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Abstract

Single-cell RNA-seq has the potential to facilitate isoform quantification as the confounding factor of a mixed
population of cells is eliminated. However, best practice for using existing quantification methods has not been
established. We carry out a benchmark for five popular isoform quantification tools. Performance is generally good
for simulated data based on SMARTer and SMART-seq2 data. The reduction in performance compared with bulk
RNA-seq is small. An important biological insight comes from our analysis of real data which shows that genes that
express two isoforms in bulk RNA-seq predominantly express one or neither isoform in individual cells.
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Background
RNA-seq has transformed genomics by making it easy
and relatively inexpensive to obtain genome-wide, quanti-
tative measurements of the transcriptome. To be able to
take full advantage of this data, however, it is critical to
have robust and accurate computational methods for
quantifying transcript abundances. Isoform quantification
is considered a hard problem [1-3], and the main reason
why it is so challenging for mammals is because many
genes have multiple isoforms which are highly similar in
terms of sequence and exon structure. Because of this
overlap, many reads from RNA-seq experiments cannot
be uniquely assigned. Although a number of strategies
have been developed to attempt to quantify isoforms [4—
12], the problem of how to deal with reads which map to
more than one isoform has not been fully solved [13, 14].
Although bulk RNA-seq data of cells indicate the expres-
sion of multiple isoforms, scRNA-seq of the same cells
show evidence for a single or a small number of isoforms
per gene [15-18]. This is potentially beneficial, as it sug-
gests that by performing isoform quantification using
single-cell RNA-seq (scRNA-seq) data rather than bulk
RNA-seq data, the problem could be simplified due to a re-
duced number of multi-mapping reads. As well as allowing
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basic biological questions on cellular heterogeneity to be
investigated, isoform quantification using scRNA-seq could
have applications in fields such as cancer, developmental
biology, alternative splicing, and neurobiology.

Despite the intrinsic benefits of single-cell resolution, to
date most scRNA-seq research has focused on gene-level
quantification and analysis [19]. This partly reflects the
novelty of single-cell RNA sequencing technologies, and
best practices for performing isoform quantification using
single-cell data have yet to be established. Numerous tools
to perform isoform quantification are available [4—12], but
most of these tools were designed for bulk RNA-seq ana-
lysis and it is not clear whether it would be appropriate to
apply these tools to single-cell analysis. For other tasks,
e.g., normalization, it has been shown that applying
methods designed for bulk RNA-seq to scRNA-seq can
give misleading results [20]. It has not yet been established
whether isoform quantification methods designed for bulk
RNA-seq are accurate for single-cell data.

In addition to software concerns, there are experimental
and technical issues which could impact on isoform quan-
tification in single cells. A wide range of library preparation
protocols have been developed for scRNA-seq [21-29],
some of which are likely to be more appropriate for
isoform quantification than others. For example, one way
in which library preparation protocols could differ in their
suitability for isoform quantification is in their degree of
gene length bias, which has been shown to be greater for
full-length transcript protocols compared with UMI-based
protocols [30]. An understanding of which library
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preparation protocols generate data suitable for isoform
quantification and which library preparation protocols do
not would allow researchers to better design experiments
to suit their needs. Due to the low amount of starting ma-
terial, scRNA-seq data has greater variability and a greater
number of transcripts for which zero reads are detected,
i.e, dropouts, relative to bulk RNA-seq data [31]. It is
known that while some of this variation is biological in
origin, a substantial proportion is technical [17, 32, 33].
Dropouts, defined as events in which reads mapping to a
gene or isoform are detected in some cells but not others,
are highly prevalent in scRNA-seq [34]. The impact of
dropouts and other technical noise on isoform quantifica-
tion tools is not known, and different strategies than the
ones that were used for bulk RNA-seq may be required.

To assess isoform quantification for scRNA-seq, we
present a simulation-based benchmarking study using data
generated from three different scRNA-seq projects. While
benchmarking studies have been performed previously for
bulk RNA-seq [13, 14], to the best of our knowledge, this is
the first benchmark of isoform quantification performed for
scRNA-seq. We evaluated the overall accuracy of different
isoform quantification methods when applied to scRNA-
Seq, and we also specifically studied the impact of library
preparation protocol and dropouts. We tested five popular
isoform quantification tools on simulated scRNA-seq data
based on three publicly available scRNA-seq datasets pro-
duced using different library preparation protocols and cell
types. With the exception of eXpress, performance was
generally good for simulated data based on SMARTer and
SMART-seq2 [27] data. Compared to bulk RNA-seq, iso-
form quantification was only slightly worse for SMARTer
and SMART-seq2 data, suggesting that it is appropriate to
use these methods for full-transcript single-cell data.

