
Souvorov et al. Genome Biology (2018) 19:153
https://doi.org/10.1186/s13059-018-1540-z

SOFTWARE Open Access

SKESA: strategic k-mer extension for
scrupulous assemblies
Alexandre Souvorov1, Richa Agarwala1* and David J. Lipman1,2

Abstract

SKESA is a DeBruijn graph-based de-novo assembler designed for assembling reads of microbial genomes sequenced
using Illumina. Comparison with SPAdes and MegaHit shows that SKESA produces assemblies that have high sequence
quality and contiguity, handles low-level contamination in reads, is fast, and produces an identical assembly for the
same input when assembled multiple times with the same or different compute resources. SKESA has been used for
assembling over 272,000 read sets in the Sequence Read Archive at NCBI and for real-time pathogen detection.
Source code for SKESA is freely available at https://github.com/ncbi/SKESA/releases.

Keywords: Illumina reads, De-novo assembly, DeBruijn graphs, Sequence quality, Contamination

Background
Sequence alignment, assembly, variation detection, or
some combination thereof are usually the major modules
of any bioinformatics pipeline analyzing next-generation
sequence (NGS) read data [1–6]. An important appli-
cation for microbial genome sequencing is to detect
pathogenic outbreaks in the food supply chain [7–9] and
in hospitals [10–13]. Advantages and bioinformatics chal-
lenges in using NGS for surveillance and outbreak inves-
tigations of foodborne pathogens were reviewed using
Listeria Monocytogenes as an example [14] and by citing
retrospective and real-time outbreaks [15]. Both reviews
identified de-novo assembly of NGS as a significant chal-
lenge in using the information.
A collaboration between US states, federal agencies,

and international partners to deposit foodborne bacte-
rial pathogen sequence data at the National Center for
Biotechnology Information (NCBI), referred to as the
Pathogen Detection Project (PDP), has accelerated NGS-
based investigations of outbreaks. The number of read
sets submitted for the four major species of foodborne
pathogens, namely, Salmonella, Listeria, Escherichia and
Shigella, and Campylobacter, have scaled rapidly from
44011 to 85823 to 145178 read sets in the results pub-
lished by PDP at the beginning of 2016, 2017, and 2018,

*Correspondence: agarwala@ncbi.nlm.nih.gov
1NCBI/NLM/NIH/DHHS, 8600 Rockville Pike, Bethesda, MD 20894, USA
Full list of author information is available at the end of the article

respectively. More outbreaks are now identified when
clusters are still small and fewer people are affected
[11, 16]. The dominant sequencing technology in PDP is
Illumina that has very low insertion deletion error rate
but suffers from some systematic biases and low-level
carryover contamination from earlier runs [17–20].
Several de-novo assemblers for sequence reads have

been published [21–28]. Some are specialized for ploid-
ity [29], metagenomes [30–35], single cell [36], sequenc-
ing technologies [37], or combine several assemblies into
one [38]. No assembler guarantees an “error-free” assem-
bly even for haploid genomes. In addition to microbial
genomes, haploid assemblies are of interest for special
human genome cases, such as from a hydatidiform mole
[39]. Some applications for microbial genomes, such as
PDP, rely on vertical inheritance of genomic data from
mother to daughter cell and resolve patterns of read set
clonality based on very few variations, typically less than
10 variations in a 4 Mb genome [15]. Such applications
require assemblies with very high sequence quality so that
true variations can be detected with confidence.
Assessment of assemblies using read sets generated by

sequencing machines requires a publicly available bench-
marking set that contains both the reads and a near
complete high-quality draft assembly for the same sam-
ple. FDA-ARGOS is a database developed by the Food
and Drug Administration (US FDA) [19] that consists of
regulatory grade sequences for microbes and satisfies the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-018-1540-z&domain=pdf
http://orcid.org/0000-0002-5518-9723
https://github.com/ncbi/SKESA/releases
mailto: agarwala@ncbi.nlm.nih.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Souvorov et al. Genome Biology (2018) 19:153 Page 2 of 13

benchmark requirements for assembly quality assessment
of microbial genomes.
Here, we focus on the problem of quickly computing

a high-quality de-novo sequence assembly of reads from
microbial genomes generated using Illumina sequenc-
ing technology and present our de-novo assembler called
SKESA [skee–sa] (strategic k-mer extension for scrupu-
lous assemblies). Heuristics used by SKESA are designed
to reduce the effect of low-level contamination and strand
specific errors in Illumina sequencing on the quality of
the assembly. For other sequencing technologies with high
error rates, conservative heuristics used by SKESA will
create less contiguous assemblies than those generated
by some other assemblers. SKESA can assemble genomes
larger than microbial genomes but has not been pro-
filed or compared to other assemblers for such genomes.
For example, SKESA assembles SRR7262862 (49.8 million
reads with total length 9.2 Gb) for Monilinia fructigena
and SRR6748693 (73.2 million reads with total length
18.3 Gb) forMonilinia laxawhere assemblies are∼ 40Mb
long in under 3 h with 10 cores and under 30 min with 100
cores.
Many de-novo assemblers, including SPAdes [24] and

MegaHit [35], use DeBruijn graphs and multiple k-mer
lengths during assembly. ALLPATHS_LG [40] used a
specific short insert library construction protocol where
100 bp mates overlapped by 40 bases. Using the over-
lap, they produced 160 bp merged reads but only used
96 as the largest k-mer size for their assembly. The dis-
tinguishing feature of SKESA is that it generates k-mers
that are longer than mates and up to insert size from
mini-assemblies of a subset of reads. This feature of using
longer than mate length k-mers allows SKESA to assem-
ble regions accurately that have repeats shorter than insert
size but longer than the mate length. To our knowledge,
all current assemblers, in contrast, only use k-mers up to
the size of mates.
In this manuscript, we compare SKESA to SPAdes and

MegaHit using five types of microbial test sets [41]: (i) run
time set (RTS) that has 56 read sets identified by the PDP
team, (ii) benchmark set that has 403 read sets from FDA-
ARGOS, (iii) random set that has 5000 randomly chosen
read sets from Sequence Read Archive (SRA), (iv) con-
tamination set that is a simulated set with six read sets
at different levels of contamination, and (v) substrings set
that is also a simulated set with 131 read sets at different
lengths of substrings of a reference genome. These sets
provide a total of 6044 runs for each assembly method
as each read set in the RTS set was run three times each
and on three different compute resource settings. A full
description of the test sets is given in the “Methods”
section. We chose MegaHit and SPAdes for comparison
as MegaHit is a very fast assembler and SPAdes is a ver-
satile and widely used assembler that provides options for

various technologies and sample types. Results that also
include comparison to IDBA [36] (version 1.1.1) designed
to handle uneven coverage of genome by reads and to
ABySS [28] (version 2.0.2) designed to assemble both large
and small genomes are available in supplementary mate-
rial (Additional file 1) but are not discussed in the main
manuscript as the implication of these results is same as
the one we get using MegaHit and SPAdes.
We show that for assemblies of microbial genomes,

