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Abstract

The human population is growing, and as a result we
need to produce more food whilst reducing the
impact of farming on the environment. Selective
breeding and genomic selection have had a
transformational impact on livestock productivity, and
now transgenic and genome-editing technologies
offer exciting opportunities for the production of fitter,
healthier and more-productive livestock. Here, we
review recent progress in the application of genome
editing to farmed animal species and discuss the
potential impact on our ability to produce food.
to food insecurity and as part of the effort required to
Introduction
There are an estimated 7.6 billion humans on the planet,
yet an estimated one in nine of us (821 million people)
do not have access to sufficient food to lead a normal,
active life [1]. Despite the problems we face feeding our
species, the human population is set to grow, reaching
8.5 billion in 2030, 9.7 billion in 2050 and 11.2 billion in
2100 [2]. Clearly, if we struggle to feed 7.5 billion people
currently, preparing to feed almost 4 billion more will be
one of the biggest challenges facing our species.
The FAO (Food and Agriculture Organization of the

United Nations) has published estimates that total agri-
cultural output, from both crops and animals, needs to
increase by 60% in order to meet demand. Importantly,
this is being driven by a higher demand for animal pro-
tein, with some estimates that milk production will need
to increase by 63%, and meat production by 76% [3].
This proportional increase in demand for animal prod-
ucts is largely driven by both population growth and
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increased affluence in low- and middle-income countries
(LMICs). Terrestrial and aquatic animal production in
these countries is heavily reliant on small-holder
farmers, who collectively play a crucial role in global ani-
mal protein production. For example, of the 570 million
farms worldwide, over 1 in 4 (150 million) have at least
one milk-producing animal [4], and farms with fewer
than 100 animals account for over 99.7% of global dairy
production [5]. In LMICs, livestock accounts for over
60% of agricultural gross domestic product (GDP) [6],
and farmed animals provide livelihoods for over 1 billion
people globally [7]. While increasing reliance on
plant-based diets is often raised as a potential solution

address climate change [8], omission of animal protein
from human diets risks nutritional deficiencies and mal-
nutrition [9]. There are also large geographical regions
where livestock represent the most feasible land-use op-
tion, such as the dry lands that cover 60% of Sub-
Saharan Africa [10].
In 2011, Sir John Beddington led a team of experts

who examined the intricate links between global demand
for food, energy and water. When placed within the con-
text of climate change, he described the concurrent and
rapid increase in demand for these commodities as “a
perfect storm” [11]. The subsequent FORESIGHT report
[12] identified six key pressures on global food produc-
tion systems that already fail to feed the human popula-
tion – global population increase, changes in consumer
demand, changes in local and global governance, climate
change, competition for key resources (e.g. clean water),
and changes in the ethical stance of consumers. The goal
of producing more food whilst using fewer resources is a
major challenge for our species.
Here, we review the impact of genomics, transgen-

esis and genome editing on issues that influence
farm-animal productivity, health and welfare, and on
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our ability to produce food, and go on to discuss the
potential future impact of transgenic and genome-
editing technologies (Fig. 1).
The impact of genetic improvement on animal
production
While many farmed animals have undergone the process
of domestication for millennia, managed selective breed-
ing programs have resulted in striking improvements in
productivity. Genetic improvement has resulted in faster,
cheaper, healthier, and more-efficient animal production,
with reduced impact on the environment. For example,
from the 1960s to 2005, selective breeding resulted in
50% larger litter sizes in pigs, an increase of lean pork
meat of 37%, and a doubling of lean pork meat per kg of
feed intake; in chickens, the days to acquire 2 kg of mass
reduced from 100 days to 40, the percentage breast meat
increased from 12 to 20%, the feed conversion ratio
halved, eggs per year increased by 30% and eggs per
tonne of feed increased by 80%; and finally, in cattle,
milk production increased by 67% [13]. These trans-
formative increases in food production represent incred-
ible achievements in just a few decades, albeit the
benefits were disproportionately seen in developed
countries.
Pedigree-based breeding programmes for major live-