Results
The performance of isoform quantification tools was
generally good and consistent across two different
simulation methods
The first dataset considered in this benchmark consisted of
96 mouse quiescent B lymphocytes collected as part of the
BLUEPRINT epigenome project [35] (GEO accession code
GSE94676). The SMARTer library preparation protocol
was used to collect this dataset, which has been shown to
have a degree of 3" coverage bias [36]. On average, just over
2.7 million reads had been sequenced per B lymphocyte.
To perform the benchmark, simulated data was gener-
ated from the selected cells using two simulation methods.
The first simulation method used was RSEM [4] (see
Methods for details). RSEM is an isoform quantification
tool which uses a generative model and expectation
maximization to estimate isoform expression. In addition,
RSEM is capable of simulating reads using its generative
model and input values for the latent variables in the
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model, which can be estimated during isoform quantifica-
tion. An important reason for selecting RSEM to perform
the simulations is that during the simulation process,
RSEM records where each simulated read originated in
the transcriptome. Consequently, it is known how highly
expressed each isoform is in the simulated data. This will
be referred to as the “ground truth.” Knowing the ground
truth allows us to benchmark expression estimates from
isoform quantification tools using the simulated data.

The second simulation method relied on two tools, Splat-
ter [37] and Polyester [38]. The methodology used to gener-
ate simulated data is illustrated in Fig. 1. Splatter is a
simulation tool which takes an expression matrix of counts
from an scRNA-seq experiment as input and gives a simu-
lated expression matrix of counts as output. Splatter was
used to simulate counts data based on an expression matrix
of counts from the BLUEPRINT B lymphocytes generated
by isoform quantification tool Kallisto [6]. The output of
Splatter is a gene count expression matrix, where the col-
umns are cells and the rows are non-specific gene names
(e.g, “Genel,” “Gene2,” “Gene3”). Polyester was then used

Step 1: Run Kallisto on BLUEPRINT B
lymphocytes and generate an isoform counts

matrix.

Step 2: Run Splatter on the Kallisto generated
counts matrix and generate a simulated counts

matrix.

Step 3: Rename the rownames in the Splatter
simulated counts matrix based on isoforms that
are expressed in at least one cell in Kallisto.

\

Step 4: Use Polyester to simulate one read per
count in the Splatter simulated counts matrix.

\

Step 5: Use BBMap to simulate uniform quality
scores for the Polyester simulated reads.

Fig. 1 Flowchart showing methodology for generating Splatter- and

Polyester-simulated data
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to simulate one read per count in the Splatter gene count
expression matrix. Since the exact origin in the transcrip-
tome is not known from Splatter, Polyester generated simu-
lated reads using a transcriptome consisting of the isoforms
called as expressed by Kallisto in at least one cell. The row-
names of the Splatter count matrix were updated to reflect
the isoforms simulated by Polyester. The Splatter count
matrix was then converted to a matrix of TPM values,
which were used as the “ground truth.”

The RSEM- and Splatter- and Polyester-simulated reads
data was then given as input to RSEM, eXpress [5], Kal-
listo, Salmon [7], and Sailfish [8]. The isoform quantifica-
tion tools provide two useful pieces of information for
each isoform—whether it is expressed and its expression
level. To quantify the ability of each method to detect the
presence of an isoform, the precision and recall were cal-
culated. In this context, the precision is the fraction of iso-
forms predicted to be expressed by each tool which are
expressed in the ground truth. The recall is the fraction of
isoforms expressed in the ground truth which are pre-
dicted to be expressed using the tool. For a single overall
quality score, we used the F1 score, which is defined as
the harmonic mean of precision and recall.

Salmon can be run in three modes—an alignment-based
mode, in which aligned reads are taken as input, or one of
two alignment free modes (a quasi mode or an SMEM
mode). The performance of all three modes was evaluated
in this benchmark. For most isoform quantification tools,
the mean F1 score was remarkably similar and in the
range of 0.777-0.888. The exception was eXpress, which
had a slightly higher recall but a much lower precision
than other tools, and consequently had the lowest mean
F1 score (between 0463 and 0.492 depending on the
simulation method) (Fig. 2a). The mean F1 scores, preci-
sions, and recalls calculated for each of these tools were
similar regardless of whether RSEM or Splatter and Poly-
ester were used to generate the simulated data. The statis-
tics were not dramatically altered when Polyester
simulated reads using a 3" coverage bias model compared
to when Polyester simulated reads uniformly across tran-
script length. However, as the Polyester 3" coverage bias
model is not based on single-cell RNA-seq data, care
needs to be taken when interpreting this result.

