2513571 Uncharacterizeda

107987231 LOC107987231 Chr16 29973622–29974648 Uncharacterizeda

101928589 LOC101928589 chrX 110175773–110177788 Uncharacterized

728072 CT47A5 chrX 120963026–120966446 Cancer/testis antigen family 47 member A5

728049 CT47A8 chrX 120948422–120951842 Cancer/testis antigen family 47 member A8

728042 CT47A9 chrX 120943561–120946981 Cancer/testis antigen family 47 member A9

245927 DEFB113 chr6 49968677–49969625 Defensin beta 113

51206 GP6 Chr19 55013705–55038264 Glycoprotein VI platelet

102723822 LOC102723822 (GTPBP4/NGB) Unplaced KI270752.1 8198–27137 Nucleolar GTP-binding protein 1-like
aThese genes were removed from RefSeq by NCBI after publication of a preliminary version of these findings
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which 34 were not expressed in the GTEx experiments
(Additional file 7). However, in GENCODE release 27, all
but two of these 34 protein-coding genes were either de-
leted (27) or changed to noncoding (5), leaving just two
genes (AP000351.1 and USP17L23) that were unique to
GENCODE but not expressed in the GTEx data. Both of
these genes are included in the CHESS catalog.

Non-coding genes
From the complete GTEx data set, StringTie assembled a
total of 30,467,424 transcripts, of which a majority
(19,014,285; 62%) had only a single exon (Additional file 1:
Table S1). 1,563,544 transcripts matched RefSeq or
GENCODE entries, including 209,261 perfect matches
and 1,354,283 partial matches. We retained all RefSeq
and GENCODE transcripts as well as other transcripts
for which we found protein-coding evidence, as
described above. We then applied a series of filters to
remove “noisy” transcripts from the remaining ones, as
follows:

1. We required each transcript to be assembled in at
least 10 samples, with an average TPM ≥ 1, or
alternatively to have expression level as high as the
outliers for known transcripts, defined as TPM >
13.87 (see Additional file 1).

2. We filtered out all single-exon noncoding transcripts.
3. We removed all transcripts that overlapped

ribosomal RNA genes.
4. To avoid including pre-mRNA transcripts, we re-

moved all transcripts that had retained introns, based
on RefSeq and GENCODE intron annotations.

5. To eliminate pseudogenes, we filtered out any novel
transcript that had at least 98% identity to a known
transcript over 90% of its length. These transcripts
might have been assembled from reads that
originated from a real gene but that were aligned to
a near-identical pseudogene copy of that gene.

6. We removed all transcripts that overlapped exons of
annotated transcripts on the opposite strand, as well
as transcripts that overlapped multiple known genes.

7. To reduce transcript assembly artifacts, we retained
only the 10 most abundant novel transcripts at any
given locus.

8. We discarded transcripts in loci corresponding to
known processed pseudogenes or that overlapped
immunoglobulin or T cell receptor segments.

After applying all the filters above and including the
novel protein-coding transcripts described above, we
were left with 116,186 transcripts that did not match
any RefSeq or GENCODE transcripts. Of these, 96,382
represent isoforms (splice variants) of protein-coding
genes, increasing the total number of protein-coding
transcripts from 127,718 (in RefSeq) to 266,347 or 13.1
isoforms per protein-coding gene (Tables 1 and 3).
23,102 of the novel transcripts are also present in the
FANTOM database, which used Cap Analysis of Gene
Expression (CAGE), to create a large atlas of human
genes with high-confidence 5′ ends [32]. Note that not
all isoforms in protein-coding genes have an annotated
ORF.
The number of novel lncRNA gene loci remaining

after these filtering steps was 4222, of which 1546 were
antisense transcripts [33], which are contained within in-
trons of other genes. Nearly half of the novel
non-coding RNA genes (1902) were previously also
found by the FANTOM consortium [32]. LncRNA genes
have an average of ~ 2.6 isoforms in our catalog, al-
though this number could increase if additional evidence
emerges in the future.
Table 1 shows the number of the genes and transcripts,

respectively, annotated as protein-coding and lncRNAs in
CHESS and RefSeq. Additional file 1: Table S3 shows
many of the other types of non-coding genes, in addition
to lncRNAs, that are annotated in RefSeq. We should
emphasize that the primary evidence of function for all
transcripts unique to CHESS is their presence in the GTEx
experimental data and that further evidence may be re-
quired to confirm their status as functional. Table 3 shows
the number of genes and transcripts novel to CHESS, i.e.,
missing in both RefSeq and GENCODE. Note that RefSeq
and GENCODE assign different biotypes to some