SKESA and MegaHit are comparable in speed and signif-
icantly faster than SPAdes. SKESA can also access reads
directly from SRA and doing so is faster than reading the
input from files. Assembly quality measured by the num-
ber of mismatches per 100 Kb as computed by QUAST
[42], assembly contiguity as measured by the N50 statistic,
and deviation from the length of the reference assem-
bly show that quality of SKESA assemblies is better than
that of SPAdes and MegaHit. On the same input, SKESA
produces identical results regardless of the number of
threads, memory, or the number of times runs are done.
This is a critical requirement for production systems that
handle large volumes of data and require regression tests.
In our tests, both SPAdes and MegaHit produce different
assemblies across iterations, even for the same setting of
number of threads and memory. Therefore, SKESA meets
all the requirements for producing microbial assemblies
needed for applications such as PDP where assemblers are
required to produce assemblies that have high base level
sequence quality and contiguity sufficient for downstream
analysis, handle low-level contamination in reads, and
be fast and robust in production environments. SKESA
is currently used in production at NCBI for assembling
microbial genomes for SRA and has been incorporated
into the workflow of PDP. Software for SKESA is freely
available [43, 44] (see “Availability and requirements”) and
will also be made available in the cloud.

Results and discussion
Production usage
As of March 2018, SKESA had been used by NCBI
to assemble over 272,000 read sets available in SRA
including assemblies for Salmonella (131,581 assem-
blies), Listeria (19,718 assemblies), Escherichia (65,307
assemblies), Shigella (10,942 assemblies), Campylobacter
(32,416 assemblies), and Clostridioides (12,042 assem-
blies). These species are of importance for detecting
pathogens in the food supply chain and in hospitals.
Assemblies are publicly available in a downloadable object
for each read set from the SRA website.

Computation time
For read sets in the RTS set, Table 1 shows median wall-
clock time and distribution of wall-clock time by method
and compute resource settings where input is read from

Souvorov et al. Genome Biology (2018) 19:153 Page 3 of 13

Table 1 Run time comparison using 56 inputs in the run time set

Run time 4 cores, 16 Gb 8 cores, 32 Gb 12 cores, 32 Gb

(seconds) SKESA SPAdes MegaHit SKESA SPAdes MegaHit SKESA SPAdes MegaHit

<= 300 6 1 6 16 2 24 32 3 37

301 − 400 3 0 2 16 1 12 11 3 11

401 − 500 5 2 8 7 3 7 2 1 5

501 − 600 6 1 10 6 1 8 3 3 0

601 − 700 10 1 6 0 3 2 3 3 0

>700 26 51 24 11 46 3 5 43 3

Median 688 2303 616 359 1319 328 275 1086 240

Best of three wall-clock times is used for each input, method, and resource combination

files. For each read set R, each method M, and each
resource setting S, assembly was performed three times
and the minimum of the three wall-clock times was taken
as the time reported for that combination of R,M, and
S. Results for the median wall-clock time show that all
methods scale well with increase in compute resources.
The distribution of wall-clock time shows that MegaHit
is fastest with SKESA being a close second, but SPAdes
is substantially slower. SKESA is faster when reads are
accessed directly from SRA (data not shown).

Software robustness
SKESA and MegaHit were successful in assembling all
read sets in all test sets under all settings of compute
resources used. SPAdes did not produce an assembly for
23 out of 6044 runs. These were (i) three runs for read
set SRR1515967 in the RTS set done using 4 cores and
16 Gb memory, (ii) 18 read sets from the benchmark set
even with 100 cores and 250 Gb memory, and (iii) read
sets at k-mer length 34 and 56 in the substrings set. In
addition, assembly for 10 read sets from the random set
using SPAdes required more than 16 Gb whereas SKESA
andMegaHit were successful in assembling them with the
16-Gb memory limit.
SKESA produces the same assembly for a read set

regardless of the number of times assembly is performed,
number of cores, or memory available. The same does not
hold true for MegaHit and SPAdes. As an example, with
MegaHit, all nine runs for read set SRR2820668 in the run
time set produced the same N50 of 101,087 bp but differ-
ent number of contigs (172 to 178) and nine different sizes
of assembly (6,872,670 bp to 6,874,132 bp). An example
where SPAdes produced different number of contigs and
assembly sizes for the same read set and same settings of
resources is SRR1515967. In three runs for SRR1515967
with 12 cores and 32 Gb memory, SPAdes produced
1937 contigs with assembly size 5,553,327 and N50 of
135,184 bp, 1952 contigs with assembly size 5,555,233 and
N50 of 154,465 bp, and 1927 contigs with assembly size
5,552,535 and N50 of 115,121 bp. We note that for the 56

read sets in the RTS set, MegaHit did not produce an iden-
tical assembly in all nine runs for any of the read sets while
SPAdes did so for 12 read sets.

Sequence quality
For the benchmark set and each assembly method,
the number of misassemblies (Table 2), number of
mismatches per 100 Kb (Table 3), deviation statistics
(Table 4), and contiguity statistics (Table 5) show that
SKESA has a lower number of misassemblies, better
base level sequence correctness, lower deviation from the
length of reference, and contiguity comparable to that of
SPAdes and MegaHit.
For the contamination set, SKESA has no misassem-

blies, SPAdes has one misassembly for all inputs, and
MegaHit has one misassembly for all inputs except the
one at 15x where it has twomisassemblies. The number of
mismatches per 100 Kb (Table 3) and contiguity statistics
(Table 5) show that SKESA suffers the most in contigu-
ity when contamination level increases to 9x or above
but maintains good base level accuracy, SPAdes maintains

Table 2 Number of misassemblies in 381 inputs in the
benchmark set

Count SKESA SPAdes MegaHit

0 214 172 128

1 83 98 91

2 40 43 66

3 13 30 30

4 9 12 18

5 7 7 15

6 2 3 10

7 2 0 5

8 1 1 3

9 0 0 2

10+ 10 15 13

Median 0 1 1

Souvorov et al. Genome Biology (2018) 19:153 Page 4 of 13

Table 3 Mismatches per 100 Kb as reported by QUAST for
benchmark and contamination sets

Benchmark set

Measure SKESA SPAdes MegaHit

Median 0.08 2.76 1.89

Maximum 7.78 41.60 31.94

Average 0.40 3.21 2.79

Assembly counts in benchmark set

Mismatches range SKESA SPAdes MegaHit

0 105 1 1

0.01 − 1 247 40 80

1.01 − 2 9 76 121

2.01 − 3 9 89 58

3.01 − 4 1 71 45

>4 10 104 76

Mismatches reported in contamination set

Set SKESA SPAdes MegaHit

No contamination 0 1.44 3.83

3x contamination 0 1.42 3.21

6x contamination 0 1.44 3.02

9x contamination 0.02 1.61 4.38

12x contamination 0.02 1.52 4.96

15x contamination 0.04 1.50 5.83

contiguity at an increased rate of base level inaccuracies,
and MegaHit loses some contiguity as well as accuracy.
Table 4 shows that assembly lengths of SKESA assem-
blies have the least total deviation across all sets, that
assembly lengths of SPAdes assemblies do not depend
on contamination, and that assembly lengths of MegaHit