stock and aquaculture species now routinely incorporate
genomic selection, which has been a revolutionary
change for selective breeding and food production.
Fig. 1 Pathways to ‘Livestock 2.0’. A brief summary of the developments in
industry. Selective breeding and genomic selection have already improved
editing and transgenesis could facilitate step improvements through (i) rap
introgression of favorable alleles from other breeds/species without linkage
will be the identification of genome-editing targets, which will require a co
genome-wide association studies, reverse-genetic screens (e.g. genome-wid
the target traits. CRISPR, clustered regularly interspaced short palindromic r
Genomic selection [14, 15] involves the use of
genome-wide genetic marker data to estimate genomic
breeding values (GEBVs) of individuals by means of a
genomic prediction equation. This genomic prediction
equation is calculated using a ‘training’ or ‘reference’
population where animals have both genotypes and
phenotypes, and is then applied to selection candi-
dates, which often have marker genotype information
only. The rates of genetic gain have been estimated
to lie between 20 and 30% in cattle, pigs, chickens
and salmon [16].
Genomic improvements have been accelerated by

community-driven pre-competitive research in animal
genomics and functional genomics. The major farm-
animal genomes have been sequenced [17–19], with ef-
forts under way to functionally annotate these genomes
to the same standard as the human genome [20–22].
Some farm-animal genomes now represent the most
contiguous complex genomes ever sequenced [23, 24].
Built on these efforts, genomic tools [25–30] and new
and cheaper sequencing technologies [31, 32] have been,
or will be, major contributors to modern animal breed-
ing and the improved productivity of farmed animals.
Selective breeding is constrained by the standing gen-

etic variation in the species or population of interest,
and new variants arising through de novo mutations.
Transgenic and genome-editing technologies offer new
opportunities for genetic improvement by creating novel
beneficial alleles or introducing known desirable alleles
from other breeds or species, without the consequences
livestock breeding and what new technologies might offer to the
productivity and disease resistance in livestock significantly. Genome
idly increasing the frequency of favorable trait-associated alleles, (ii)
drag, and (iii) creation of de novo favorable alleles. A key challenge
mbination of high-quality annotated livestock genomes, well-powered
e CRISPR knock-out), and high-resolution knowledge of the biology of
epeat
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of the linkage drag associated with traditional introgres-
sion. Below, we summarize some of the applications of
both genetic modification and genome editing to
farm-animal productivity and health.

Examples of genetic modification
Genetic modification of farmed animals to increase the
efficiency of food production, increase animal health and
welfare, yet reduce the environmental footprint, has
been a goal for many decades (Table 1). Early work
focused on attempts to increase growth. Muscle devel-
opment and body mass are controlled at a high level
through the pituitary gland and liver, through the growth
hormone–insulin-like growth factor axis (GH–GF axis)
[33]. Growth hormone (GH) is released by the pituitary
gland and stimulates the expression of insulin-like
growth factor 1 (IGF1) in all tissues, including muscle.
The predominant source of systemic IGF1 is the liver,
and both muscle- and liver-derived IGF1 have been
found to stimulate muscle hypertrophy. IGF2, a sister
molecule of IGF1, has key roles in myogenesis [33], and
mutations in a regulatory region of the IGF2 gene are as-
sociated with an increased level of muscle growth in pigs
[34]. Pursel and colleagues [35] successfully introduced
genes encoding two growth-related hormones (GH and
IGF-1) into pigs by DNA microinjection into zygotes.
Two lines of pigs expressing the transgene encoding GH
gained mass 11.1 and 13.7% faster than control pigs, and
were demonstrated to have 18% more efficient feed con-
version. The mechanism appeared to operate through
resource diversion, with lower levels of subcutaneous fat,
and increased development of muscle, skin and bone
[35]. A subsequent study [36] focused only on IGF-1,
with transgenic pigs having significantly less fat and sig-
nificantly more lean tissue (albeit with growth rates simi-
lar to those of control pigs). Although pigs from the
latter study had no health issues, the GH transgenic pigs
Table 1 Examples of transgenesis for disease resilience and other p

Genetic modification/transgenesis

Trait Species Transge

Increased growth Pig Growth

Salmon GH (Ch

Larger ratio of n-3 to n-6 fatty acids Pig Fat-1 (C

Reduction of the environmental impact through
phosphorous & nitrogen release reduction

