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Timing somatic events in the evolution

of cancer

Clemency Jolly' and Peter Van Loo'*"

Abstract

Cancer arises through the accumulation of somatic
mutations over time. An understanding of the sequence
of events during this process should allow both earlier
diagnosis and better prediction of cancer progression.
However, the pathways of tumor evolution have not yet
been comprehensively characterized. With the advent of
whole genome sequencing, it is now possible to infer the
evolutionary history of single tumors from the snapshot
of their genome taken at diagnosis, giving new insights
into the biology of tumorigenesis.

Introduction: the evolution of cancer as a
multistage process over time
The risk of developing cancer increases steadily through-
out an individual’s lifetime, rising steeply from middle
age onwards. In the 1950s, Armitage and Doll [1] pro-
posed that the observed trends in cancer incidence
would be consistent with the progression of carcinogen-
esis through a series of six or seven sequential cellular
aberrations. The cumulative effect of mutations during
cancer development then went on to be explicitly dem-
onstrated in seminal work on retinoblastoma, in which
two mutational events are required to initiate tumor for-
mation, inspiring Knudson’s “two-hit” hypothesis [2]. By
the late 1970s, an overall picture of cancer development
was beginning to emerge, formalized in the clonal model
of tumor evolution proposed by Nowell [3], which is still
widely accepted today. Essentially, the evolution of can-
cer may be considered as a Darwinian process; muta-
tions randomly accumulate in the genomes of normal
cells and, where advantageous, result in clonal expan-
sions as a product of natural selection [4].

In the last few decades, key genes have been identified
that are frequently aberrated in the cancer genome, either
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through traditional molecular genetics approaches or
more recently from next-generation sequencing [5-7]. Lit-
tle is known, however, of the timing of somatic mutations,
or the order in which they occur during tumor evolution.
In 1990, Fearon and Vogelstein [8] were the first to ad-
dress this question in a landmark study of colorectal
tumors, charting the acquisition of point mutations and
copy number changes during the progression from normal
epithelial tissue to carcinoma and metastatic disease. Since
this work, others have attempted to reconstruct similar
pathways of tumor evolution for other tissue types using
the same approach, typically by comparing the genomic
aberrations present in different tumor samples, either
between precursor lesions and the resulting tumors, or
across cohorts of patients with different stages of disease
[9-12].

In recent years, such cancer progression analyses have
been further advanced by the application of mathematical
models such as oncogenetic trees and directed acyclical
graphs [13]. Cancer genome sequencing, however, now
allows a much more direct study of tumor evolution
within single patients from temporally or spatially sepa-
rated samples [14—16]. Furthermore, the development of
algorithms for reconstructing a tumor’s evolutionary his-
tory has made it possible to infer the timing of specific
mutations, and to characterize a sequence of events, from
whole genome sequencing of single biopsies [17].

Deciphering the temporal sequence of events as can-
cers develop and progress is essential for a comprehen-
sive understanding of tumorigenesis, and for identifying
the earliest events in tumor evolution. This may provide
markers for faster diagnosis and treatment, as well as
improving our ability to predict cancer progression.
Here, we review the various approaches for examining
tumor evolution, including current methodologies for
timing mutations, and describe how this has advanced
our understanding of tumor biology.
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Timing events across multiple tumor samples
Taking multiple samples of a tumor, separated either in
space or time, provides the most direct approach for
studying tumor evolution. By comparing the cancer gen-
ome at different stages of development, one can immedi-
ately observe a sequence of events as the cancer
progresses. Much information can already be gained
from each sample, as sequencing data, both whole gen-
ome and exome, contain a detailed catalogue of the
somatic mutations that the cancer genome has acquired.
Furthermore, the underlying clonal architecture of the
bulk tumor sample can be inferred from the variant
allele frequency (VAF) of somatic point mutations
[17, 18], which itself gives insight into the earlier and
later stages of evolution. Clonal mutations common
to all sampled tumor cells must precede subclonal
mutations, which are only present in a fraction of the
sampled tumor cells. Thus, differences in the muta-
tional profiles, or changes in the clonal composition
of separate tumor samples, reveal how the cancer is
developing over time [19, 20].