In addition to determining whether an isoform is
expressed, it is often of interest to estimate isoform abun-
dance. To evaluate how well isoform quantification tools
perform this task, two measures were considered—Spear-
man’s rho and the normalized root mean square error
(NRMSE) (Fig. 2b, c). Spearman’s rho gives a measure of
how monotonic the relationship between the ground truth
expression and each tool’s expression estimates is, while the
NRMSE gives a measure of the extent to which the rela-
tionship deviates from a one to one linear relationship (see
Methods for details on how the NRMSE was calculated).
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Consistent with the results for isoform detection, mean
Spearman’s rho was similar between isoform quantification
tools and simulation methods and in the range 0.782-
0.891. The exception was eXpress, which had much lower
mean Spearman’s rho than the other tools with values from
0.550 to 0.574. eXpress also performed poorly relative to
the other isoform quantification tools when considering
the NRMSE. Interestingly, although the overall pattern of
NRMSE results was similar for both simulation methods,
the NRMSE was consistently far higher for the Splatter
and Polyester simulations compared to the RSEM simula-
tions. One possible explanation is that the difference in the
NRMSE is due to a small number of outliers. However, this
did not appear to be the case (see Additional file 1: Figure
S6). Another explanation for the difference in the NRMSE
could be that the differences are largely driven by differ-
ences in the ground truth expression distributions of the
RSEM simulations compared to the Splatter and Polyester
simulations. Since the NRMSE is proportional to the sum
of squared differences between the ground truth and the
isoform quantification tool’s expression estimates, it is
plausible that it will be relatively rare for an unexpressed
isoform to have an estimated expression other than zero,
but relatively common for an expressed isoform to have an
estimated expression that differs from the ground truth ex-
pression. We found that the distribution of ground truth
expression values differs for each simulation method (see
Additional file 1: Figure S7). Therefore, differences in the
ground truth expression distributions seem to be the most
likely explanation for the systematic difference in the
NRMSE between simulation methods.

The difference in the NRMSE between simulation
methods was not the only aspect in which the simulation
methods differed. A comparison of the simulated data
with the real data was carried out using both a compari-
son tool included in Splatter and using CountsimQC [39],
a package which facilitates comparison of simulated data-
sets. The RSEM-simulated data more closely resembled
the real data than the Splatter and Polyester-simulated
data by a number of metrics, including the sample-sample
correlations, the mean-variance relationship, and the
relationship between magnitude of expression and fraction
of zeros (Additional file 1: Figure S8). In contrast, when
comparing the simulation tools using gene-level statistics
such as the distribution of mean expression, distribution
of variance and percentage of zeros per gene, the resem-
blance between the Splatter/Polyester-simulated data and
real data is much closer (Additional file 1: Figure S5). We
suspect that these differences are because Splatter loses
gene names during its simulations. When the Splatter
counts matrix was used with Polyester to simulate reads
data, we updated the row names to reflect the transcripts
simulated by Polyester. Consequently, we would expect
there to be little or no relationship between the expression
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of a given gene in real data and the corresponding Polyes-
ter/Splatter-simulated data. Indeed, we find that the
correlation between ground truth isoform expression in
the Splatter- and Polyester-simulated data and isoform
expression estimates generated by running Kallisto on the
real BLUEPRINT B lymphocyte data is very low (see Add-
itional file 1: Figure S9). In contrast, the correlation be-
tween ground truth expression in the RSEM simulations

and Kallisto expression estimates in the real data was
much higher.

The different transcriptional profile in the Splatter- and
Polyester-simulated data compared with the real BLUE-
PRINT B lymphocyte data is a likely consequence of up-
dating the Splatter gene names to reflect the transcriptome
used in the Polyester simulations (Step 3 in Fig. 1). An add-
itional potential issue with this step in our methodology is
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that factors which would normally impact on expression
estimates, such as gene length, GC content, and secondary
structure, are not considered during our simulation proto-
col. The relationships between these features and expres-
sion estimates in our simulated data are unlikely to match
the real data. Based on these limitations and our findings
above, we concluded that the RSEM simulations resembled
the real data more closely than the Splatter and Polyester
simulations. We suspect that this occurs due to the loss of
gene labels during the Splatter simulations and subsequent
reassignment during the Polyester simulations, leading to a
radically different transcriptional profile in the Splatter/
Polyester-simulated data. Consequently, for the rest of this
paper, all data was simulated using RSEM. Despite the dif-
ferences between the RSEM and Splatter and Polyester
simulations, the results of the benchmark were remarkably
consistent. This suggests that the findings in this bench-
mark are robust to some differences between datasets,
including dramatic changes in the transcriptional profile.