Pig Phytase

Phytase
(Bacillu

Avian influenza resilience Chicken shRNA

Mastitis resilience Goat Lysozym

Cow Lysosta

PRRSV resilience Pig Histone

Abbreviations: GH growth hormone, PRRSV porcine reproductive and respiratory syn
suffered increased lameness, lethargy and gastric ulcers
and possessed a lower ability to respond effectively to
stress [37]. These deleterious characteristics led to the
cessation of this project.
A similar approach was taken in farmed salmon, which

were genetically modified to produce a rapid-growth
phenotype. The AquAdvantage salmon strain (Aqua-
Bounty Technologies Inc., MA, USA) shows improved
growth relative to wild-type salmon (in specialized on-
shore production systems) owing to the integration of a
growth hormone gene from a Chinook salmon (Onco-
rhynchus tshawytscha) together with a promoter from
ocean pout (Macrozoarces americanus), a cold-water
ray-finned fish, to drive increased expression of growth
hormone. A landmark in the field of genetically modified
(GM) food animals was the approval of this GM salmon
strain as fit for human consumption by the US Food and
Drug Administration and the Canadian Food Inspection
Agency in 2017. The approval of this product for sale
represents the first genetically engineered animal to be
sold on the open market, and took approximately 25
years to reach this stage [38].
Transgenic technology, in some cases combined with

genome editing, allows for the introduction of new prop-
erties to animal protein that could have potential bene-
fits for the human diet. For example, Lai and colleagues
generated cloned pigs that expressed the fat-1 gene from
the nematode Caenorhabditis elegans and that exhibited
significantly reduced ratios of n-6 to n-3 fatty acids,
which might have human health benefits [39]. Although
some have questioned the value of such pigs [40], never-
theless others have also generated pigs carrying the C.
elegans fat-1 gene (which encodes an n-3 fatty acid desa-
turase) and have observed similar changes [41, 42], in-
cluding Li and colleagues, who used ‘clustered regularly
interspaced short palindromic repeats’ (CRISPR)–CRIS-
PR-associated 9 (Cas9) gene-editing technology for the
roduction traits

ne Reference(s)

hormone (GH) and insulin-like growth factor 1 (IGF-1) [35–37]

inook salmon), promoter (Ocean pout) [38]

aenorhabditis elegans) [39–43]

(Escherichia coli) [44]

(E. coli), xylanase (Aspergillus niger), β-glucanase
s lichenformis)

[45]

decoy (synthetic) [48]

e (human) [50]

phin (Staphylococcus simulans) [52]

deacetylase HDAC6 [67, 94]

drome virus, sh short hairpin
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directed integration of the fat-1 gene from C. elegans
into the porcine Rosa 26 locus [43].
Several groups have attempted to reduce the environ-

mental impact of pig production through the addition of
microbial genes into the pig genome [44, 45]. Dietary
supplementation with phosphate and nitrogen is re-
quired to achieve optimal growth in many farm-animal
species. Although phosphate, in the form of plant phy-
tate, is present in their usual diet, farm animals are un-
able to digest it. The incompletely digested phosphorous
and nitrogen are released into the environment through
evaporation, manure and runoff and can disrupt local
ecosystems. Golovan and colleagues [44] produced
transgenic pigs that express an Escherichia coli-derived
phytase gene, resulting in almost 100% digestion of
dietary phytate, removing the need for phosphate sup-
plementation. In a more recent effort, Zhang and collab-
orators [45] addressed the inefficient digestion of both
phosphorous and nitrogen in pigs by generating trans-
genic pigs that not only expressed the microbial phytase
enzyme but also xylanase and β-glucanase. This not only
increased the growth rate of pigs by 23 and 24.4% in
females and males, respectively, but also resulted in a
reduction of fecal nitrogen and phosphorous by up to
45.8%.
Increased resistance to disease has been a goal of both