It can be informative to examine differences in the
cancer genome at key stages during tumor progression,
for example by comparing primary tumors with metasta-
ses, samples taken upon relapse, or with their precursor
lesions. Many studies have compared the genomes of
primary tumors with their corresponding metastases,
often observing substantial evolutionary change accom-
panying the spread of disease, with metastases accumu-
lating new mutations in addition to those they have
carried forward from the original tumor [21-29]. These
metastasis-specific mutations give insight into the final
phases of tumor evolution, as the tumor cells move from
the primary site and begin to develop in a new tissue.

In breast cancer, for example, the enrichment of JAK2
and STAT3 mutations in distant metastases relative to
the primary tumor suggests their involvement in facili-
tating tumor progression and dissemination [28]. Specif-
ically, these genes encode components of the JAK-STAT
signaling pathway, which has been suggested to allow
advanced metastatic tumors to evade the immune re-
sponse [28]. In a recent large-scale study of clear-cell
renal carcinoma [29], chromosomal aberrations were
shown to play an important role in the process of metas-
tasis; specifically, losses of 9p and 14q, which potentially
drive metastasis through the interaction between
CDKN2A (located on 9p) and HIFIA (14q). Similar stud-
ies of metastases from prostate [24, 25], skin [27], and
pancreatic tumors [26], as well as metastases to the
brain from various organs [23], have identified an
enrichment of alterations to TP53 and androgen recep-
tor genes, B-catenin (CTNNBI), CCNEI, and MYC, and
perturbation of the PI3K/AKTmTOR and HER2/EGFR
signaling pathways, respectively.
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Samples taken from primary and recurrent tumors
give similar insight into the genomic changes accom-
panying tumor progression, either in response to, or in
the absence of, treatment [30-33]. Where tumors have
been treated with chemotherapy, this allows the
characterization of events that have occurred in the
course of subsequent tumor evolution, and which may
have conferred therapeutic resistance. For instance,
Patch et al. [34] observed relapse-specific lesions, includ-
ing BRCA reversions, methylation changes, and pro-
moter fusion events, contributing to a platinum-resistant
phenotype across a cohort of ovarian cancers. Further-
more, taking multiple samples as a time series through-
out the course of a patient’s disease progression allows a
particularly fine-grained study of tumor evolution.
Applying this rationale, Schuh et al. [14] took five time
points each from three patients with chronic lympho-
cytic leukemia, typically before or after new courses of
treatment. This allowed them to precisely track clonal
evolution over time, monitoring the dynamics of subclo-
nal cellular populations in response to treatment, and
identifying putative founder events based on their fre-
quency across the time series.

Looking towards the initial stages of tumorigenesis,
comparisons between primary tumors and their corre-
sponding precursor lesions [35-40], or even normal tis-
sue [41], give insight into the very earliest cellular
aberrations. This is an informative transition point in
the evolution of a tumor, as the events common to both
precursor and primary lesions may be examined for can-
cer progression risk markers, while those seen only in
the tumor samples may represent events that are trans-
formative to normal cells. Where it is possible to identify
mutations in the normal tissue of healthy patients, cor-
responding to the tissue type of a given tumor, further
distinction may be made between specific driver muta-
tions, and the random passenger events that accumulate
as a function of age [38].

Precursor lesions with paired primary tumors have
been studied across various tissue types, including
germ-cell [35], endometrial [36], and skin tumors [37],
as well as hematological malignancies [30]. One of the
best characterized examples of precursor lesions leading
to tumor formation is Barrett’s esophagus, a condition
caused by chronic acid reflux, conferring an increased
risk of esophageal adenocarcinoma [39, 40]. Studies of
Barrett’s esophagus compared with esophageal adenocar-
cinoma show that the process of neoplastic transform-
ation is highly heterogeneous. Large numbers of
mutations have been observed in precursor lesions and
the resulting tumor, both largely dominated by C> A
transversions, of which varying fractions are shared [39].
From precursor lesions, mutations in tumor suppressors
such as TP53 have been identified as early events, as
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they are common across biopsied regions of the esopha-
gus and present prior to whole genome duplication. On
the other hand, oncogenic activating mutations occur
later, suggesting that these are amongst the subsequent
steps required for the transformation of Barrett’s esopha-
gus to an invasive adenocarcinoma [40].