Isoform quantification tools generally perform well on
SMART-seq2 data with high sequencing coverage

To test whether the results of our benchmark were robust
across different datasets, we next considered a mouse em-
bryonic stem cell (mESC) dataset published by Kolodziejc-
zyk et al. [40]. On average, over 7 million reads were
sequenced per cell in this dataset, considerably more than
in the BLUEPRINT dataset. Intuitively, it seems likely that
sequencing more reads per cell should lead to improved
isoform quantification. However, sequencing more reads
per cell is expensive and may come at the cost of being
unable to sequence as many cells. Therefore, determining
whether sequencing a higher number of reads per cell
improves isoform quantification is likely to be of interest
to many researchers.

From the Kolodziejczyk et al. dataset, 271 mESCs grown
in standard 2i media + LIF which passed quality control
were used for the benchmark (see Methods). This dataset
should therefore give a good indication of the performance
of isoform quantification tools when there are a high num-
ber of reads per cell but a relatively low number of cells. In
addition, this dataset has uniform coverage of transcripts,
as it was sequenced using the SMART-seq2 protocol [27].

To perform the benchmark, simulated data was gener-
ated as described previously from the selected cells from
Kolodziejczyk et al. (see Methods for details). The simu-
lated reads data were then given as input to RSEM, eX-
press, Kallisto, Salmon, and Sailfish. The highest F1
score was achieved by Salmon run in SMEM mode
(0.889), with RSEM, Salmon run in quasi mode, Sailfish,
and Kallisto also achieving mean F1 scores greater than
0.85 (Fig. 3a). Again, eXpress performed most poorly by
a substantial margin, with a mean F1 score of 0.548, and
again, eXpress had a higher mean recall (0.997) but a
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much lower mean precision (0.378) than other tools. It
seems likely that eXpress's low precision is due to it
being too liberal when calling isoforms as expressed.
The average number of isoforms called as expressed per
cell was twice as high for eXpress, which called an aver-
age of 41,372 isoforms as expressed per cell, as for any
other tool. The other isoform quantification tools had
high mean recalls between 0.956 and 0.960. In contrast,
the highest mean precision was just 0.831 by Salmon
run in SMEM mode, which means that nearly one in six
isoforms predicted to be expressed by the best perform-
ing tool were not actually expressed. The high recall
values achieved by all the tools considered here indicate
that the vast majority of isoforms expressed in the simu-
lated data are detected, with the lower precision values
being a greater cause for concern. Knowing that an iso-
form is not expressed can be as important as knowing
that an isoform is expressed, especially if that isoform is
being used as a marker, for example in clustering
analysis. A strategy for improving the detection ability as
quantified by the F1 score of isoform quantification tools
for scRNA-seq could be to make future tools more
conservative when calling isoforms as expressed.

The highest mean value of Spearman’s rho was
obtained by Salmon run in SMEM mode (0.896), with
Salmon run in quasi mode, Kallisto, RSEM, and Sailfish
obtaining similar values. The lowest mean value of the
NRMSE was also obtained by Salmon run in SMEM
mode (19.5), with Salmon run in quasi mode, Kallisto,
RSEM, and Sailfish obtaining similar values. Again, of
the tools considered, eXpress performed most poorly by
a substantial margin.

The decrease in the performance of isoform
quantification using scRNA-seq compared with bulk RNA-
seq is generally small
We find that the performance of existing isoform quantifi-
cation tools is generally good when run on simulated data
based on SMART-seq2 and SMARTer scRNA-seq data.
We next consider the performance of isoform quantifica-
tion tools when scRNA-seq data is used compared with
bulk RNA-seq data. Although previous benchmarks of iso-
form quantification have been performed using bulk
RNA-seq data [13, 14], a direct comparison with our
benchmark is challenging due to differences in the experi-
mental approaches taken. Consequently, it is not possible
to say whether any perceived change in the performance of
a given tool in our benchmark compared with a bulk
RNA-seq benchmark is due to differences in how the
benchmark was performed, differences in which statistics
were collected, or due to a genuine difference in perform-
ance on bulk and single-cell data.