Table 3 Genes and transcripts in CHESS (v2.1) that are also found in either RefSeq (rel 108) or GENCODE (v27) (columns 2 and 5)
and that are unique to CHESS (columns 3 and 6)

Gene biotype Genes Transcripts

Shared by RefSeq
or GENCODE

Novel in CHESS Novel + FANTOM Shared by RefSeq
or GENCODE

Novel in CHESS Novel + FANTOM

Protein coding 20,128 224 26 169,959 96,372 23,102

LncRNA 16,216 2671 1407 34,222 15,670 5840

Antisense 598 1546 494 637 2051 606

MiscRNA 1227 1 1 2284 2063 476

The columns labeled “Novel + FANTOM” show the subset of CHESS genes and transcripts that are not found in RefSeq or GENCODE but that are present in the
FANTOM gene catalog
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transcripts that are present in both databases. For these
transcripts, we used the RefSeq type for the CHESS entry.

Intron comparisons
Related to the question of novel genes is the question of
how many exons and introns are shared among CHESS,
RefSeq, and GENCODE. Novel transcripts may in some
cases represent novel combinations of exons—e.g.,
exon-skipping events—but in many cases, they include
novel splice sites that create new exons and introns. To
answer this question, we compared all of the protein
coding and lncRNA transcripts in CHESS (version 2.1),
RefSeq (release 108), and GENCODE (v28) to determine
the number of (a) introns and (b) transcripts that were
shared among all combinations of the three databases.
For the CHESS introns and transcripts, we only consid-
ered those that were actually assembled by our pipeline
for the purposes of this comparison, i.e., we did not in-
clude genes that were added to CHESS only because
they were contained in one of the other databases.
The results of these comparisons are shown in Fig. 2.

Among the 533,563 introns contained in the union of
the databases, 248,368 (47%) are shared among all
three. 67,542 introns are shared by CHESS and RefSeq
but missing from GENCODE, 26,317 are shared by
CHESS and GENCODE but missing from RefSeq, and
only 6336 are shared by RefSeq and GENCODE but
missing from CHESS. As the figure shows, CHESS is in

much closer agreement with GENCODE and Refseq
than the two databases are with one another.
At the transcript level, the databases have much less

overall agreement: out of 408,281 transcripts across all
three databases, only 45,853 (11%) are shared (Fig. 2b).
As with introns, CHESS agrees with the other two data-
bases much more than they agree with each other:
CHESS and RefSeq agree on 85,743 transcripts that are
missing from GENCODE, while CHESS and GENCODE
share 45,971 transcripts that are missing from RefSeq. In
contrast, RefSeq and GENCODE share only 2874 tran-
scripts that are missing from CHESS. Note here that
transcripts were considered to be the same only if all in-
trons matched exactly (see the “Methods” section). We
conducted a similar comparison among the exons in all
three databases (Additional file 1: Figure S12).

Validation using differential expression
As an additional line of evidence that the novel genes in
CHESS are functional, we analyzed the 9795 GTEx ex-
periments to test whether any of the novel genes, both
potentially protein coding and lncRNAs, were differen-
tially expressed (DE). If a gene was expressed at signifi-
cantly different levels—i.e., the transcription level of the
gene differed between two conditions—then this finding
would support (although not prove) the hypothesis that
the gene is genuine.

Fig. 2 The number of a introns and b transcripts shared by and unique to all combinations of the CHESS (v2.1), RefSeq (rel 108), and GENCODE
databases (v28). For this comparison, only transcripts and introns assembled directly by the CHESS pipeline were included. The CHESS database
also includes additional transcripts that were added directly from RefSeq and GENCODE (see main text)
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We conducted two types of tests. First, we selected all
tissues for which the GTEx data include both male and
female samples (21 tissues) and computed which genes
were differentially expressed between males and females
(see the “Methods” section). A total of 608 novel CHESS
genes, including 54 potentially protein-coding genes,
were differentially expressed between the sexes (Fig. 3
and Additional file 8). Consistent with previously re-
ported results [34], breast tissue showed far more DE
genes than any other tissue.
Second, we evaluated all genes to determine how many

were upregulated in at least one tissue (see the “Methods”
section) and found that 2508 (86.6%) of the novel genes
were upregulated (Fig. 3 and Additional file 9). By com-
parison, 89% of the RefSeq proteins and 87% of the RefSeq
lncRNAs were upregulated in at least one tissue. Testis
contained the largest number (1328) of novel upregulated
genes (shown in Additional file 1: Table S5).