As it may not always be possible to obtain repeated
samples from a single patient, examining multiple
regions from a single biopsy can give an alternative
insight into tumor evolution, as one can infer a temporal
sequence of events from their spatial distribution across
the tumor. Furthermore, the phylogenetic trees of cancer
evolution reconstructed from multiple regions of a single
sample can incorporate much more detail than those
from a single biopsy, which may miss subpopulations
only present in certain regions of the tumor. Similar to
serially acquired samples, multiregion sequencing allows
the comparison of shared and private mutations between
tumor regions to determine the ordering of events in
cancer development [15, 16, 42—44]. For example, across
100 non-small-cell lung cancers, Jamal-Hanjani et al.
[15] observed early clonal driver mutations in canonical
driver genes such as EGFR, MET, and BRAF in adeno-
carcinoma, NOTCHI in squamous cell carcinoma, and
mutations in T7P53 common to both cancer types. Late
clonal and subclonal mutations, on the other hand,
tended to have a wider variability, encompassing many
genes involved with chromatin remodeling and DNA
repair pathways.

Studies of multiple tumor samples can, therefore, give
a detailed picture of the tumor genome and the chan-
ging dynamics of clonal populations. They are, however,
typically limited to small sample sizes, particularly for
solid tumors that are difficult to sample repeatedly,
which means that it is not possible to extract general
trajectories of evolution for a cancer type as a whole.
Additionally, it is often financially impractical to apply
whole genome sequencing to many samples across a
number of patients in a cohort, and a compromise must
often be sought by targeted or whole exome sequencing,
which does not provide a complete picture of the tumor
genome.

Single cell sequencing also represents a powerful
approach for resolving intratumor heterogeneity and for
investigating the later stages of tumor evolution [45—47].
Bulk tumor sequencing data do not have sufficient reso-
lution for the detection of very low allele frequency
mutations, and so one cannot characterize the very
outermost branches of the phylogenetic tree. Single cell
sequencing technologies, often in parallel with bulk
sequencing experiments, now permit genotyping or call-
ing of point mutations, large copy number aberrations,
and structural variants in individual cells [48-51], which
allows the creation of previously unattainable, highly
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detailed phylogenetic trees [52]. Although still at rela-
tively early stages, such techniques are already providing
key insight into the modes of tumor evolution. Single
nucleus sequencing of triple-negative breast cancers, for
example, has shown clonal dynamics consistent with
early catastrophic copy number alterations, followed by
long periods of evolutionary stasis, which would indicate
a punctuated rather than gradual process of evolution in
this tumor type [53].

Reconstructing a tumor’s evolutionary past from a
single sample

Even when only one tumor sample may be obtained,
there can still be plenty of information in the sequencing
data to allow the inference of an order of events during
tumor development. As discussed above, point muta-
tions may be classified as clonal or subclonal based on
the fraction of cancer cells that bear the mutation, and it
is inferred that clonal mutations precede those that are
subclonal. Furthermore, clonal mutations within regions
of clonal chromosomal gains may be temporally divided
into those that have occurred before the gain, and those
that have occurred after [54, 55]. This relationship
between point mutations and the surrounding copy
number can be inferred from the variant allele frequency
of the mutation, after taking into account the tumor
purity and copy number to obtain the number of chro-
mosomes carrying the mutation [18]. Mutations on two
alleles must already have been present and were dupli-
cated with the surrounding region (termed “early”),
whereas those on a single allele must either have hap-
pened afterwards (termed “late”) or occurred on a non--
duplicated allele (see Fig. 1).

Thus, it is possible to estimate the relative timing of
individual mutations during the clonal phase of tumor
evolution. Timed mutations within clonal copy number
gains can then be used to estimate when the gain itself
occurred, calculated from the rates of early and late mu-
tations (see Box 1) [54]. If there are very many muta-
tions carried by two alleles, and few carried by a single
allele, this suggests that point mutations accumulated in
this region over a longer period of time prior to the gain,
which happened towards the end of clonal evolution.
Conversely, if the majority of mutations are only carried
by a single allele, this indicates that, proportionally, the
gain occurred earlier in clonal tumor evolution. It is
important to note that this approach does not assume a
constant mutation rate, and thus time estimates corres-
pond to “mutational time”, i.e., the timing of the gain in-
dicates its relative position compared with point
mutations.