To gain further insights regarding the performance of
the tools, we made use of the bulk RNA-seq data generated
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for the BLUEPRINT B lymphocytes and Kolodziejczyk
et al. standard 2i media + LIF mESCs. We used RSEM to
simulate the bulk RNA-seq data and collected the same
performance statistics for our bulk RNA-seq benchmark as
in our scRNA-seq benchmark. As the data used in our bulk
and scRNA-seq benchmark came from the same source,
the same method was used to generate the simulated bulk
and scRNA-seq data, and the same performance statistics
were collected in both benchmarks, we were able to carry
out a meaningful comparison of isoform quantification tool
performance on bulk and scRNA-seq data.

We find that all isoform quantification tools performed
well on the simulated bulk data, but since most methods
also performed well on single-cell data, the improvement
was generally small (Fig. 4 and Additional file 1: Figure
S13). In particular, there is very little difference in the re-
call for bulk and scRNA-seq, for which performance
seems to be close to optimal. Interestingly, eXpress
performs far better on bulk RNA-seq compared with
scRNA-seq. Since eXpress appears to be overly liberal in
calling isoforms as expressed, one explanation for the bet-
ter performance of eXpress on bulk RNA-seq is that more
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isoforms have non-zero expression in bulk (Add-
itional file 1: Figure S14). Consequently, there are fewer
unexpressed isoforms for eXpress to incorrectly call as
expressed.

Removing drop-outs can improve the performance of
isoform quantification tools
While it is of interest to determine which isoform quantifi-
cation tools perform best overall when run on scRNA-seq
data, it is important to recognize that such an analysis may
hide a lot of detail. For example, scRNA-seq data com-
monly contains a high number of dropouts [41], and one
question of interest is whether the performance of isoform
quantification tools differs between isoforms with a high
number of dropouts and isoforms with few or no dropouts.
To address the impact of dropouts on performance,
Spearman’s rtho and the NRMSE were calculated when
isoforms with zero expression in more than a specific frac-
tion of cells were removed from the analysis. Interestingly,
applying increasingly stringent thresholds to remove iso-
forms with a high number of dropouts led to an increase
in the value of Spearman’s rho in both the Kolodziejczyk
et al. and BLUEPRINT simulations (Fig. 5a). For isoforms
which had dropouts in less than 20% of cells, the value of
Spearman’s rho became very high for Sailfish, Salmon,
Kallisto, and RSEM (in the range of 0.992-0.996 for the
BLUEPRINT simulations, and 0.977-0.989 for the Kolod-
ziejczyk et al. simulations). This indicates that for isoforms
with very few dropouts, isoform quantification tools are

extremely good at ordering their relative expression
correctly. Removing isoforms with a high number of drop-
outs had a more variable effect on the NRMSE. Due to
the inverse relationship between magnitude of expression
and number of dropouts [34] in both the real and simu-
lated data (Fig. 5b), one explanation for the increase in
Spearman’s rho is that lowly expressed isoforms are more
likely to have a high number of dropouts and are also
more likely to be mis-ordered with respect to the ground
truth. However, because they are lowly expressed, remov-
ing them has a relatively small effect on the NRMSE.

For genes which express two isoforms in bulk RNA-seq,
usually only one isoform is detected per cell in scRNA-seq
To determine whether individual cells express all or only
some of the isoforms seen in a population of cells, we
consider genes which have two isoforms, both of which
are expressed in the BLUEPRINT B lymphocyte or in
the Kolodziejczyk et al. ES cell bulk RNA-seq data. We
then determine how many isoforms are expressed from
these genes in the corresponding scRNA-seq data.
Kallisto was used to perform isoform quantification for
the bulk and single-cell data as it performed well in both
our bulk and single-cell benchmarks.