Validation using mass spectrometry
One further possible line of evidence that a locus encodes
a protein is direct evidence that the sequence is translated,
which can be obtained from mass spectrometry experi-
ments. Publications of two draft human proteomes have
recently provided protein evidence for the majority of pre-
viously annotated protein-coding genes, in addition to
some previously unknown proteins [35, 36]. These studies
and others [37, 38] suggest that current reference annota-
tion has not yet fully captured the protein-coding poten-
tial of the genome. To validate the coding potential of
novel loci identified in this study, we searched the un-
matched spectra from 30 human tissue/cell types (see the
“Methods” section) against the novel predicted ORFs de-
scribed in this study. Peptides identified in this search that
were either identical to annotated proteins or mapped
with a single mismatch were discarded. We manually
examined the MS/MS spectra and discarded those

a

b

Fig. 3 a The number of novel protein-coding and lncRNA genes that were differentially expressed between males and females, for each of the GTEx
tissues that had both male and female samples. All tissues except kidney had at least 10 samples for each sex; kidney had 9 female and 29 male. b The
number of novel protein-coding and lncRNA genes in CHESS that were upregulated in each of the 31 GTEx tissues as compared to the remaining tissues
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with poor quality. We then created synthetic peptides
corresponding to those that supported novel ORFs
and compared the MS/MS spectra from synthetic
peptides to experimental spectra.
Based on this analysis pipeline, we identified peptides

that confirmed four of the novel protein-coding genes in
the CHESS set. One example is CHS.57705, a transcript
that encodes a 191 amino acid protein that has no similar-
ity to known proteins but is conserved in other primates
(Fig. 4a). This protein contains two transmembrane do-
mains as predicted by SMART [39]. Another transcript,
CHS.24083, encodes a protein of 161 amino acids without
any predicted domains or similarity to known proteins
(Fig. 4b), although it too is conserved in primates.
Additional file 1: Table S6 shows all four novel ORFs iden-
tified with peptide evidence from proteomics data analysis.
Additional file 1: Figure S9 shows the two additional cases
where the mass spectra from synthetic peptides validated
the experimental spectra as well as two cases (neither of
which passed all the filters required to be a CHESS gene)
that were not validated. We note that the abundance of
these novel transcripts was very low and the ORFs are

relatively short, both of which may explain the small num-
ber of identified peptides.

Methods
The initial GTEx data release contained 1641 RNA-seq
samples [20, 40], and a subsequent publication described
a much larger set of 8555 samples collected from 40
body sites [41]. Our data represents a later GTEx data
release with 9795 samples across 31 tissue types and 54
body sites, summarized in Additional file 1: Table S2.

Alignment and assembly
In total, the 9795 RNA-seq samples contain
899,960,113,026 reads (449,980,056,513 pairs), an aver-
age of 91.9 million reads (46M pairs) per sample. The
RNA-seq assembly process, illustrated in Fig. 5, required
multiple steps of alignment, assembly, and quantification
[42] for each of the samples. We aligned each sample to
release GRCh38.p8 of the human genome using HISAT2
[43] (http://ccb.jhu.edu/software/hisat2) with default pa-
rameters, providing it with the RefSeq annotation. We
then assembled the alignments using StringTie [44]

b

a

Fig. 4 Multiple sequence alignments of novel CHESS protein-coding genes CHS.57705 (a) and CHS.24083 (b), each compared to five other
primates, with annotated MS/MS spectra validating the identified peptides IDISFHR (a) and QLLTGAR (b) as shown on the right
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(https://github.com/gpertea/stringtie) again providing
the RefSeq annotation. Both HISAT2 and StringTie use
annotation as a guide when provided, but both pro-
grams find novel splice sites (HISAT) and novel tran-
scripts (StringTie) whenever necessitated by the data.
The RefSeq annotation provided here contained 20,054
protein-coding genes, 15,779 long noncoding RNA
(lncRNA) genes, 16,131 pseudogenes, and 629 tRNA
genes, as well as a few other specialized categories of
annotation (Additional file 1: Table S3).