In recent years, algorithms have been developed to im-
plement this concept, using either a partial or full maxi-
mum-likelihood approach to first estimate the copy
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Fig. 1 Timing copy number gains using point mutations. The relationship
between point mutations and surrounding copy number gains can be
used to infer the time of the gain. a Timing copy-neutral loss of
heterozygosity (CNLOH). Blue mutations occurred prior to the
CNLOH event, orange mutations occurred afterwards on either
chromosome. b Gains of a single allele, where the other is retained, are
more complex because single copy mutations can reflect both mutations
that have occurred since the gain, and those on the non-duplicated

allele (yellow)

number of individual mutations, and then to use them
to estimate the timing of chromosomal gains [56, 57].
As the number of chromosomes in existence at each
stage of clonal tumor evolution must be accounted for
when determining the mutation rate (see Box 1), it is
important to be able to model the exact sequence of
events during the acquisition of the chromosomal gain,
and therefore simple gains lend themselves more easily
to this approach. As suggested by Purdom et al. [56],
these include regions of copy-neutral loss of heterozy-
gosity (CNLOH), gains of a single allele, and double
gains of a single allele. Whole genome duplication
(WGD) events may be considered as an exceptional case,
as one assumes that both alleles are gained simultan-
eously, although inevitably, on occasion, this will not
hold true. As a caveat, it should be noted that only gains
may be studied using this method; the mutations
required to time chromosomal losses are lost with the
chromosome itself.

Applying this approach to cancer genomes therefore
gives insight into the timing of chromosomal gains, and
the relative ordering of mutations, during the clonal
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evolution of a tumor, potentially highlighting the differ-
ent mechanisms underpinning tumor development. For
example, Nik-Zainal et al. [17] used this approach to
time chromosomal gains during the evolution of 21
breast cancers. This study demonstrated that copy
number gains are unlikely to be the first event during
the evolution of breast cancer, but accumulate over
time, with most gains occurring after the first 15—
20% of mutational time. The quantitative time esti-
mates of clonal duplications could then be integrated
with the corresponding relative timing of other
events, such as amplifications of ERBB2, MYC, and
CCNDI, and punctuated events such as chromothrip-
sis, recapitulating the sequence of events throughout
clonal evolution for this cohort of breast cancers [17].
Similarly, in pancreatic adenocarcinoma, the timing of
mutations and copy number alterations (CNAs) rela-
tive to genome doubling shows that there is a pro-
longed period of mutational time prior to the
duplication event, possibly during states of preinvasive
disease, which suggests that subsequent copy number
gains accompany transformation [58].

Box 1: Deriving time estimates for the acquisition of
copy number gains using point mutations

Copy number gains may be timed using point mutations that
have accumulated within the gained region [54, 56]. Clonal
tumor evolution may be split into time before the chromosomal
gain (1) and time after the gain (1), with 1o+ 1, = 1. During 1,
X mutations occur per chromosome copy, while during Ty, y
mutations occur per chromosome copy. Therefore, g may be
calculated as the fraction of mutations before the gain, out of
the total mutations, i.e., x/(x + y). In regions of copy-neutral loss
of heterozygosity, accounting for the number of chromosomes
present during each stage, the observed mutations on two
chromosomes (CN2) = x, while single copy mutations (CN1) = 2y.
Put another way, the mutations before the gain (x) = CN2, and
the mutations after the gain (y) = CN1/2. Therefore, 1y may be

estimated as:
mo = CN2/(CN2 + (CN1/2))

In regions of single gains, where the non-duplicated allele is
retained, o is still calculated in the same way x/(x + ). Now,
CN2 still represents x (mutations before the gain), but CN1 is the
total of post-duplication mutations on the gained allele, pre-
duplication mutations on the non-gained allele, and post-
duplication mutations on the non-gained allele, i.e, 2y +x+y.
Or, x=CN2, and y=(CN1 - CN2)/3. In this case, o may be esti-
mated as:

7o = CN2/(CN2 + (CN1 — CN2)/3)).
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Mutational timing is, therefore, dependent on suffi-
cient numbers of point mutations, which can be
problematic, particularly in cancers with low mutation
rates. In cases of WGD, however, the total number of
point mutations and smaller CNAs across the entire
genome provide ample information for calculating
time estimates. This is a significant event in the evo-
lution of cancer, as it provides double the raw mater-
ial for natural selection to shape, allowing cells to
achieve aneuploid states that would otherwise not be
tolerated. Therefore, the timing of WGD events dur-
ing tumor evolution is of key importance. Clonal
WGD events show variable timing between cancer
types; they appear to be late in the evolution of
breast cancer [28] and earlier in others, such as colo-
rectal cancer, where it is thought they are the first
step in the development of more complex genomic
karyotypes, driving disease progression and adversely
affecting survival outcomes [59].