Table 4 Deviation of assembly length produced by the
assemblers from the assembly length of the reference as
computed using aligned length reported by QUAST and
assembly lengths for benchmark and contamination sets

Benchmark set

Measure SKESA SPAdes MegaHit

Median 2.72 10.91 5.59

Maximum 135.75 775.14 407.78

Average 4.61 57.98 24.23

Deviation in contamination set

Contamination SKESA SPAdes MegaHit

None 1.33 1.68 1.35

3x 1.36 1.68 1.33

6x 1.33 1.68 1.30

9x 1.36 1.67 1.47

12x 1.41 1.68 2.05

15x 1.44 1.68 2.96

Table 5 Contiguity for benchmark, random, and contamination
sets

Benchmark set

N50 measure SKESA SPAdes MegaHit

<= 10 Kb 14 69 19

10001 − 50 Kb 40 41 46

50001 − 100 Kb 41 56 67

100001 − 250 Kb 191 169 197

250001 − 500 Kb 77 43 48

>500 Kb 18 3 4

Median 170,647 117,340 124,833

Minimum 1832 364 687

Maximum 1,197,860 622,367 617,087

Average 195,141 131,823 146,706

N50 statistic in contamination set

Contamination SKESA SPAdes MegaHit

None 282,763 260,531 202,384

3x 282,763 260,531 202,384

6x 282,763 260,532 202,384

9x 225,630 260,531 151,916

12x 77,455 260,531 107,175

15x 42,440 260,531 65,124

Random set

N50 measure SKESA SPAdes MegaHit

<= 10 Kb 6 10 6

10001 − 50 Kb 349 206 285

50001 − 100 Kb 788 409 1516

100001 − 250 Kb 2307 2369 2889

250001 − 500 Kb 1324 1616 266

>500 Kb 226 390 38

Median 170,877 208,907 117,074

Minimum 2414 209 4182

Maximum 1,545,488 1,530,182 1,499,532

Average 213,847 255,079 136,339

assemblies become most deviant at higher levels of con-
tamination.
Contiguity statistics for the random set (Table 5) show

that all methods produce good contiguity for most sets
with SPAdes giving the best overall contiguity.
For the substrings set that has single reads, SKESA

has no misassemblies, SPAdes has nine misassemblies
for the read set generated with length 22, and MegaHit
has at least one misassembly for all read sets generated
with length 60 or above. With MegaHit, nine inputs have
two misassemblies and assembly of the read set with
longest reads has three misassemblies. SKESA also has no
mismatches while both SPAdes and MegaHit have mis-
matches as shown in Fig. 1. SKESA starts out with smallest
contiguity at short read lengths but has highest contigu-
ity at longer read lengths as shown in Fig. 2. SKESA also

Souvorov et al. Genome Biology (2018) 19:153 Page 5 of 13

Fig. 1 Substrings mismatches: mismatches per 100 Kb seen in assemblies of SPAdes and MegaHit for inputs in substrings set. SKESA has no
mismatches at any length in this set

starts out with most deviation from the reference assem-
bly length but becomes least deviant at inputs with longer
reads as shown in Fig. 3.

Read trimming
No read sets in benchmark, contamination, or substrings
set were trimmed. Only 5 out of 56 read sets in the

RTS set and 219 out of 5000 read sets in the random
set were trimmed. We compared the most frequent k-
mer marked as suspect in each of the 224 runs with
known Illumina adaptors. All five in the RTS set and
199 in the random set had AGATGTGTATAAGAGACAG
as the most frequent k-mer that is a known Illu-
mina adaptor (Nextera and others). The remaining 20

Fig. 2 Substrings contiguity: N50 for assemblies generated by SKESA, SPAdes, and MegaHit for inputs in substrings set

Souvorov et al. Genome Biology (2018) 19:153 Page 6 of 13

Fig. 3 Substrings deviation: deviation for assemblies generated by SKESA, SPAdes, and MegaHit for inputs in substrings set. We do not show values
for input length 22 where MegaHit has value of almost 100 and input length 34 and 56 for which SPAdes did not produce an assembly

included 12 that consisted of homopolymer C, 5 that
consisted of homopolymer A, one that is a TrueSeq
adaptor (AGATCGGAAGAGCGTCGTG), and one each that
were ATCAAAGGAAATGATAGCA (in SRR5221560) and
CTTTTTTGGTGCTTTAGCA (in SRR5414541). It appears
to us that the k-mers found as suspected in SRR5221560
could be from a cloning vector and confirm that a plas-
mid is not produced in SKESA assembly of SRR5414541
because of read trimming. In all read sets except
SRR5414541 and SRR5221560, there was no pattern for
the position on reads for the first k-mer marked as suspect
but in these two read sets, over 70% of the reads trimmed
were clipped at the start of the read.

Conclusions
Sequence assembly of reads for microbial genomes for
applications such as real-time pathogen detection in food-
borne and clinical samples require high sequence quality,
sufficient contiguity, and good scaling in performance
with compute resources. Reproducibility of the results is
also a critical requirement in production systems han-
dling large volumes of data, especially for public health
applications. We presented a de-novo assembler, SKESA,
that does strategic k-mer extension for scrupulous assem-
blies and achieves desired properties for the assembly
of reads from the microbial genomes sequenced using
Illumina sequencing platform. The assembly approach
utilizes DeBruijn graphs and conservative heuristics using
k-mer counts of alternate choices to decide between

extending or creating a break in the assembly. Multiple
iterations with several k-mer sizes up to the expected
length of insert size for paired reads are used to produce
the assembly. SKESA also handles presence of low-level
contamination from different samples gracefully.
We compared SKESA to two widely used de-novo

assemblers: SPAdes, a versatile assembler in the range
of sequences it can assemble, and MegaHit, a very fast
assembler. For the specific application of microbial assem-
blies SKESA was designed for, we showed that the quality
of SKESA assemblies is better than both SPAdes and
MegaHit, and its speed is comparable to MegaHit. Con-
tiguity of SKESA and MegaHit drop with increasing level
of contamination while SPAdes maintains contiguity. The
same assembly is produced by SKESA on the same input
when runs are performedmultiple times or when compute
resources provided to the runs are changed. The same
does not hold true for SPAdes and MegaHit.
Future work for SKESA includes (i) using a k-mer

histogram to make a quick assessment of whether con-
tamination in the sample is high enough to warrant no
assembly, (ii) exploring extensions to other sequencing
technologies such as nanopore that have good genome
coverage but suffer from high error rate, (iii) explor-
ing extension to diploid genomes with heterozygous sites
assembled using appropriate ambiguity code, (iv) under-
standing behavior on large genomes, and (v) adding mod-
ules to detect rare cases where read trimming removes
k-mers that can be self-assembled.

Souvorov et al. Genome Biology (2018) 19:153 Page 7 of 13

In all future work, our goal will continue to be to pro-
duce assemblies with close to perfect base level accuracy.