For genes which express two isoforms in bulk
RNA-seq data, we first consider if zero, one, or two iso-
forms are detected in single cells. For most genes which
express two isoforms in the bulk RNA-seq, neither iso-
form is expressed in most cells in the scRNA-seq
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J

(Fig. 6a). It is more common in cells which do express
the gene to express one rather than two isoforms. To in-
vestigate this further, we consider the percentage of cells
which express both isoforms expressed in the bulk
RNA-seq. We find that for the majority of genes, no or
very few cells express both isoforms seen in the bulk
RNA-seq; however, for a minority of genes in both the
BLUEPRINT B lymphocytes and Kolodziejczyk et al. ES
cells, a high percentage of cells express both isoforms

(Fig. 6b). Interestingly, more genes express both iso-
forms in the Kolodziejczyk et al. ES cells compared to
the BLUEPRINT B lymphocytes. This may partly reflect
the higher number of cells and the higher number of
reads per cell in the Kolodziejczyk et al. ES cells,
possibly enabling better detection of lowly and/or infre-
quently expressed isoforms. In addition, the globally ele-
vated transcription rates in ES cells relative to other cell
types might lead us to expect that expression of multiple
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data. The BLUEPRINT B lymphocyte (left) and the Kolodziejczyk et al. ES cell (right) bulk RNA-seq data are shown. The B lymphocyte graphs
shown here are from the first biological replicate of the BLUEPRINT male B lymphocyte bulk RNA-seq; equivalent graphs for the second and third
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express both the isoforms detected in the bulk RNA-seq data. ¢ Relationship between the percentage of cells which express both the isoforms
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isoforms from a single gene would be more common in
ES cells [42]. Finally, we ask whether more highly
expressed genes are more likely to express multiple
isoforms. We find a positive correlation between gene
expression and the percentage of cells which express
both isoforms (Fig. 6c¢), indicating that more highly
expressed genes are more likely to express both isoforms
in individual cells.

Discussion

To date, scRNA-seq studies have mainly focused on
gene-level quantification [19]. This has partly been due to
uncertainty over how best to perform isoform quantifica-
tion in scRNA-seq. In addition, there has been uncertainty
over whether the results obtained would be meaningful due
to the low read coverage compared with bulk RNA-seq.
Our simulation-based analyses have demonstrated that
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Kallisto, Salmon, Sailfish, and RSEM can accurately detect
and quantify isoforms in scRNA-seq to nearly the same ac-
curacy as bulk RNA-seq data. A limitation of using simula-
tions to benchmark isoform quantification is that simulated
data will never fully recapture all of the features of real data.
However, to the best of our knowledge it is currently im-
possible to obtain the ground truth for real scRNA-seq
data, meaning a simulation-based approach is the only way
to evaluate the performance of isoform quantification tools.

In this study, we exclusively consider full-length
scRNA-seq protocols for two reasons. First, it is almost
certainly the case that full-length protocols will provide
the most accurate isoform quantification, as protocols
with little or no coverage bias should have an improved
ability to distinguish isoforms which only differ at one
end. Second, droplet-based protocols such as 10X and
Drop-seq rely on cell barcodes and UMIs in their quan-
tification [23, 43]. One limitation is that the tools evalu-
ated in this benchmark provide little or no support for
performing isoform quantification using this sort of data.
Furthermore, there are currently no tools which simulate
droplet-based reads data and record how highly
expressed isoforms are in the simulated data (the
“ground truth”), and without such a tool, it is not
possible to benchmark isoform quantification methods
using a simulation-based approach. At present, we do
not recommend performing isoform quantification using
droplet-based data, as the accuracy of performing such
quantification has not been evaluated and current tools
are not well designed for such an application. Given the
growing popularity of droplet-based sequencing
platforms, there is a clear need for an open source
droplet-based reads simulator which could be used in
future gene and isoform quantification benchmarks.

In addition to benchmarking isoform quantification for
scRNA-seq, we perform an equivalent benchmark for bulk
RNA-seq. We find that the performance of most isoform
quantification tools is slightly worse for scRNA-seq com-
pared with bulk, but that the difference is small. The cost
in performance using scRNA-seq compared with bulk
RNA-seq for isoform quantification is therefore low. How-
ever, it should be noted that this benchmark has evaluated
the ability of isoform quantification tools to correctly as-
sign the reads present in a scRNA-seq experiment to the
isoforms they originated from. As a major technical issue
with scRNA-seq is failure to capture reads from a high
proportion of expressed transcripts [20], it is likely that, in
practice, many expressed isoforms will be missed by iso-
form quantification tools when run on scRNA-seq data
due to a lack of evidence in the captured reads that the
isoform was expressed. However, the extremely high recall
of all the isoform quantification tools considered in this
benchmark means that the overwhelming majority of
isoforms from which reads are captured will be called as
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expressed. More problematic is the relatively low precision
of isoform detection, as a consequence of which around
one in six isoforms called as expressed in deeply
sequenced scRNA-seq datasets will be false positives, even
for the best performing tools.