Pan-cancer, studies of WGD timing across The Can-
cer Genome Atlas dataset have demonstrated that the
timing of genome doubling relative to both single nu-
cleotide variants (SNVs) and small CNAs is earlier in
cancer types with more frequent doubling events,
such as ovarian, bladder, and colorectal cancer, com-
pared with those with fewer genome doubling events,
such as glioblastoma and clear cell renal carcinoma
[60]. This reinforces the idea that, in some cancer
types, a tetraploid state is an important milestone for
subsequent genomic aberration, whereas in others it
is perhaps a product of the accumulation of other
CNAs and the loss of DNA maintenance and repair.

In summary, by using the relationships between
somatic events it is possible to extract timing of
events during tumor evolution from single samples.
However, these approaches have only been applied to
relatively small cohorts of individual cancer types, and
there is still much to be learnt from exploring more
general patterns of tumor evolution, pan-cancer.

Aggregating timing estimates from single
samples across cohorts
Cancer evolution is inherently stochastic and, as such,
tumor samples within a cohort will have inevitably
acquired different sets of mutations, often over differ-
ent timescales. Thus, the underlying somatic pathways
of tumor evolution can be difficult to observe by tim-
ing individual events in separate samples. Neverthe-
less, aggregating temporal relationships between
events across a cohort does allow the inference of a
common ordering, even where this is not explicitly
observed in the data.

This was, in fact, the approach of Fearon and Vogelstein,
in their canonical study of the evolution of colorectal
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cancer [8]. At the most basic level, the temporal ordering of
somatic mutations can be inferred from their frequency
across a cohort, with samples from various stages of tumor
progression; events that are shared by all samples may be
considered to have been acquired early, and those which
are common only to a subset of more advanced disease
stages are assumed to be late events. In more recent years,
studies have developed this concept further with the appli-
cation of graph models in which partial orderings are
obtained through the aggregation of genotypes for specific
mutations across multiple samples [61-63]. A caveat of
these approaches is that the frequency of a mutation cannot
always be used as a proxy for the time of its occurrence
and, in these cases, the assumptions underlying such
models may be considered invalid.

More recent studies have made use of the inferred
timing of mutations within samples, for example the
distinction between clonal and subclonal events,
aggregating this information using a sports statistics
approach, such as the Bradley—Terry model [64—66].
This type of model is typically applied to the ranking
of sports teams within a tournament; teams play
against one another, the outcome of which is used to
determine an overall ranking from best to worst (see
Fig. 2). In the case of cancer genomes, mutations that
occur together in one sample can be timed relative to
one another, and these pairwise comparisons are
aggregated to give an overall ordering of somatic
events for a specific cohort or cancer type. In myelo-
dysplastic syndromes, this approach has been used to
order mutational events and the underlying pathways;
initial mutations are often in genes involved with
RNA splicing or DNA methylation, and relatively later
or subclonal mutations are more likely to affect chro-
matin modification or signaling [64]. Applied to pros-
tate cancer [66], early events in ETS" tumors include
TMPRSS2-ERG fusions and gain of chromosome 8§,
while losses of chromosomes 5, 13, and 6 are
predicted to be the first in the ETS™ subtype,
followed by losses of chromosome 2 and gains of
chromosomes 3 and 7. In both, homozygous deletions
are amongst the last events.

This type of timing analysis should give more reli-
able rankings of somatic mutations during evolution,
as the relative timing of clonal and subclonal muta-
tions gives a definite ordering within samples. To
date, however, these models have only been applied
to a limited number of cancer types and have yet to
be validated, for example with time series data.