Methods
We present the algorithm design for SKESA, some impor-
tant implementation details, design of test sets used for
running time and assembly quality comparisons, and
command lines used for doing the runs. We compare
SKESA to SPAdes v3.11.1 and MegaHit v1.1.2. Assess-
ment of assembly quality was done using QUAST. We
attempted to use misFinder [45] and ReMILO [46] but
neither worked reliably. When misFinder or ReMILO
worked, results were similar to that of QUAST.

Algorithm design for SKESA
A flowchart describing the main modules of SKESA is
shown in Fig. 4. Other than reading input and writing out-
put, the four main parts of the SKESA algorithm are as
follows:

• Trimming of reads.
• Detection of parameters: A user should specify the

option for whether the reads are paired or single and
the compute resources available. All other
parameters are determined internally by SKESA
unless explicitly specified.

Fig. 4 SKESA flowchart: flowchart describing main steps in the
algorithm used by SKESA for assembly

• Assembly using a specific k-mer size: In each
iteration, the assembly process uses the DeBruijn
graph for that k-mer size and an empty or current set
of contigs. Multiple k-mer sizes are used. Short
k-mers can assemble low-coverage areas of the
genome while long k-mers can resolve repeats.

• Marking reads: This module decides reads that are
used up and no longer needed for future iterations.

After trimming of reads, the rest of the SKESA process
uses trimmed reads only and we overload “read” to mean
trimmed reads after this step. If input has paired reads,
after iterating using k-mers up to mate length, any read
still available for assembly has a mini-assembly performed
treating its mates as ends of contigs. Assembled reads are
used for generating three sets of k-mers that are longer
than the mate size and up to the expected insert size. No
explicit error correction of reads is done by SKESA as
the heuristics of SKESA can handle the errors in a typi-
cal illumina read set. Next, we describe each of the five
modules.

Read trimming
K-mer size of 19 is used for counting frequency of k-mers
in the read set. If a k-mer is seen in at least Vf fraction of
reads (default 0.05), it is considered suspect and used for
trimming reads. Starting from the first k-mer in a mate
and checking all consecutive k-mers, the first occurrence
of a k-mer flagged as suspect trims the rest of the mate.

Parameter detection
SKESA builds a histogram for frequency of k-mers at the
minimal k-mer length Kmin (default 21) seen in trimmed
reads. Using the histogram, it decides the peak where the
distribution around the peak likely corresponds to the
k-mers from the genome being assembled. This distribu-
tion is used to estimate the genome size G. If no peak
is detected, then 80% of the entire distribution is used
as an estimate of G. Additional peaks present and dis-
tributions around those peaks are usually due to noise,
repeats, or plasmids. For example, Figs. 5 and 6 are two
parts of the histogram for SRR2821438 generated with 21-
mers. Figure 5 shows the noise and distribution for k-mers
from the genome and Fig. 6 shows two peaks that have
much higher k-mer counts but relatively few k-mers as
compared to the distributions in Fig. 5.
To account for more noise in high-coverage read sets,

the minimum frequency count, Cmin is computed as
max(2,T/(G ∗ 50)) where T is the total length of reads.
All k-mers with count below the minimum count are
ignored in the assembly. The program also computesCmax
as max(10,T/(G ∗ 10)). Choice of k-mer lengths is made
by SKESA using Kmin, number of steps S (default 11), and
maximal k-mer length Kmax where Kmax is determined

Souvorov et al. Genome Biology (2018) 19:153 Page 8 of 13

Fig. 5Main distribution in SRR2821438: histogram for frequency of 21-mers seen in SRR2821438 with counts on X axis up to 400 and number of
21-mers with that count on Y axis

using the average of all mate lengths Aread and counts of
k-mers. Kmax is initially set to Aread. If the average count
of k-mers at currentKmax is below the desired countCmax,
then Kmax is iteratively reduced by Aread/25 bases until a
Kmax with average count of at least Cmax is found. If Kmax
is more than 1.5 times Kmin, then S − 2 additional k-mers
between Kmin and Kmax are chosen. These are odd inte-
gers that are spread evenly. Otherwise, only Kmin is used
for an assembly and a warning that iterations are disabled
is printed.
For paired runs, if the insert size I is not provided, then

it is estimated using a random sample of 10,000 reads.
An unambiguous assembly for each of these reads with
the two mates as ends of contigs is attempted using Kmin.

Fig. 6 Small distributions in SRR2821438: histogram for frequency of
21-mers seen in SRR2821438 with counts on X axis between 325 and
2000 and number of 21-mers with that count on Y axis

Using the length of reads assembled, insert size I is esti-
mated. Three additional k-mer sizes added for additional
iterations are 1.25Kmax, (1.25Kmax + I)/2 and I. The pro-
gram also uses 3I as the maximal insert size expected for
any read.

Assembling using a specific k-mer size K
All k-mers of length K with frequency at least Cmin are
generated. If a main peak in the histogram of the fre-
quency of generated k-mers is detected, the left low end
of the distribution around the main peak is called the
Valley for the iteration and only k-mers with count above
the valley are used to start new contigs. A valley is set to
zero if no main peak is found in the histogram.
At any stage, an attempt to extend an end of a contig

by the next base results in three possibilities: (i) no k-
mer extension is possible, (ii) only one k-mer extension
is possible, or (iii) there are alternate choices. In the first
case, the end of the contig has been reached and no fur-
ther extension is possible. In the second case, the contig is
extended by one base only if the extension from the new
k-mer produced by addition of the base to the previous k-
mer (last k-mer of the end of the contig) is also possible
using the same criteria used for extending from previous
k-mer to the new k-mer. In the third case, all choices with
counts below the threshold for extension (default 0.1) with
respect to the maximum counts for any choice are con-
sidered as noise and dropped. If more than one choice
for extension survives this count based filtering, potential
Illumina strand-specific systematic error signatures are
evaluated. The program does this by comparing counts
observed on both strands. If there is a choice with counts

Souvorov et al. Genome Biology (2018) 19:153 Page 9 of 13

balanced on both strands, all choices with counts seen in
predominately one strand are dropped. If more than one
choice for extension survives this strand-based filtering,
each choice is used for finding paths that are extended by
a maximum of max(100,K) steps. If only one path sur-
vives, then it is kept while others are removed as dead
ends. If more than one path survives, a contig break is cre-
ated. When a contig reaches the stage where an extension
is no longer possible, the last k-mer bases are removed to
ensure that the sequence built was verified by assembling
from both directions.
In the process of contig extension, suppose contig C is

being extended by a base b resulting in last k-mer L in C
that includes b. The program checks if L is already present
in any contig D. If no such D exists, C is extended using L.
If such a D exists and L is at the end of D, programmerges
C and D. Otherwise, C is not extended. This ensures that
no k-mer is included more than once in the assembled
contigs in the iteration for that k-mer.