Timings
Alignment of reads with HISAT2 was the most compu-
tationally intensive step in the process. On average,
88.3% of reads aligned successfully across all 9795 sam-
ples. The alignment steps included uncompressing the
original SRA files, aligning them to the genome with
HISAT2 (using eight CPUs in parallel), and compressing
the output to produce BAM files. These steps took an
average of 43 min per file (sample), using a 32-core ser-
ver with a 2.13 GHz Intel Xeon E7 for benchmarking.
Following alignment, the aligned reads were sorted and
converted to the compact CRAM format. This process
took an average of 17 min per sample using eight

threads. Assembly and quantification with StringTie
took an average of 24 min per sample using four threads.
Thus, the total average time to process one sample, with
much of the time limited by I/O speed for the very large
files involved, was 84min. Processing all 9795 samples
required about 13,700 h (571 days); by dividing the com-
putation across many processors, this was reduced to
about 30 days total elapsed time. Note that attempts to
parallelize this process further would require distributing
the files across many independent storage units; other-
wise, contention for file access would make parallel pro-
cessing ineffective.
After the initial assembly steps, many transcript assem-

blies were fragmented (i.e., not full-length) due to low
coverage in particular samples. To correct this problem,
we compared all transcripts and transcript fragments
across all samples and merged any transcripts that were
contained within or overlapped others. For this merging
step, we first used the program gffcompare (ccb.jhu.edu/
software/stringtie/gff.shtml) to merge all GTF (Gene
Transfer Format) files from the original samples on a
tissue-by-tissue basis. Following this step, which produced
a single GTF file for each of the 31 tissues, we merged the
31 files together to produce a single, consistent set of tran-
scripts that accounted for all samples.
We computed expression levels using both TPM

(transcripts per million reads) and FPKM (fragments per
kilobase of exon per million reads). Additional file 1
shows the distributions of expression levels for all genes
in RefSeq, including distributions used to calculate
outliers for protein coding and lncRNA genes
(Additional file 1: Figures S1–S5). For consistency, we
used TPM values as thresholds for all filtering steps.
We identified the longest open reading frames (ORFs)

in transcripts with gffread (github.com/gpertea/gffread).
We ran BLAST searches of all ORFs against the
Swiss-Prot section of UniProt (release 2017_09) and the
nr database, a comprehensive, non-redundant protein
database downloaded from NCBI in February 2017. The
mammalian protein database used in some searches was
a subset of nr. When considering lncRNA matches to
proteins from this database, we considered a protein to
have unknown function if its name included any of the
following keywords: hypothetical, unnamed protein
product, uncharacterized protein, unknown, pseudogene,
LOC, PRO, orf, or open reading frame. We also ex-
cluded proteins whose only annotation was a name with
the prefix hCG, which are computational predictions
based only on de novo gene finding programs and/or
EST evidence reported in one of the original human
genome papers [7]. We identified known protein do-
mains in the ORFs by searching the translated sequences
against the Pfam protein family database release 31.0
[27] using HMMER’s hmmscan v3.2.1 [45]. The multiple

Fig. 5 Summary of the computational pipeline used to align and
assemble all 9795 RNA-seq samples
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sequence alignments shown in Fig. 1 and Additional file 1:
Figures S6–S8 were produced with SeaView v4.6.2 [46].

Comparisons to known annotation databases
We used gffcompare to compare assembled transcripts
to the RefSeq and GENCODE databases. We down-
loaded the FANTOM transcripts defined as “robust”
from fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/
assembly/lv3_robust/ and used the UCSC’s liftOver pro-
gram with the default parameters to remap them from
GRCh37 to GRCh38. We checked all ~ 30 million
StringTie-assembled transcripts against these remapped
FANTOM transcripts using the trmap program (github.
com/gpertea/trmap), a specialized version of gffcompare,
optimized for streaming a large set of transcripts against
another set, for the purpose of reporting and classifying
overlaps between them. Because the FANTOM transcripts
had experimental data to support their 5′ ends, we ad-
justed the ends of the CHESS transcripts when they other-
wise matched the full length of a FANTOM transcript.