Timing the activity of mutational processes

Somatic mutations acquired throughout the course of
tumor evolution are the result of a diverse range of muta-
genic forces shaping the genome. Next-generation
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Fig. 2 Aggregating the relative timing of events across samples.
Once the timing of events within single samples has been established,
partial orderings may be aggregated across a cohort to determine an
average sequence of events. a Example phylogenetic trees which may
be reconstructed from tumor life history analyses. Mutations A-D are
highlighted on the tree based on their clonal frequency. b The outcome
of pairwise comparisons between events within each sample, with the
“winner” being the earliest event. Comparisons marked “NA" indicate
cases where both events are present, but cannot be timed relative to
one another. The final ordering: A and C cannot be timed against one
another, but win against every other event, indicating that they are the
earliest. B has an intermediate ranking, often earlier than D, but never
before C or A. D is estimated to be last, as it only once wins a
comparison (with B)

sequencing provides a catalogue of the total somatic
mutations acquired by a tumor, which acts as a record of
the mutational processes operative throughout its evolu-
tionary past [67]. In a landmark study in 2013, Alexandrov
et al. [68] extracted signatures of these mutational pro-
cesses from a set of five million mutations across 7000
tumors from The Cancer Genome Atlas. Mutations are
defined according to their trinucleotide context, generat-
ing 96 mutational features to which non-negative matrix
factorization was applied. This resulted in the definition of
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30 mutational signatures, each one comprising varying
proportions of the 96 features. In many instances, these
signatures generated mutational profiles reflecting known
biological processes. For example, Signature 4 is largely
composed of strand-biased C to A transversions, which
likely derive from transcription-coupled nucleotide exci-
sion repair of bulky DNA adducts caused by tobacco
smoking [68—70].

Mutational influences on the genome change through-
out tumor evolution (see Fig. 3). Some processes are
inherent to all cells and operate constantly, whereas
other processes fluctuate as cells are exposed to exogen-
ous mutagens, or as DNA repair processes lose function-
ality through mutation. The timing of individual point
mutations based on clonality and copy number, as
described previously, provides one way to study these
fluctuations, as the underlying mutational signatures can
be extracted from groups of timed mutations [17]. This
can be done using one of a number of algorithms devel-
oped in recent years for determining the active signa-
tures of mutational processes in separate tumor cohorts;
either by re-computing cohort-specific signatures de
novo (which may be compared to those established by
Alexandrov et al.) [71], or by quantifying the signatures
as described in COSMIC [72, 73]. The latter methods
have employed both multiple linear regression [74] and
probabilistic approaches, based on the expectation-maxi-
mization (EM) algorithm [75].

A complementary technique for extracting temporal
patterns of mutational signature activity, developed by
Rubanova et al. [76], bins mutations using a sliding win-
dow approach, first ordering mutations by their cancer
cell fraction and then extracting the signatures of muta-
tional processes from sets of 400 mutations. The advan-
tage of this method is that is does not rely on the
dependency between point mutations and copy number,
or the definitions of clonal and subclonal, to estimate
signature changes over time.

In breast cancer, the timing of mutational processes
has demonstrated that a signature dominated by C to
T mutations at CpG loci, now defined as Signature 1,
plays an important role in the acquisition of early
mutations and likely corresponds to spontaneous de-
amination of 5-methyl cytosine, with a more diverse
range of mutational spectra taking over in the later
and subclonal stages of tumor evolution [17]. In lung
cancer, Signature 4 was shown to be active in the
early stages of tumor development, but decreased
over time, eventually to become superseded by Signa-
tures 2 and 13 (derived from APOBEC-mediated mu-
tagenesis) later in tumor evolution [15, 55]. Thus, it
appears that, in the early stages of tumor develop-
ment, mutations largely derive from intrinsic cellular
processes, such as the deamination of methylated
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Fig. 3 The changing activity of mutational processes during cancer evolution. Mutational forces that operate on the cancer genome are active
over different timescales, with varying intensities. A schematic timeline indicates how they correspond to events in a patient’s lifetime.
Spontaneous deamination (purple) is operative from the fertilized egg,
to mutagens may also be constant, such as UV light (blue), or transient, such as smoking (red). Tumor-specific processes, such as APOBEC-mediated
mutagenesis, become dominant as the tumor develops (yellow) and, finally, the mutational imprint of chemotherapy (green) may be observed in the
final few years before sequencing. SNV single nucleotide variant, WGD whole genome duplication

expansion

and is thought to remain relatively constant over time. Exposures

cytosine, or from exposure to mutagenic agents such
as those found in tobacco smoke. As cancer pro-
gresses, the activation of tumor-specific mutational
forces, such as the AID/APOBEC cytidine deaminases
or defective mismatch repair, contributes proportion-
ally more to the increasing mutational load. This may
reflect both the increased deregulation of DNA main-
tenance and repair processes, but also the growth of
the tumor away from the initial source of mutation.