Marking reads as used
After each iteration, the reads that have a k-mer located
deeper than buffer zone M inside a contig are marked
as used as they cannot contribute any new information.
Value of M is I + 50 + F where flank F is set to Kmax if
reads being removed are the input reads and not the ones
assembled as a pair for generating k-mers larger than the
mate size. Otherwise, F is set to zero.

Connecting paired reads
If input is for paired reads, after the iterations using
k-mers up to mate length, the program attempts to unam-
biguously connect reads that are not marked as used.
Starting from the last k-mer of the first mate to first k-
mer of the second mate, all paths up to maximal insert
size are assembled. Similarly, an assembly from reverse
complement of the first k-mer of the second mate to
reverse complement of the last k-mer of the first mate is
attempted. If both produce only one path and sequence is
same for both paths (except for reverse complement), the
assembled sequence is used for generating longer k-mers.
For pairs that are inside the buffer zoneM, sequence from
the contig is used for generating long k-mers.

Implementation
Dependencies
SKESA uses the freely available Boost library [47]. If direct
access to SRA is desired for retrieving reads, then the SRA
toolkit library is also needed. For k-mers, the long integer
implementation from [48] is used and is included in the
SKESA package.

K-mer counting and searching
For k-mer counting, two options are implemented. By
default, all k-mers from all reads are generated and

counted after sorting. If the memory available is not suffi-
cient to store k-mers from all reads, then a hash function
is used to determine smaller batches of k-mers to process
from all reads in several rounds. In each round, k-mers
that do not meet the threshold Cmin are discarded. The
second method uses a hash table and a Bloom filter [49]
to filter out k-mers that have counts below the threshold
Cmin. A small number of k-mers below the Cmin threshold
not detected by the Bloom filter are removed later. Gen-
erally, the method utilizing the Bloom filter consumes less
memory during the counting but the resulting hash table
is larger than the default method that uses a sorted array
for counting.
For k-mer searching, binary search is used for finding k-

mers when they are stored in a sorted array. In the second
implementation that uses a hash table, k-mer search uses
the hash function to directly find the index in the hash
table.

Multi-threading
All steps in the SKESA implementation are highly multi-
threaded. No intermediate or temporary output is gen-
erated in order to reduce the load on storage bandwidth
when runs are done with many compute nodes available.
For counting k-mers using sorting, a hash function is

used to separate generated k-mers into non-overlapping
bins. Each bin is sorted and counted by a separate thread.
The sorted and counted bins are merged afterwards. Both
the Bloom filter and hash table are implemented as lock-
free structures using compare-and-swap (CAS) hardware
operation.
The assembly process is designed not to include the

same k-mer in different contigs in the iteration for that k-
mer size. To accomplish this, each k-mer in the DeBruijn
graph has a lock-free atomic variable. When a k-mer is
used in a contig, this variable is set and that prevents any
further use of the k-mer.
During a multi-threaded operation, several threads

could start assembling the same contig from different
starting k-mers. However, at some point, they will col-
lide on a k-mer that will stop further assembly, resulting
in contig fragments. After each iteration, all assembled
sequences are analyzed and connected to each other
appropriately to account for this collision. If a contig con-
nects to itself, this is recognized and contig is marked as
circular.
Multi-threading results in random orientation of con-

tigs. Circular contigs also have random breakpoints. After
each iteration, only the contig or its reverse complement
is kept depending on which one starts with the smaller k-
mer in the lexicographic order. Each circular contig and
its reverse complement are checked for the smallest k-mer
and that k-mer is chosen as the breakpoint. All contigs
are then sorted. These steps guarantee that each iteration

Souvorov et al. Genome Biology (2018) 19:153 Page 10 of 13

starts from the same state regardless of the number of
cores and memory used for the assembly.

Output
Alphabetically sorted assembled contigs are output as
a FASTA file. Each contig is named with format Con-
tig_N_C where N is a sequential contig number starting at
one and C is the average of count for k-mers in the contig
at k-mer size Kmin. If a contig was recognized as circular,
contig name is suffixed by _Circ.

Test sets and testing criteria for comparison
Five microbial test sets were used for comparing assem-
blers: run time set covering a range of microbial species,
benchmark set where a reference assembly and reads for
the same sample are available, random set of read sets
from SRA for four microbial species, contamination set
where contamination is spiked in at different levels, and
substrings set where all substrings of a genome at various
lengths were used as input reads. We used QUAST for
computing the number of misassemblies and mismatches
per hundred kilobases of the reference assembly. Assem-
bly contiguity was assessed using N50 criteria. Assembly
length discrepancy was assessed as LR+LA−2∗CRA where
LR is the length of reference assembly, LA is the length of
assembly being tested, and CRA is the length reported as
aligned between A and R by QUAST. The composition of
test sets [41] and their use for various testing criteria are
described next.

Run time set
The run time set shown in Table 6 consists of 56 read sets
representing 34microbial species. This set was selected by
the PDP team from FDA-ARGOS available in May 2016
and publications. For running time, each read set was run
three times on three different settings of number of cores
and memory. Settings used were 4 cores and 16 Gb, 8
cores and 32 Gb, and 12 cores and 32 Gb. Runs were done
on CentoS 7.

Benchmark set

FDA-ARGOS had 403 read sets with reads sequenced
using Illumina and a good quality assembly in GenBank
in March 2018. Of these, SPAdes failed to produce an
assembly for 18 read sets. For four read sets (SRR2814770,
SRR2820671, SRR5413268, and SRR5866647), QUAST
reported more than 10 mismatches per 100 Kb for all
assembly methods. We show quality assessment results
using the remaining 381 read sets.

Random set
Four of themost common foodborne pathogen species are
Salmonella Enterica, Listeria Monocytogenes, Escherichia
coli and Shigella, and Campylobacter. From SRA, we

Table 6 Runs and species for testing running time performance

SRA run Species

SRR2820668 Achromobacter xylosoxidans

SRR2822445 Achromobacter xylosoxidans

SRR2821368 Achromobacter xylosoxidans

SRR2821369 Achromobacter xylosoxidans

SRR2823707 Bartonella bacilliformis

SRR2823715 Bordetella bronchiseptica

SRR2823716 Bordetella bronchiseptica

SRR2824043 Bordetella pertussis

SRR2822462 Citrobacter amalonaticus

SRR2818794 Citrobacter amalonaticus

SRR1284629 Citrobacter freundii

SRR2821773 Citrobacter sp.

SRR1515967 Enterobacter cloacae

SRR1576778 Enterobacter cloacae complex

SRR1576808 Enterobacter cloacae complex

SRR2822449 Enterococcus sp.