Intron and transcript comparisons
We used a custom program to generate and compare
lists of introns in RefSeq (release 108), GENCODE (v28),
and CHESS (v2.1). After excluding introns in CHESS
that we did not assemble through our pipeline, we
counted the number of introns shared in all combina-
tions of the databases. Introns were considered the same
only if their start and end coordinates matched exactly.
To compare transcripts in all three databases, we modi-
fied our program to generate a list of intron chains for
each transcript. We considered a transcript to be the
same only if the intron structure matched exactly, i.e.,
the transcripts contained exactly the same introns.

Differential expression between sexes
We used Salmon [47] to generate quantification esti-
mates of the complete set of CHESS transcripts assem-
bled from the GTEx data. The advantages to using
Salmon over other transcript quantification programs in-
clude speed, compatibility with downstream analysis
tools, and the ability to retain multi-mapped reads.
Salmon relies on the use of an index built from tran-
script sequences to quasi-map RNA-seq reads in the
quantification step. To obtain these transcript sequences,
we used gffread (http://ccb.jhu.edu/software/stringtie/
gff.shtml) to extract them from the CHESS GFF file. The
index built from the resulting multi-fasta file and the
raw sequencing reads were then used to generate CHESS
transcript abundance estimates for each GTEx sample.
We used the tximport package [48] to import the Sal-

mon output and generate separate gene-level count
matrices for each tissue that contained both male and fe-
male samples. To account for the widely varying number

of samples per tissue, we chose a random subset of sam-
ples from tissues with large numbers of samples.
We then used the resulting count matrices as input to

DESeq2 [49] to conduct differential expression analysis
within each of the 31 tissues independently, comparing
male to female samples. We used the false discovery rate
(FDR) computed from DESeq2’s implementation of the
Benjamini-Hochberg adjustment. The set of differentially
expressed genes with FDR < 0.05 was then filtered to ex-
tract those that were exclusive to CHESS.
From the results of the 31 DESeq2 experiments, we cre-

ated a single list of genes differentially expressed in at least
one tissue. For breast tissue, we counted all genes with an
FDR < 0.05. For each additional tissue, we only included
genes with an FDR < 0.002 to correct for multiple compar-
isons across tissues. An FDR threshold of 0.002 for each
gene in each tissue corresponds to an FDR of ~ 0.05 for
each gene across all tissues. The major differences be-
tween male and female breast tissue, as found in multiple
previous studies, led us to expect a large number of differ-
entially expressed genes for that tissue type.

Tissue-specific differential expression
We started by randomly selecting 20 samples from each
of the 31 tissues. In cases where the given tissue had
fewer than 20 samples, we selected all samples. Using
tximport, we then created one gene-level count matrix
for these 591 samples. With this count matrix, we ran
DESeq2 to test for differential expression between tis-
sues while controlling for the effect of sex. Using the
“contrast” argument of the results function in DESeq2,
we made 31 different comparisons to find genes upregu-
lated in each tissue. Each comparison contrasted the
gene expression in the tissue of interest to the average
expression across all other tissues. For each tissue, we
considered upregulated genes with an FDR < 0.05 signifi-
cant and then filtered this list to report only novel,
protein-coding genes. To create a list of all novel genes
upregulated in at least one tissue, we reduced the FDR
threshold to 0.0015 to correct for the 31 comparisons.
An FDR threshold of 0.0015 for each gene in each tissue
results in a (conservative) FDR of ~ 0.05 for each gene
across all tissues.

Mass spectrometry
Unmatched MS/MS spectra from a previous study [35]
were searched against translated products of predicted
CHESS ORFs using the SEQUEST search engine on
Proteome Discoverer 2.1 software platform (Thermo
Fisher Scientific). Carbamidomethylation of cysteine and
oxidation of methionine were specified as fixed and vari-
able modifications. Mass tolerance limits were set to 10
ppm and 0.02 Da for precursor and fragment ions, re-
spectively. A target-decoy database approach was
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employed to filter the identified peptides at a 1% false
discovery rate. Peptide sequences that corresponded to
novel genes were synthesized (JPT Peptide Technologies,
Berlin, Germany), analyzed on an Orbitrap Fusion
Lumos Tribrid mass spectrometer (Thermo Fisher), and
compared against the experimental spectra. Putative
translational products of novel ORFs were aligned using
BLAST against the NCBI nr protein database, and do-
main prediction was carried out using SMART [39].
Multiple sequence alignment of protein sequences was
performed using Clustal Omega [50].