selective breeding and genome engineering for many years.
Avian influenza is an ongoing threat to poultry production
world-wide, the economic impacts of major avian influenza
outbreaks are very high [46] and the potential for develop-
ment of human pandemic influenza infections is a continu-
ing significant risk [47]. Avian influenza in production
poultry can be controlled by vaccination or high biosecur-
ity, but effective vaccines have yet to be developed, and high
biosecurity cannot realistically be implemented by small-
holder farmers. The potential of a novel alternative strategy
– introduction of a transgene that would confer resistance
to avian influenza – was tested by Lyall and colleagues [48].
Transgenic chickens were developed that expressed a
short-hairpin RNA, based on the design described by Luo
and colleagues [49]. This RNA molecule was designed to
act as a decoy that blocks avian influenza virus polymerase,
consequently inhibiting viral propagation. These transgenic
birds were challenged with highly pathogenic avian influ-
enza virus, and, although the birds succumbed to the initial
challenge, transmission of the infection to transgenic and
control birds was prevented.
Research has also focused on attempting to control

mastitis using transgenic technology. Mastitis is one of
the most common diseases of dairy cattle and has a huge
negative impact on the industry, resulting in estimated
annual losses of $2bn. The most common causative
agent of persistent mastitis is Staphylococcus aureus, and
resilience to this pathogen has a low natural heritability.
Therefore, research has focused on transgenic strategies
to create animals that express enzymes that inhibit the
growth of mastitis-causing pathogens. Goats expressing
human lysozyme have been shown to inhibit mastitis-
causing bacterial growth [50, 51], whilst at the same time
having little to no effect on the beneficial bacterium Lac-
tococcus lactis, required for making dairy products such
as cheese. Furthermore, transgenic cattle have been pro-
duced that express the antibiotic lysostaphin [introduced
by somatic cell nuclear transfer (SCNT)] in their milk,
which can prevent infection by S. aureus [52].
The above examples of transgenic animals generally

predate the advent of genome-editing technologies. Gen-
ome editing by zinc-finger nucleases (ZFNs), transcrip-
tion activator-like effector nucleases (TALENs), and
CRISPR–Cas9 (and related enzymes) is known to be
more accurate and efficient than transgenesis. Below we
provide examples of early successes of the technology in
farmed animals.

Examples of genome editing
Compared with genetic modification, which relies on the
incorporation of transgenes to enhance traits in live-
stock, genome editing offers an opportunity to make
specific and precise changes to the genome of an animal
to increase productivity and disease resistance. The
myostatin gene (MSTN) is a common target for research
into increased growth and muscle development. First
identified in heavily muscled cattle and sheep breeds,
such as Belgian Blue and Piedmontese cattle and the
Texel sheep breed, it was found that an underactive gene
for myostatin (also known as growth differentiation fac-
tor 8, GDF8) results in increased muscle growth. The
underlying genetic variations are changes in the myosta-
tin gene directly – an 11-bp deletion in the Belgian blue
and a single-nucleotide polymorphism in the Piedmont-
ese [53, 54]. Interestingly, the Texel breed encodes a
regulatory mutation in the myostatin gene untranslated
region (UTR), creating a target site enabling downregu-
lation of the myostatin mRNA by two microRNAs [55].
Thus, the myostatin gene was an obvious early target for
gene editing in farmed animal species as disruption of
this single gene has significant effects on a trait of eco-
nomic importance. To date, the farmed animals in which
the myostatin gene has been edited include cattle [56],
sheep [56, 57], goat [58] and Channel Catfish [59]
(Table 2). The pig myostatin gene, however, has been the
most frequently targeted [60–66] – perhaps as pork is
the leading global source of meat by weight, or perhaps
because of the lack of natural disruptive mutations
detected in this gene to date. The first report by Ning Li
and colleagues at the 10th World Congress on Genetics
Applied to Livestock Production [67] reported problems
in the pigs that were homozygous for a myostatin



Table 2 Examples of genome editing for disease resistance and other production traits

Genome editing

Trait Species Genome-editing target Reference(s)

Increased muscle growth (double-muscle phenotype) Cow Myostatin (GDF8) [56]

Sheep Myostatin (GDF8) [56, 57]

Goat Myostatin (GDF8) [58]

Channel Catfish Myostatin (GDF8) [59]

Pig Myostatin (GDF8) [60–66]

Hornlessness (Polled) Cow Pc POLLED [74]

Boretaint (Hormone release during sexual maturity
leading to undesired meat taste)