Deciphering the trajectories of cancer evolution

Computational methods developed in recent years are
allowing unprecedented insight into the evolution of
cancer from next-generation sequencing data: character-
izing clonal dynamics, the timing of mutations, and the
changing activity of mutational processes. Various sam-
pling strategies provide complementary approaches for
studying the cancer genome, and converge on similar
trajectories of evolution. Early events may be defined in
various ways: by their presence in precursor lesions,
their clonality across different tumor time points or
regions, or by their timing relative to other genomic
events. Consistently early drivers have been observed
in numerous cancer types, and include canonical
driver mutations such as TP53, EGFR, BRAF, PIK3CA,
etc. [15, 17, 40, 55]. There is more diversity in the
later stages of evolution, represented by relapse/
metastasis-specific events, events occurring after
doubling, or subclonal events. These include events
related to treatment, such as platinum-resistance
mutations in ovarian cancer [34], to the process of
metastasis (JAK2, STAT3 in the breast) [28], or more
general alterations such as mutations to chromatin

remodeling pathways observed in myelodysplasia [64],
or the activation of oncogenes in the development of
esophageal cancer [40].

Multisample studies provide a direct approach for
observing tumor evolution, with higher resolution for
reconstructing tumor phylogenies, but exome or
targeted sequencing may not always be suitable for ana-
lyses requiring large numbers of single nucleotide vari-
ants, such as the mutational timing of gains. As was
recently discussed [77], the ideal approach may be to
take multiple regions of individual tumors, each with
deep sequencing data, although currently this is not
widely available. Single samples represent a limited
region of the tumor; nevertheless, they can be much
more easily obtained, and still provide a wealth of in-
formation about a tumor’s life history. These analyses
are becoming increasingly widespread when studying
the tumor genome, and are giving novel insights into
the process of tumorigenesis. In the coming years,
applying these algorithms to larger datasets should
continue to expand our understanding of this process.

To further the clinical relevance of the derived tim-
ing of mutations, it would be desirable to know when
they occur in real time during a patient’s lifetime. To
achieve this, one would need to calibrate time esti-
mates with a molecular clock that is constant
throughout normal somatic growth and tumor evolu-
tion. One proxy for this is simply the overall muta-
tion burden, which has been shown to correlate with
patient age at diagnosis, at least in certain tumor
types. This approach allowed the real-time timing of
WGD and the emergence of the MRCA in clear cell
renal carcinoma, placing these major events many
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years before diagnosis [78]. Intriguingly, in many tis-
sues, it is the number of mutations generated by mu-
tational Signatures 1 and 5 that appear to correlate
best with patient age at diagnosis [79]. The etiology
of Signature 1 is considered to be established as
spontaneous deamination of methylated cytosines, and
is therefore characterized by a high proportion of C
to T transitions in a CpG context. However, little is
known about Signature 5, which comprises low pro-
portions of most of the 96 mutational features. It
appears to be associated with DNA damage from ex-
ternal mutagens, particularly when nucleotide excision
repair is deficient, but the underlying mechanism and
the interplay between these factors has yet to be elu-
cidated [80]. Thus, Signature 1 may be extracted
clearly from other mutation types, and provides a
suitable candidate for a real-time mutational clock.

A greater understanding of the temporal sequence of
events leading up to tumor formation should allow bet-
ter prediction of cancer progression, and identification
of the earliest, potentially transformative mutations.
These events may represent the first steps towards can-
cer, and so could be used as biomarkers for earlier diag-
nosis, and possible targets for treatment. In the early
stages, however, few cells will bear the genomic lesion,
and so it remains a challenge for the future to identify
these pre-malignant populations and separate them from
normal cells.
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