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Background: Diverse molecular alterations associated with smoking in normal and precursor lung cancer cells have
been reported, yet their role in lung cancer etiology remains unclear. A prominent example is hypomethylation of
the aryl hydrocarbon-receptor repressor (AHRR) locus, which is observed in blood and squamous epithelial cells of

Results: Using a novel systems-epigenomics algorithm, called SEPIRA, which leverages the power of a large RNA-
sequencing expression compendium to infer regulatory activity from messenger RNA expression or DNA methylation
(DNAm) profiles, we infer the landscape of binding activity of lung-specific transcription factors (TFs) in lung
carcinogenesis. We show that lung-specific TFs become preferentially inactivated in lung cancer and precursor
lung cancer lesions and further demonstrate that these results can be derived using only DNAm data. We identify
subsets of TFs which become inactivated in precursor cells. Among these regulatory factors, we identify AHR, the
aryl hydrocarbon-receptor which controls a healthy immune response in the lung epithelium and whose repressor,
AHRR, has recently been implicated in smoking-mediated lung cancer. In addition, we identify FOXJ1, a TF which
promotes growth of airway cilia and effective clearance of the lung airway epithelium from carcinogens.

Conclusions: We identify TFs, such as AHR, which become inactivated in the earliest stages of lung cancer and
which, unlike AHRR hypomethylation, are also inactivated in lung cancer itself. The novel systems-epigenomics
algorithm SEPIRA will be useful to the wider epigenome-wide association study community as a means of inferring
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Background

Elucidating the mechanisms of early carcinogenesis is
important, not only for improving our understanding of
cancer, but also for devising and implementing risk pre-
diction and preventive action strategies [1, 2]. To this end,
many studies have begun to map molecular alterations
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associated with major cancer risk factors in normal or pre-
cursor cancer cells [3-9]. Smoking is of particular interest
since it is a potent risk factor for many cancers, especially
lung cancer.

Many previous efforts have identified molecular
changes in normal or cancer cells exposed to smoke car-
cinogens. For instance, studies of the somatic mutation
landscape of a wide range of different cancer types have
unraveled a somatic mutational signature that is associ-
ated with smoking exposure [4, 10]. Other studies com-
paring gene expression levels in the normal lung tissue
adjacent to cancer in smokers vs non-smokers have
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identified smoking-associated gene-expression signatures
[9, 11]. Epigenome-wide association studies (EWAS)
conducted in blood [8, 12—14] and buccal tissue [6] have
also identified highly reproducible smoking-associated
differentially methylated CpGs (smkDMCs) [15]. A re-
cent EWAS in buccal cells, a source of tissue enriched
for squamous epithelial cells, also showed how many of
the smkDMCs mapping to promoters, anti-correlate
with corresponding gene expression changes in the nor-
mal lung tissue of smokers [6]. More recent studies have
shown that many of the top-ranked smkDMCs (e.g. this
includes CpGs mapping to the aryl hydrocarbon-
receptor repressor [AHRR] locus) predict the future risk
of lung cancer and all-cause mortality [16—22]. Some
studies have even suggested that hypomethylation at the
AHRR locus (and other top-ranked smkDMCs) may be
causally involved in mediating the risk of smoking on
lung cancer [16]. However, the biological mechanism(s)
linking hypomethylation of the AHRR and other top-
ranked smkDMCs to lung cancer risk remain elusive. In
fact, the AHR pathway is mostly known as a toxin-
response pathway, suggesting that the DNA methylation
(DNAm) changes observed at the AHRR locus may
merely reflect a response to smoke toxins without neces-
sarily being causally involved [6, 23]. Consistent with
this, many of the top-ranked hypomethylated smkDMCs,
including those mapping to the AHRR locus, do not
exhibit hypomethylation in lung cancer [6], suggesting
that cells carrying these DNAm alterations are not
selected for during cancer progression. Thus, the role of
the AHR-pathway in lung cancer etiology is unclear.

Here we decided to approach this paradox from a
systems-epigenomics perspective. Instead of performing
single-CpG site association analysis, as is customary in
EWAS, we here aimed to derive a dynamic landscape of
regulatory activity of transcription factors (TFs) in lung
carcinogenesis. Our rationale to focus on TFs is three-
fold. First, several recent studies have shown that inacti-
vation of tissue-specific TFs in cancer is under positive
selection [24—26]. Blocks in differentiation, often medi-
ated by inactivation of tissue-specific TFs is believed to
be an early event which precedes uncontrolled cell
growth [27-29]. Second, cancer risk single nucleotide
polymorphisms (SNP) often map to non-coding regula-
tory regions, including enhancers, suggesting that the
risk effect may be mediated through disruption of TF
binding [30]. Third, DNAm patterns offer great promise
as a means of inferring tissue-specific TFs via TF binding
activity [31, 32].