Pig KISS1R [75]

Sterility Salmon Dead end protein (dnd) [78]

Sterility/surrogate hosts Pig Nanos2 [79]

Chicken DDX4 (Vasa) [80]

PRRSV resistance Pig CD163 [90–93]

ASFV resilience Pig RELA [95, 96]

Mannheimia (Pasteurella) haemolytica resilience Cow CD18 [97]

Bovine tuberculosis resilience Cow NRAMP1 [99]

Xenotransplantation (removal of endogenous retroviruses) Pig Porcine endogenous retrovirus genes [106, 107]

Abbreviations: ASFV African swine fever virus, GDF growth and differentiation factor, PRRSV porcine reproductive and respiratory syndrome virus
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knockout, including the development of abnormal legs,
an inability to stand and walk, and death. Similarly, mu-
tations in myostatin have recently been associated with a
recessive leg weakness syndrome in pigs [68]. Although
Kang et al. [60] reported hypermuscling, increased lean,
and reduced backfat in pigs with gene-edited knockouts
of the myostatin gene, they also reported some health is-
sues in the homozygous knockout pigs, and homozygous
myostatin knockout Landrace piglets died only a few
days after birth [65]. More recently, Wang et al. dis-
rupted the myostatin gene in Erhualian pigs [61] and
observed some double-muscle associated phenotypes.
Although no health issues were reported, further
characterization of the edited animals is required. Erhua-
lian and Meishan pigs are two Chinese breeds known for
high fat levels, and edited pigs with disrupted myostatin
genes on these genetic backgrounds appear to fare better
than those on leaner genetic backgrounds [61, 62].
Beyond growth phenotypes, there has been a focus on

more-efficient farming practices and animal and human
welfare. Physical dehorning has many benefits to cattle,
their handlers and the farming industry, including
reduced risk of injury, reduced competition for feeding-
trough space, and fewer aggressive behaviors [69]. It has
been estimated that 80% of dairy farmers in Italy [70]
and 93% [71] of dairy farmers in the USA practice rou-
tine dehorning of dairy cattle. Despite the benefits,
dehorning of dairy cattle represents an animal-welfare
concern, owing to the pain caused and potential for in-
jury. Naturally hornless cattle (termed ‘polled’) do exist
and are far more prevalent in beef cattle than in dairy.
The genetic cause of polled cattle has been the subject
of intense genetic research, resulting in the suggestion
that one of two alleles must be causal [72, 73]. Carlson
and colleagues [74] used TALEN to introduce the Pc
POLLED allele into the genome of bovine embryo fibro-
blasts from four lines of cattle. These were cloned using
somatic-cell transfer, resulting in full-term pregnancies
for three of the four lines. Five live calves were pro-
duced; however, only two were viable and went on to
survive to day 60 (at the time of publication). All five
calves were determined to have a likely polled phenotype
at birth, and the two surviving calves were confirmed to
be polled. Not only does this confirm the causality of the
Pc POLLED allele, but it also represents a potential
approach for reducing physical dehorning in dairy cattle
without a loss of productivity.
Surgical castration of pigs is a common practice in pork

production to reduce aggressive behaviour and to avoid
the accumulation of androstenone and skatole, which
leads to the boar taint taste and odor of non-castrated
male pork. Sonstegard and colleagues generated pigs with
a knock-out of the KISS1R gene, encoding a receptor
responsible for the onset of puberty in vertebrates and
involved in the regulation of gonadotropin-releasing hor-
mone [75]. The knock-out pigs showed a lack of testicular
development but reacted to hormone treatment, which in-
creased testicular size. However, it remains to be tested
whether the animals can become fertile and whether
growth properties are affected. Genome-wide association
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studies (GWAS) further highlight that the boar taint com-
ponents and testicular trait regions have pleiotropic ef-
fects, which might impact the applicability of genetic
interventions for this trait [76, 77].
Sterility has also been a focus in farmed Atlantic sal-

mon, with a view to avoid escapees interbreeding with
wild stocks. Genome-editing approaches have also been
successfully applied [78], with the initial target being the
dead end protein (encoded by the dnd gene) in order to
induce sterility.
Research has also focused on methods to integrate