ERR008613 Escherichia coli

ERR022075 Escherichia coli

SRR530851 Escherichia coli

SRR587217 Escherichia coli

SRR2817810 Grimontia hollisae

SRR2817811 Grimontia hollisae

SRR2822309 Hafnia alvei

ERR351267 Helicobacter pylori

SRR2821438 Klebsiella aerogenes

SRR2820617 Klebsiella aerogenes

SRR2820618 Klebsiella aerogenes

SRR1501122 Klebsiella oxytoca

SRR1427234 Klebsiella pneumoniae

SRR1505904 Klebsiella pneumoniae

SRR1427243 Klebsiella pneumoniae

SRR1501128 Klebsiella pneumoniae

SRR1510963 Klebsiella pneumoniae

SRR941212 Mannheimia haemolytica

SRR2823701 Morganella morganii

SRR2822442 Pantoea agglomerans

SRR2820663 Providencia stuartii

SRR498276 Salmonella enterica

SRR2814419 Salmonella enterica

SRR2814420 Salmonella enterica

SRR2819198 Serratia liquefaciens

SRR2812569 Shigella sonnei

SRR2812570 Shigella sonnei

SRR1206476 Staphylococcus aureus

SRR2822404 Staphylococcus aureus

SRR2820641 Staphylococcus lugdunensis

SRR2820657 Staphylococcus lugdunensis

SRR2822469 Staphylococcus saprophyticus

SRR2820294 Staphylococcus saprophyticus

SRR2819094 Staphylococcus simulans

SRR2820674 Streptococcus pyogenes

SRR2815879 Vibrio fluvialis

Souvorov et al. Genome Biology (2018) 19:153 Page 11 of 13

Table 6 Runs and species for testing running time performance
Continued

SRA run Species

SRR2817447 Vibrio harveyi

SRR2818033 Vibrio mimicus

SRR2818092 Vibrio parahaemolyticus

SRR2818127 Vibrio vulnificus

randomly selected 5500 read sets from these species
sequenced on Illumina machines, sorted them by number
of bases in reads, and dropped 250 runs each with low-
est and highest base counts. The remaining 5000 reads
sets used as the random set have 3306 Salmonella, 428
Listeria, 773 Escherichia, 148 Shigella, and 345 Campy-
lobacter. These sets were used to test the contiguity of
assemblies. Runs for the random set were done in an
uncontrolled environment on compute farm.We note that
the CPU times reported by the compute farm (data not
shown) on these 5000 read sets corroborate the run time
performance presented in Table 1.

Contamination set
Paired reads were generated from Salmonella
typhimurium strain LT2 (NC_003197.1) randomly cov-
ering the genome at 60x. For adding contamination, the
same reference genome was randomly mutated at 0.1% of
the positions. Reads from the mutated genome at cover-
age of 3×, 6×, 9×, 12×, and 15× were added to the clean
set to generate six simulated sets for testing the effect
of contamination ranging from no contamination to a
fifth of the reads coming from the mutated reference. All
reads generated had mates that were 150 bp in length and
insert size of 300 bp. These sets were used for assessing
sequence quality and behavior of contiguity at different
levels of contamination.

Substrings set
Single reads were generated from Salmonella
Typhimurium strain LT2 (NC_003197.1) where for each
value of K from 22 to 152, all substrings of that length
were used as input reads for assembly. One read per base
pair of the genome was generated resulting in coverage
of K for a read set generated with substring length of K.
Substrings generated at even positions of the reference
genome were reverse complemented. As such, this test
varied length and coverage but did not introduce any
errors. These sets were used for assessing sequence
quality and behavior of contiguity at different levels of
coverage and read length.

Commands for programs
For doing the runs comparing performance of different
software, defaults were used except for parameters that
specify the number of cores and memory allowed. For

SKESA, the flag for specifying that reads are paired was
also given as appropriate. Command lines for, say, run-
ning SRR498276 for SKESA, SPAdes, and MegaHit are as
follows:
skesa --fastq SRR498276_1.fq,SRR498276_2.fq

--cores 4 --memory 16 --use_paired_ends

spades.py -1 SRR498276_1.fq -2 SRR498276_2.

fq-t 4 -m 16

megahit -1 SRR498276_1.fq -2 SRR498276_2.fq

-t 4 -m 17179869184

For SKESA, if direct SRA access is available, one can
instead do the following:
skesa --sra_run SRR498276

--cores 4 --memory 16 --use_paired_ends

For the substring set that has single reads, option
use_paired_ends is not specified for SKESA runs and
option only_assembler is specified for SPAdes runs.
For SKESA, we recommend providing 16 Gb of memory

and using defaults so it can internally tune the parame-
ters for best results. Additional options are exposed for
users who may wish to use SKESA for non-standard
applications or understand SKESA behavior.

Availability and requirements
Project name: SKESA
Source code: https://github.com/ncbi/SKESA/releases
Archived version: http://doi.org/10.5281/zenodo.1407162
Operating system: Linux
Other requirements: BOOST
License: Freely available to the public for use with
exception of bundled third party code. The third party
code contained in SKESA release is available under
GNU GPLv3. See https://github.com/ncbi/SKESA/blob/
master/LICENSE for details.

Additional file

Additional file 1: Supplementary notes, tables, and figures. (PDF 166 KB)

Acknowledgements
We thank Eugene Yaschenko and Michael Kimmelman from the SRA team at
NCBI for incorporating SKESA in their workflow. Bill Klimke, Martin Shumway,
and Mike Feldgarden from PDP team at NCBI pointed us to the FDA-ARGOS
resource and picked the assemblies from publications for run time testing. We
also appreciate the code review for an earlier version of SKESA by Alejandro
Schaffer, code building in non-NCBI environment by Alexander Morgulis, and
suggestions for improving the exposition of the manuscript by Bill Klimke,
Steve Sherry, and Paul Kitts.

Funding
This research was supported by the Intramural Research Program of the
National Institutes of Health, National Library of Medicine.

Availability of data andmaterials
The datasets generated and analyzed for comparing SKESA to other assemblers
are available at ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/skesa/datasets [41].
The SKESA source code is available on GitHub at https://github.com/ncbi/
SKESA/releases [43] and on Zenodo at https://zenodo.org/record/1407162

https://github.com/ncbi/SKESA/releases
http://doi.org/10.5281/zenodo.1407162
https://github.com/ncbi/SKESA/blob/master/LICENSE
https://github.com/ncbi/SKESA/blob/master/LICENSE
https://doi.org/10.1186/s13059-018-1540-z
https://www.ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/skesa/datasets
https://github.com/ncbi/SKESA/releases
https://github.com/ncbi/SKESA/releases
https://zenodo.org/record/1407162

Souvorov et al. Genome Biology (2018) 19:153 Page 12 of 13

[44]. SKESA source code is freely available to the public for use with exception
of bundled third-party code. The third-party code contained in SKESA release
is available under GNU GPLv3, see https://github.com/ncbi/SKESA/blob/
master/LICENSE for details.

Authors’ contributions
AS did the software development. RA did testing and assisted AS in some
design decisions. DL conceived and guided the project. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1NCBI/NLM/NIH/DHHS, 8600 Rockville Pike, Bethesda, MD 20894, USA.
2Impossible Foods, impossiblefoods.com, Redwood City, CA 94063, USA.

Received: 8 May 2018 Accepted: 12 September 2018

References
1. Lugli GA, Milani L, Cand M, van Sinderen D, Ventura M. Megannotator: a

user-friendly pipeline for microbial genomes assembly and annotation.
FEMS Microbiol Lett. 2016;363(7). https://doi.org/10.1093/femsle/fnw049.