While our analysis has demonstrated that existing tools
can accurately detect and quantify isoforms for
scRNA-seq, no tool performed perfectly. The tools bench-
marked here were designed for use with bulk RNA-seq,
and the default settings which we used were tuned for this
use. One explanation for the surprisingly poor perform-
ance of eXpress in single-cell RNA-seq compared with
bulk RNA-seq could be that the default configuration is
not appropriate for the much lower number of reads in
single-cell RNA-seq experiments. If this is the case, the
performance of eXpress could be improved by changing
the parameters passed to eXpress when it is run on
single-cell RNA-seq data. Thus, it is plausible that future
tools designed to perform isoform quantification specific-
ally for scRNA-seq could perform better.

We found that the tools benchmarked in this study
tended to have a higher recall than precision of isoform
detection. Therefore, it is likely the performance of iso-
form quantification tools designed for scRNA-seq data
could be improved by making the tools more conservative
in calling isoforms as expressed relative to tools designed
for use on bulk data. In addition, we found that Spear-
man’s rho increased when lowly expressed isoforms with
a high number of dropouts were removed from the
analysis. Thus, it is likely that attempts to incorporate
the effects of single-cell-specific technical noise such as
dropouts would improve the performance of isoform
quantification tools on scRNA-seq. An open question
for isoform quantification in scRNA-seq is whether in-
corporating information from unique molecular identi-
fiers (UMIs) into isoform expression estimates could
improve accuracy of quantification. While UMI infor-
mation could reduce the effects of PCR amplification
noise [44], UMI-based protocols tend to exhibit signifi-
cant coverage bias, potentially making isoform quantifi-
cation challenging [45]. If UMI-based protocols could
be combined with long read sequencing technologies,
this problem could potentially be overcome.

A number of previous studies have attempted to deter-
mine whether genes from which multiple isoforms are
expressed in a population of cells are expressing all of
these isoforms in individual cells [15-18]. However, a
potential confounder in these studies is that the method
used to detect isoforms has not been independently vali-
dated as accurate for scRNA-seq. We have demonstrated
that Kallisto, Salmon, Sailfish, and RSEM can accurately
detect isoforms for scRNA-seq with high precision and
recall, and we used Kallisto to reproduce the finding of
previous studies that it is unusual for single cells to
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express multiple isoforms from a single cell [15-18]. In
addition to being of biological relevance, this finding is
important from a bioinformatics perspective, as it
suggests that the problem of isoform quantification is
made simpler by using scRNA-seq.

Conclusions
For high-quality simulated scRNA-seq datasets with a
high number of reads/cell, RSEM, Kallisto, Salmon, and
Sailfish can accurately detect and quantify isoform
expression. Isoforms with a high number of dropouts
appear to be relatively challenging to quantify, possibly
because such isoforms are often lowly expressed. We
find that genes which express two isoforms in bulk
RNA-seq predominantly express only one (or neither)
isoform in equivalent scRNA-seq. In our benchmark of
bulk RNA-seq, we discover the performance of most iso-
form quantification tools is slightly worse for scRNA-seq
compared with bulk, but that the difference is small.
Taken together, our findings show that isoform quanti-
fication is possible with scRNA-seq for SMARTer and
SMART-seq2 data. As single cells do not generally ex-
press all of the isoforms seen at the population level,
scRNA-seq may eventually provide advantages over bulk
RNA-seq for isoform quantification by essentially decon-
voluting the problem of isoform quantification. Future
isoform quantification tools designed explicitly for
scRNA-seq could improve on the performance of exist-
ing tools by being more conservative in calling isoforms
as expressed, and by explicitly modeling the technical
noise inherent to scRNA-seq.

Methods

Genomes

The Ensembl release 89 genome and transcriptome with
92 spike-in sequences developed by the External RNA
Control Consortium (ERCC) appended were used wher-
ever genome files in FASTQ format and/or transcriptomes
in GTF format were required [46, 47]. To perform simula-
tion and isoform quantification, RSEM produces a refer-
ence which includes a reference transcriptome in FASTQ
format. This reference transcriptome produced by RSEM
was used for isoform quantification tools which required a
reference transcriptome in FASTQ format as input (see
Availability of data and materials for links to code).