genome-editing technologies into existing genomic-
selection strategies. For example, a major barrier to the
adoption of genomic selection in some areas has been
the reliance on techniques such as artificial insemination
of high-value germplasm, which relies on skills and in-
frastructure that are not accessible in all parts of the
world. One solution is to generate sterile host animals
that can be used to distribute transplanted high-value
germplasm. Specific gene ablation of loci important for
germ-cell development can generate animals that lack
endogenous germ cells in homozygous individuals. Ani-
mals can then be distributed that will carry high-quality
transplanted germplasm to geographic regions that are
not serviced by the infrastructure needed for cryopre-
served semen distribution. Both sterile pigs and sterile
chickens have been produced using genome-editing
technologies [79, 80]. Sterile surrogate hosts for poultry
are especially valuable as cryopreservation methods in
poultry are lacking. All poultry flocks are kept as breed-
ing populations as it is impossible to freeze the chicken
egg, and cryopreservation of chicken semen is inefficient
and breed specific [81]. The early diploid germ cells of
poultry can be cryopreserved and form functional gam-
etes when transplanted into surrogate host chickens
[82]. When transplanted into sterile surrogate chickens,
it is now possible to reconstitute pure poultry flocks
from frozen material [83, 84].
Finally, as with transgenesis, many groups focus their

research on the potential of genome editing for control
of infectious diseases (Table 2). Here there are clear
opportunities, especially in cases where conventional
control options have shown limited success. The devel-
opment of pigs resistant to porcine reproductive and
respiratory syndrome virus (PRRSV) exemplifies this
strategy. PRRS is arguably the most important infectious
disease problem for the pig industry worldwide. The
losses from PRRS are estimated at $2.5 billion per
annum in the USA and Europe alone. Quantitative gen-
etics studies have identified substantial genetic variation
in the resistance and tolerance of pigs to PRRS [85, 86],
with a single locus on pig chromosome 4 (GBP5, encod-
ing guanylate-binding protein 5) explaining 15% of the
total genetic variation in viral load and 11% of genetic
variation for growth rate in pigs infected with PRRSV
[87, 88]. Although these results could offer promising
opportunities for mitigating PRRS through genomic se-
lection, predicting the impact of genomic selection on
PRRS prevalence is difficult as the role of the GBP5
locus in PRRS transmission is currently not known. In
vitro research has shown that the macrophage surface
protein CD163 and specifically the scavenger receptor
cysteine-rich domain 5 (SRCR5) of the CD163 protein
mediate entry of PRRSV into the host cell [89]. Based on
this information, genome-edited pigs could be generated
with a disruption to the CD163 gene, giving rise to re-
sistance to PRRSV infection. Whitsworth and colleagues
knocked-out the CD163 gene completely by the intro-
duction of a premature stop codon by means of
non-homologous end-joining events in exon 7 [90, 91].
A subtler approach by Burkard et al. removed only the
SRCR5-encoding genome section, a deletion of exon 7,
thus maintaining the expression and biological function
of the CD163 gene [92, 93]. Both approaches resulted in
resistance to PRRSV infection [90–93], in contrast to the
partial resistance conferred by the GBP5 genotype in
existing pig populations. Transgenic strategies to en-
hance resistance to PRRSV infection have also been
attempted, including overexpression of histone deacety-
lase 6 (HDAC6), with the resulting transgenic pigs show-
ing lower viral load and longer survival [67, 94].
However, such studies do not deliver the complete re-
sistance observed in the pigs in which the endogenous
CD163 gene has been edited.
African swine fever (ASF) is another hugely important

disease of pigs. Caused by African swine fever virus
(ASFV), ASF is a disease endemic to huge swathes of
sub-Saharan Africa, which has recently been introduced
to Eastern Europe, from where it is rapidly spreading to
Western Europe as well as China. Native suid hosts,
including the warthog, are resilient to the infection,
whereas domestic pigs develop a lethal haemorrhagic
fever mainly caused by a cytokine storm in the host.
Variation in the RELA gene between resilient and sus-
ceptible suidae has been postulated to underlie this
phenotype [95]. RELA is a component of the NF-κB
transcription factor, known to play a role in stress and
immune responses. Using a ZFN, researchers were able
to convert the domestic pig protein sequence for RELA
to that of the warthog [96] – however, data to show re-
silience to ASFV have yet to be reported.
Genome editing offers the potential for control of sev-