2. Pina-Martins F, Vieira BM, Seabra SG, Batista D, Paulo OS. 4pipe4–a 454
data analysis pipeline for SNP detection in datasets with no reference
sequence or strain information. BMC Bioinformatics. 2016;17:41. https://
doi.org/10.1186/s12859-016-0892-1.

3. Lai B, Wang F, Wang X, Duan L, Zhu H. Intemap: integrated
metagenomic assembly pipeline for NGS short reads. BMC Bioinformatics.
2015;16:244. https://doi.org/10.1186/s12859-015-0686-x.

4. Wolfinger MT, Fallmann J, Eggenhofer F, Amman F. Viennangs: a toolbox
for building efficient next-generation sequencing analysis pipelines.
F1000Res. 2015;4:50. https://doi.org/10.12688/f1000research.6157.2.

5. Tritt A, Eisen JA, Facciotti MT, Darling AE. An integrated pipeline for de
novo assembly of microbial genomes. PLoS One. 2012;7(9):42304. https://
doi.org/10.1371/journal.pone.0042304.

6. Xiao W, Wu L, Yavas G, Simonyan V, Ning B, Hong H. Challenges,
solutions, and quality metrics of personal genome assembly in advancing
precision medicine. Pharmaceutics. 2016;8(2). https://doi.org/10.3390/
pharmaceutics8020015.

7. About GMI - Vision and Objectives. http://www.globalmicrobialidentifier.
org/about-gmi/vision-and-objectives.

8. Allard MW, Strain E, Melka D, Bunning K, Musser SM, et al. Practical value
of food pathogen traceability through building a whole-genome
sequencing network and database. J Clin Microbiol. 2016;54(8):1975–83.

9. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, et al. Rapid
whole-genome sequencing for surveillance of Salmonella enterica
serovar Enteritidis. Emerg Infect Dis. 2014;20(8):1306–14.

10. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Program NCS, et al. Tracking
a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with
whole-genome sequencing. Sci Transl Med. 2012;4(148). https://doi.org/
10.1126/scitranslmed.3004129.

11. Jackson BR, Tarr C, Strain E, Jackson KA, Conrad A, et al. Implementation
of nationwide real-time whole-genome sequencing to enhance listeriosis
outbreak detection and investigation. Clin Infect Dis. 2016;63(3):380–6.

12. van Duin D, Perez F, Rudin SD, Cober E, Hanrahan J, et al. Surveillance of
carbapenem-resistant Klebsiella pneumoniae: tracking molecular
epidemiology and outcomes through a regional network. Antimicrob
Agents Chemother. 2014;58(7):4035–41.

13. Katz LS, Griswold T, Williams-Newkirk AJ, Wagner D, Petkau A, et al. A
comparative analysis of the lyve-set phylogenomics pipeline for genomic
epidemiology of foodborne pathogens. Front Microbiol. 2017;8. https://
doi.org/10.3389/fmicb.2017.00375.

14. Lüth S, Sylvia K, Sascha AD. Whole genome sequencing as a typing tool
for foodborne pathogens like Listeria monocytogenes – the way towards
global harmonisation and data exchange. Trends Food Sci Technol.
2018;73:67–75.

15. Sekse C, Holst-Jensen A, Dobrindt U, Johannessen GS, Li W, Spilsberg B,
Shi J. High throughput sequencing for detection of foodborne pathogens.
Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.02029.

16. Allard MW, Bell R, Ferreira CM, Gonzalez-Escalona N, Hoffmann M, et al.
Genomics of foodborne pathogens for microbial food safety. Curr Opin
Biotechnol. 2018;49:224–9.

17. Meacham F, Boffelli D, Dhahbi J, Martin DI, Singer M, Pachter L.
Identification and correction of systematic error in high-throughput
sequence data. BMC Bioinformatics. 2011;12. https://doi.org/10.1186/
1471-2105-12-451.

18. Laehnemann D, Borkhardt A, McHardy AC. Denoising DNA deep
sequencing data-high-throughput sequencing errors and their
correction. Brief Bioinform. 2016;17(1):154–79.

19. Infectious Disease Next Generation Sequencing Based Diagnostic
Devices: Microbial identification and detection of antimicrobial resistance
and virulence markers. https://www.fda.gov/downloads/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/UCM500441.pdf.

20. MiSeq© System Guide. https://support.illumina.com/content/dam/
illumina-support/documents/documentation/system_documentation/
miseq/miseq-system-guide-for-local-run-manager-15027617-04.pdf.

21. Luo R, Liu B, Xie Y, Li Z, Huang W, et al. Soapdenovo2: an empirically
improved memory-efficient short-read de novo assembler. Gigascience.
2012;1(1):18. https://doi.org/10.1186/2047-217X-1-18.

22. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18(5):821–9. https://doi.org/10.
1101/gr.074492.107.

23. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The
MaSuRCA genome assembler. Bioinformatics. 2013;29(21):2669–77.
https://doi.org/10.1093/bioinformatics/btt476.

24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. Spades: a
new genome assembly algorithm and its applications to single-cell
sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/
cmb.2012.0021.

25. Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, et al. Allpaths
2: small genomes assembled accurately and with high continuity from
short paired reads. Genome Biol. 2009;10(10):1975–83.

26. Sommer DD, Delcher AL, Salzberg SL, Pop M. Minimus: a fast,
lightweight genome assembler. BMC Bioinformatics. 2007;8:64. https://
doi.org/10.1186/1471-2105-m.

27. Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, et al. Metamos: a
modular and open source metagenomic assembly and analysis pipeline.
Genome Biol. 2013;14(1):2. https://doi.org/10.1186/gb-2013-14-1-r2.

28. Simpson JT, Wong K, Jackman SD, et al. Abyss: a parallel assembler for
short read sequence data. Genome Res. 2009;19(6):1117–23.

29. Safonova Y, Bankevich A, Pevzner PA. dipspades: Assembler for highly
polymorphic diploid genomes. J Comput Biol. 2015;22(6):528–45. https://
doi.org/10.1089/cmb.2014.0153.

30. Kultima JR, Coelho LP, Forslund K, Huerta-Cepas J, Li SS, et al. Mocat2: a
metagenomic assembly, annotation and profiling framework.
Bioinformatics. 2016. https://doi.org/10.1093/bioinformatics/btw183.

31. Guo X, Yu N, Ding X, Wang J, Pan Y. Dime: a novel framework for de
novo metagenomic sequence assembly. J Comput Biol. 2015;22(2):
159–77. https://doi.org/10.1089/cmb.2014.0251.

32. Peng Y, Leung HCM, Yiu SM, Chin FYL. Meta-idba: a de novo assembler
for metagenomic data. Bioinformatics. 2011;27(13):94–101. https://doi.
org/10.1093/bioinformatics/btr216.

33. Afiahayati, Sato K, Sakakibara Y. Metavelvet-SL: an extension of the velvet
assembler to a de novo metagenomic assembler utilizing supervised
learning. DNA Res. 2015;22(1):69–77. https://doi.org/10.1093/dnares/
dsu041.