Discussion
The new human gene catalog described here, CHESS,
contains an inclusive set of genes based on nearly 10,000
RNA sequencing experiments. As such, it provides a ref-
erence with substantially greater experimental support
than previous human gene catalogs. Although it repre-
sents only a modest increase in the number of potential
protein-coding genes (224, or 1.1% of the 20,352 total),
it more than doubles the number of splice variants and
other isoforms of these genes, to 266,331 (Table 1). This
more comprehensive catalog of genes and splice variants
should provide a better foundation for RNA-seq experi-
ments, exome sequencing experiments, genome-wide as-
sociation studies, and many other studies that rely on
human gene annotation as the basis for their analysis.
We produced the novel genes and transcripts in CHESS

using a genome-guided assembly pipeline including
HISAT2 and StringTie. Although this pipeline is among
the most accurate approaches for novel transcriptome dis-
covery [44, 51], transcript mis-assemblies may still be
present in our catalog due to several factors that nega-
tively affect the reconstruction process, including sequen-
cing errors, incomplete coverage of transcripts, and
algorithmic assumptions. Assembly errors are most likely
to occur for transcripts that have low coverage, hence our
requirement that all novel transcripts be assembled in at
least 10 samples with an average TPM> 1.
Given the history of changes in our knowledge of hu-

man genes and transcripts, it seems highly likely that
this new database will change further in the future. In
particular, many of the more than 18,000 noncoding
RNA genes have less evidential support than the
protein-coding component of the genome, and this
number may decline over time just as the human gene
count declined from 2001 to the present. The CHESS
database of genes and transcripts, which is freely avail-
able at http://ccb.jhu.edu/chess, will be updated over
time as new evidence emerges.

Transcriptional noise
Perhaps the most striking result of this study is the vast
number of transcripts that appear to have no function at

all. Across all data sets and all tissue types, we observed
over 30 million distinct transcripts in approximately
700,000 distinct genomic locations, of which only about
42,000 (6%) appear to represent functional gene loci. As
others have argued [22], the mere fact that a sequence is
transcribed is insufficient evidence to conclude that it is
a gene, despite the fact that early genomics studies made
precisely that assumption. It appears instead that 95% of
the transcribed locations in the human genome are
merely transcriptional noise, explained by the nonspe-
cific binding of RNA polymerase to random or very
weak binding sites in the genome. This observation is
consistent with efforts to identify sequence motifs that
signal the initiation of transcription, which have largely
failed because no highly conserved sequences exist.
Similarly, the vast majority of the transcript variants

themselves also appear nonfunctional. Although this study
greatly increases the number of isoforms of known genes,
the 323,258 transcripts reported here represent just 1.1% of
the 30,467,424 distinct transcripts observed across all 9795
data sets. This suggests that the splicing machinery too,
like RNA polymerase, is highly nonspecific in its actions, in
agreement with previous studies that found that the vast
majority of observed splice variants correspond to errors
[52]. The splice sites themselves are much better conserved
than any transcription initiation site, but the cellular ma-
chinery for cutting and pasting the exons together appears
to be inefficient, producing many variations that are simply
non-functional, with low-abundance isoforms being espe-
cially likely to be the result of errors [53]. It is possible that
our criteria for excluding a transcript were too strict, but
even so, it seems unlikely that a large proportion of the
transcripts we rejected are essential for the cell.
Note that functional transcripts occur at much higher

abundances than non-functional ones, as shown in
Additional file 1: Figures S2–S5. If we add up the ex-
pression levels of all the functional transcripts and
compare that to the total expression of non-functional
transcripts, we find that 68% of the transcriptional ac-
tivity is devoted to producing functional transcripts,
while 32% is apparently spent (and presumably wasted)
on nonfunctional ones. Thus, although the sheer
amount of variation is very large, about two thirds of
the RNA molecules in the cell are functional.
The overall picture that emerges from this analysis is

that the cell is a relatively inefficient machine, transcribing
more DNA into RNA than it needs. Ever since the discov-
ery of introns [54, 55], we have known that genomes con-
tain large regions that appear to have no function. Based
on the results described here, it appears that nearly 99% of
the transcriptional variety produced in human cells has no
apparent function, although most of these variants appear
at such low levels that they cumulatively account for only
32% of transcriptional activity.
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