eral other diseases. Mannheimia (Pasteurella) haemoly-
tica infection causes epizootic pneumonia (shipping
fever), enzootic pneumonia and peritonitis in calves,
lambs and sheep. M. haemolytica produces a leukotoxin
that is cytotoxic and that binds to the uncleaved signal
peptide of the CD18 protein on the surface of leukocytes.
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However, in other species that do suffer disease (e.g.
mouse and human), the mature CD18 lacks the signal
peptide. ZFNs have been used to introduce a single amino
acid change in the cattle CD18 protein, and leukocytes
from the resultant fetuses were resistant to M. haemoly-
tica leukotoxin-induced cytotoxicity [97]. Bovine tubercu-
losis (bTb) is a potential zoonotic that has a huge and
negative impact on productivity in cattle and buffalo. Poly-
morphisms in the NRAMP1 gene in cattle have been asso-
ciated with resilience to bTb [98]. Insertion of the resilient
NRAMP1 allele into cattle using CRISPR–Cas9 has been
performed by Gao et al. [99]. Peripheral blood monocytes
challenged with Mycobacterium bovis showed reduced
pathogen growth, and an in vivo study using the edited
animals reported a diminished interferon response.
The success of gene-edited animals in disease control

will be influenced by many factors – for example, the
proportion of gene-edited animals in the population and
how these are distributed within and across farms. Ac-
cording to epidemiological theory, only a proportion of
gene-edited animals would suffice to achieve herd im-
munity – that is, prevent disease from spreading within
local populations [100]. Improved, disease-specific epi-
demiological models can help define the exact propor-
tion of gene-edited animals needed for each species/
disease, influenced by population structure, demographic
characteristics, diverse environmental factors and man-
agement strategies influencing transmission dynamics,
and the effectiveness of genome editing.
A common aspect of disease mitigation strategies is

that of limited shelf-life. Genome editing shares the po-
tential risk of vaccines in that its efficacy might be time
limited owing to emergence of escape mutants [101].
For an RNA virus such as PRRSV with extremely high
mutation rates [102], this seems a justified concern.
Hence the question is not only “how many gene-edited
pigs do we need to control disease?”, but also “how fast
can these be realistically disseminated?”
It is important to differentiate between disease resist-

ance, the ability of an animal to suppress the establish-
ment and/or development of an infection, and disease
resilience, where an infected host manages to maintain
an acceptable level of productivity despite challenge
pressure. For example, in the case of African swine fever,
genome editing might primarily boost the tolerance of
pigs to infection, rather than their resistance to becom-
ing infected. Although genetic improvement of tolerance
is considered to impose less risk for pathogen evolution
towards higher virulence than genetic improvement of
resistance, genetically tolerant individuals do not stop
disease from spreading. In fact, the presence of genetic-
ally tolerant individuals that do not develop symptoms
when infected, within a mixed population, might
enhance disease incidence and prevalence.
Although not related to food production, a fascinating
potential use of livestock is in the production of organs
for human transplantation. Here also genome editing
has a role. Xenotransplantation describes the process of
transplanting an organ from one species into another
and has become a hot topic of research owing to the
lack of suitable human donors [103]. Pigs have been a
natural focus of xenotransplantation research owing to
their similarity in physiology and size – however, there
are concerns over the risk of retroviral transmission
from pig to human [104, 105]. Porcine endogenous ret-
roviruses (PERVs) are retroviruses found within the gen-
ome of all pigs. As they are integrated into the genome,
they exist in all tissues and organs and are passed on by
inheritance. Genome editing is one possible avenue for
removing or inactivating PERVs within pig genomes,
thus making their organs suitable for xenotransplant-
ation. Yang and colleagues [106] demonstrated this first,
inactivating all 62 PERVs within the genome of a pig cell
line (PK15) and reducing the levels of transmission to
human cells by over 1000 fold. A follow-up study by Niu
et al. [107] generated PERV-inactivated pigs through
SCNT, having inactivated all the PERVs in a porcine pri-
mary cell line using CRISPR–Cas9. Genomic and tran-
scriptomic analysis of the resulting pigs suggested 100%
elimination of PERV activity.