34. Haider B, Ahn TH, Bushnell B, Chai J, Copeland A, Pan C. Omega: an
overlap-graph de novo assembler for metagenomics. Bioinformatics.
2014;30(19):2717–22. https://doi.org/10.1093/bioinformatics/btu395.

https://github.com/ncbi/SKESA/blob/master/LICENSE
https://github.com/ncbi/SKESA/blob/master/LICENSE
http://www.impossiblefoods.com
https://doi.org/10.1093/femsle/fnw049
https://doi.org/10.1186/s12859-016-0892-1
https://doi.org/10.1186/s12859-016-0892-1
https://doi.org/10.1186/s12859-015-0686-x
https://doi.org/10.12688/f1000research.6157.2
https://doi.org/10.1371/journal.pone.0042304
https://doi.org/10.1371/journal.pone.0042304
https://doi.org/10.3390/pharmaceutics8020015
https://doi.org/10.3390/pharmaceutics8020015
http://www.globalmicrobialidentifier.org/about-gmi/vision-and-objectives
http://www.globalmicrobialidentifier.org/about-gmi/vision-and-objectives
https://doi.org/10.1126/scitranslmed.3004129
https://doi.org/10.1126/scitranslmed.3004129
https://doi.org/10.3389/fmicb.2017.00375
https://doi.org/10.3389/fmicb.2017.00375
https://doi.org/10.3389/fmicb.2017.02029
https://doi.org/10.1186/1471-2105-12-451
https://doi.org/10.1186/1471-2105-12-451
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM500441.pdf
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM500441.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/miseq-system-guide-for-local-run-manager-15027617-04.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/miseq-system-guide-for-local-run-manager-15027617-04.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/miseq-system-guide-for-local-run-manager-15027617-04.pdf
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1093/bioinformatics/btt476
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1186/1471-2105-m
https://doi.org/10.1186/1471-2105-m
https://doi.org/10.1186/gb-2013-14-1-r2
https://doi.org/10.1089/cmb.2014.0153
https://doi.org/10.1089/cmb.2014.0153
https://doi.org/10.1093/bioinformatics/btw183
https://doi.org/10.1089/cmb.2014.0251
https://doi.org/10.1093/bioinformatics/btr216
https://doi.org/10.1093/bioinformatics/btr216
https://doi.org/10.1093/dnares/dsu041
https://doi.org/10.1093/dnares/dsu041
https://doi.org/10.1093/bioinformatics/btu395

Souvorov et al. Genome Biology (2018) 19:153 Page 13 of 13

35. Li D, Luo R, Liu CM, Leung CM, Ting HF, et al. Megahit v1.0: A fast and
scalable metagenome assembler driven by advanced methodologies
and community practices. Methods. 2016. https://doi.org/10.1016/j.
ymeth.2016.02.020.

36. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler
for single-cell and metagenomic sequencing data with highly uneven
depth. Bioinformatics. 2012;28(11):1420–8. https://doi.org/10.1093/
bioinformatics/bts174.

37. Shelton JM, Coleman MC, Herndon N, Lu N, Lam ET, et al. Tools and
pipelines for bionano data: molecule assembly pipeline and fasta super
scaffolding tool. BMC Genomics. 2015;16(1):734. https://doi.org/10.1186/
s12864-015-1911-8.

38. Wences AH, Schatz MC. Metassembler: merging and optimizing de novo
genome assemblies. Genome Biol. 2015;16:207. https://doi.org/10.1186/
s13059-015-0764-4.

39. Steinberg KM, Schneider VA, Graves-Lindsay TA, Fulton RS, Agarwala R,
et al. Single haplotype assembly of the human genome from a
hydatidiform mole. Genome Res. 2014;24(12):2066–76.

40. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, et al.
High-quality draft assemblies of mammalian genomes from massively
parallel sequence data. Proc Natl Acad Sci USA. 2011;108(4):1513–8.

41. Souvorov A, Agarwala R, DJ L. SKESA Data.
http://ftp.ncbi.nlm.nih.gov/pub/agarwala/skesa/datasets.

42. Gurevich A, Saveliev V, Vyahhi N, Tesler G. Quast: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29(8):1072–5. https://doi.
org/10.1093/bioinformatics/btt086.

43. Souvorov A, Agarwala R, DJ L. SKESA Source Code; GitHub 2018. https://
github.com/ncbi/SKESA/releases.

44. Souvorov A, Agarwala R, DJ L. SKESA Source Code; Zenodo 2018. https://
zenodo.org/record/1407162.

45. Zhu X, Leung HCM, Wang R, Chin FYL, Yiu SM, et al. Misfinder: identify
mis-assemblies in an unbiased manner using reference and paired-end
reads. BMC Bioinformatics. 2015;16:386. https://doi.org/10.1186/s12859-
015-0818-3.

46. Bao E, Song C, L L. Remilo: reference assisted misassembly detection
algorithm using short and long reads. Bioinformatics. 2018;34(1):24–32.

47. BOOST C++ Libraries. https://www.boost.org/.
48. Drezen E, Rizk G, Chikhi R, Deltel C, Lemaitre C, et al. Gatb: Genome

assembly & analysis tool box. Bioinformatics. 2014;30(20):2959–61.
49. Putze F, Sanders P, Singler J. Cache-, hash-, and space-efficient bloom

filters. J Exp Algorithmics. 2009;14. https://dl.acm.org/citation.cfm?doid=
1498698.1594230.

https://doi.org/10.1016/j.ymeth.2016.02.020
https://doi.org/10.1016/j.ymeth.2016.02.020
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1186/s12864-015-1911-8
https://doi.org/10.1186/s12864-015-1911-8
https://doi.org/10.1186/s13059-015-0764-4
https://doi.org/10.1186/s13059-015-0764-4
https://www.ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/skesa/datasets
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/bioinformatics/btt086
https://github.com/ncbi/SKESA/releases
https://github.com/ncbi/SKESA/releases
https://zenodo.org/record/1407162
https://zenodo.org/record/1407162
https://doi.org/10.1186/s12859-015-0818-3
https://doi.org/10.1186/s12859-015-0818-3
https://www.boost.org/
https://dl.acm.org/citation.cfm?doid=1498698.1594230
https://dl.acm.org/citation.cfm?doid=1498698.1594230

	Abstract
	Keywords

	Background
	Results and discussion
	Production usage
	Computation time
	Software robustness
	Sequence quality
	Read trimming

	Conclusions
	Methods
	Algorithm design for SKESA
	Read trimming
	Parameter detection
	Assembling using a specific k-mer size K
	Marking reads as used
	Connecting paired reads

	Implementation
	Dependencies
	K-mer counting and searching
	Multi-threading
	Output

	Test sets and testing criteria for comparison
	Run time set
	*3ptBenchmark set
	Random set
	Contamination set
	Substrings set

	Commands for programs

	Availability and requirements
	Additional file
	Additional file 1

	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