Data processing prior to analysis

Sequencing adaptors were trimmed from the BLUE-
PRINT data using Cutadapt [48]. Reads from each cell
in these datasets were aligned to the Ensembl genome
release 89 using STAR [46, 49]. RSeQC was used to col-
lect alignment quality statistics for each cell [50]. These
statistics and the number of reads sequenced in each cell
were used to remove low-quality cells from each dataset
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(see Additional file 1: Figures S1 & S2). In addition, Sca-
ter was used to plot the percentage of reads mapping to
mitochondrial RNA and remove cells with greater than
10% of reads mapping to mitochondrial RNA [51] (see
Additional file 1: Figures S1, S2, S3, S4, S10 and S11).

Simulations

Two simulation methods were used in this study. The first
method used to simulate single-cell RNA-seq data was
RSEM. RSEM is an isoform quantification tool which
makes use of a generative model and an expectation
maximization algorithm to perform isoform quantification
[4]. When performing isoform quantification, RSEM infers
values for the latent variables in its generative model in
addition to estimating isoform expression. To perform
simulations, RSEM takes the inferred values of the latent
variable and the expression estimates and uses them in its
generative model to probabilistically simulate reads. As
RSEM simulates reads, it counts where in the transcrip-
tome each of the reads came from. RSEM thus simulates
reads data for which it is known how highly expressed
each isoform in the transcriptome is.

For each cell in the Kolodziejczyk et al. and the BLUE-
PRINT datasets that passed quality control, one RSEM
simulation was performed. Isoform quantification was
performed on each cell and the isoform expression esti-
mates and inferred estimates for RSEM’s latent variables
were used to perform the simulation. Consequently,
each RSEM-simulated cell used in this study was simu-
lated using variables inferred from a real cell.

The second simulation method was based on two tools,
Splatter and Polyester. A flowchart showing the steps
followed to generate the Splatter- and Polyester-simulated
data is displayed in Fig. 1. Splatter is a simulation tool
which takes an expression matrix of counts from a
single-cell RNA-seq experiment as input and gives a simu-
lated expression matrix of counts as output [52]. The
Splatter package in fact contains six simulation methods.
To select which performed best, data was simulated using
the Lun, Lun2, and Simple simulation methods. The Splat
simulation method was discounted as it was unable to
simulate large enough expression matrices to account for
the larger number of isoforms compared with genes, and
the scDD method was discounted as it simulates differen-
tial expression, and no differential expression was ex-
pected. The BASICS method had not been implemented
at the time when the simulations were performed. Based
on Splatter-generated graphs, the lun2sim method, in-
spired by a simulation method developed by Lun & Mar-
ioni [53], was selected as it bore the closest resemblance
to the real data (see Additional file 1: Figure S5).

The lun2sim method was used to simulate a matrix of
counts based on an expression matrix of counts from the
BLUEPRINT B lymphocytes generated by Kallisto [6]. The
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simulated expression matrix of counts was then given as
input to Polyester, which simulated reads based on the
lun2sim counts matrix. BBmap was used to simulate qual-
ity scores [54]. Simulations were performed both using
Polyester’s uniform coverage model and using Polyester’s
3" coverage bias model. The Splatter counts matrix was
converted to a matrix of TPM values, which were used as
the “ground truth” for how highly expressed each isoform
was in the Polyester-simulated reads data.

Post simulation data processing

Reads from each cell in the datasets simulated by
RSEM based on the Kolodziejczyk et al. and BLUE-
PRINT datasets were aligned to the Ensembl genome
release 89 using STAR. RSeQC was used to collect
alignment quality statistics for each cell. The align-
ment quality statistics and the number of reads for
each simulated cell were used to remove low-quality
cells from each dataset (see Additional file 1: Figures
S3 & S4). Scater was used to plot the percentage of
reads mapping to mitochondrial RNA and remove
cells with greater than 10% of reads mapping to mito-
chondrial RNA.

Bulk RNA-seq analysis

Prior to isoform quantification, RSeQC was used to
remove rRNA mapping reads from the BLUEPRINT B
lymphocyte bulk RNA-seq data.

Statistics
The formula used to calculate the normalized root mean
square error (NRMSE) is:

1 N
ﬁZi:l(Si_oi)z
NRMSE = 100

where N is the number of isoforms that could have
been simulated, S is the isoform expression estimates
for the isoform quantification tool of interest, O is
the ground truth expression estimates, and sd(O) is
the sample standard deviation of the ground truth
expression estimates.

Prior to calculating the NRMSE, the ground truth and
the isoform expression estimates were transformed using
the formula:

Stransformed = lOg 2 (Soriginal + 1)

where S,iginai Was the original value of the ground
truth or the expression estimate. This transformation re-
duces the impact of a small number of highly expressed
isoforms on the value of the NRMSE.
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