Discussion and future outlook
For many years genetics/genomics and selective breeding
have had a transformative impact on livestock produc-
tion and health, producing huge gains for the breeding
industry, farmers and consumers. Underpinned by gen-
omic tools and reference datasets, genomic selection has
been (or is being) adopted worldwide to deliver consist-
ent, predictable improvements in multiple species and
farming systems. While selective breeding has resulted
in successful incremental improvements in target traits,
it typically relies on naturally occurring genetic variation
within a population.
Transgenic and genome-editing technologies offer the

opportunity for larger gains over a shorter time-period
and can call on variation present in other populations
and species, variation in non-domesticated species, and
novel alleles designed to be beneficial. Resilience to
ASFV is a potential example whereby an allele only
present in the wild warthog population, which has
co-evolved with the pathogen for many thousands of
years, has been introduced into domesticated pigs by
genome editing. Although we do not know the pheno-
type of the edited pigs, the concept of introducing bene-
ficial alleles from a wild population into domesticated
equivalents is sound. The allele conferring resistance to
PRRSV introduced by Burkard and colleagues is an ex-
ample of a ‘designer allele’ – the researchers knocked
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out a single exon of the CD163 gene, thought to be in-
volved in interactions with the virus, and this simple edit
appears to have produced resistant pigs that maintain
normal CD163 functionality. To our knowledge, pigs
lacking this exon have never been seen in any popula-
tion, and therefore equivalent pigs would be impossible
to produce by either artificial or natural selection. Elim-
ination of this devastating disease of pigs could now be
possible through the use of genome-edited pigs.
The older transgenic technologies have been applied

to livestock since the 1990s, and there are many exam-
ples in this review – but why have so few engineered an-
imals actually made it to market? For transgenic
animals, the answer might come from the only success
story, the AquAdvantage salmon. This product took 25
years to reach the market, with the first application for
FDA approval occurring in 1995 [108]. Clearly, a more
rapid approach to regulatory clearance is needed if more
transgenic products are to hit the market and provide
advantages to consumers, farmers, and breeders alike.
It is clear that precise, accurate genome-editing tech-

niques are very different in nature to transgenesis. The
legal regulatory paths for genome-edited animals have
yet to be established, and all of the examples covered
herein are at a very early stage. However, huge strides
have been made, and in particular the PRRS-resistant
pigs produced at Missouri and Roslin offer great poten-
tial to eradicate or minimize this devastating disease. Ef-
fectively removing PRRS from pig farms would benefit
farmers, consumers, and the pigs themselves. Other ex-
amples are not far behind, and, if much-hoped-for pro-
gressive regulatory pathways are established, then the
effects on livestock production could be huge.
The examples described above naturally involve single

alleles of large effect that are amenable to genome edit-
ing. Beyond these simple examples, many traits of inter-
est are complex – that is, they are governed by many
alleles, each of small effect. To achieve significant impact
from genome editing by harnessing existing genetic vari-
ation for a complex trait, one would need to edit mul-
tiple alleles simultaneously, and editing approaches
would need to be routinely integrated within commercial
breeding-programme operations. Simulations have
shown that, even with complex traits, genome editing
could have a role in livestock improvement, either by
increasing the frequency of favorable alleles [109] or
removing deleterious alleles [110] as part of a genomic-
selection-driven breeding programme.
Assuming that the regulatory pathways can be defined,

and considering that genome editing is precise and quick,
there must now be a renewed focus on the identification
of editing targets. In the examples above, the identification
of the target genes has come from a wide variety of
approaches encompassing genetics, genomics, large-scale
CRISPR-based functional screens, host–pathogen interac-
tions, virology, bacteriology and serendipity. Although the
latter cannot be planned for, it is clear that all of the other
approaches, within an integrated, co-ordinated inter-
national programme of research, have the potential to
identify targets that can provide huge benefits to the live-
stock sector and will have a transformational impact on
the ability of our species to produce sufficient food in an
environmentally sustainable way.
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