In order to infer regulatory activity of TFs, we devised
a novel algorithm called SEPIRA (Systems EPigenomics
Inference of Regulatory Activity), which aims to infer
sample-specific TF binding activity from the genome-
wide expression or DNAm profile of a sample. SEPIRA
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leverages the power of a large RNA-sequencing (RNA-
seq) expression compendium encompassing thousands
of samples from many different tissue types, while
adjusting for cell-type heterogeneity. Although several
methods for inferring TF binding activity from gene ex-
pression data exist [33—41], SEPIRA is also able to infer
regulatory activity purely from the patterns of promoter
DNAm change at a key set of high-quality targets. We
note that computational tools to infer regulatory activity
from DNAm profiles have not been extensively applied
or validated [36, 37, 40]. We posited that a powerful tool
for inferring regulatory activity from DNAm profiles
would be particularly valuable for identifying early causal
pathways in carcinogenesis, as TF binding sites are often
observed to become hypermethylated in response to a
wide range of different cancer risk factors, including
smoking and age, which may cause, or be a reflection of,
differential binding activity [6, 31, 32, 42].

Importantly, using SEPIRA, we are here able to shed
new light on the potential role of the AHR/AHRR path-
way in lung cancer etiology, linking its inactivation to an
altered immune response in the lung epithelium, while
also identifying other regulatory pathways (e.g. FOXJ1/
HIF3A) which become inactivated in smoking-associated
lung cancer, in precursor lung cancer lesions, and in
normal cells exposed to smoke carcinogens. Specifically,
our work points towards inactivation of the AHR pathway
as the more fundamental event underlying smoking-
mediated lung carcinogenesis, instead of AHRR hypo-
methylation which is not observed in lung cancer. The
unbiased discovery of the AHR pathway as well as path-
ways involved in hypoxia (HIF3A) and mucosa-mediated
clearance of lung airways (FOXJ1), demonstrates the
ability of SEPIRA to identify early and potentially causal
pathways in lung cancer development. As such, SEPIRA
constitutes a novel approach which opens up the infer-
ence of TF binding activity to EWAS and cancer epige-
nome studies.

Results

Overall rationale and strategy

We developed SEPIRA, a novel systems-epigenomics
computational method that would allow us to estimate
TF binding activity in any given sample. Briefly, the
algorithm begins by constructing a tissue-specific TF
regulatory network consisting of: (1) TFs that are sig-
nificantly more expressed in that tissue (compared to
other tissues); and (2) a list of high-quality downstream
gene targets (Fig. la). This network, as well as a
regression-based method to infer TF activity from this
network, is then validated in independent datasets, con-
sisting of either gene expression or promoter DNAm
patterns. Subsequently, we apply the resulting validated
algorithm to the case scenario of smoking and lung
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Fig. 1 The SEPIRA algorithm and application to smoking and lung cancer. a The first step involves construction and validation of a tissue-specific
regulatory network using the SEPIRA algorithm. This network consists of TFs significantly overexpressed in the given tissue compared to other tissue
types and corresponding downstream gene targets. This network is constructed from computing co-expression correlations across a large gene
expression compendium encompassing many different tissue types and subsequently using partial correlations to remove likely indirect associations.
The inferred high-quality regulatory network can be used to infer TF activity in any given sample by regressing the sample’s gene expression profile
against the gene target profile, encoded as 1 for activating interactions, — 1 for repression, and 0 for no significant association. SEPIRA also allows TF
binding activity to be estimated from genome-wide DNAmM data, regressing the gene-target promoter DNAm profile (suitably normalized, i.e. centered)
of the sample against the gene-target binding profile (reversing signs relative to the gene-expression case, since lower promoter DNAm usually reflects
binding activity). Finally, the tissue-specific regulatory network is validated against an independent dataset (messenger RNA expression or DNAM)
encompassing many different tissue-types including the tissue-type of interest. b Application of SEPIRA to the case scenario of lung cancer
and smoking. SEPIRA results in a lung-specific regulatory network (called LungNet, which is then used to infer TF activity in normal-adjacent
(NADJ) and LSCC, as well as in lung carcinoma in situ (LCIS) (a precursor cancer lesion). This identifies TFs which become inactivated in LSCC
and LCIS. A subset of these would be expected to also exhibit inactivation in the normal cell-of-origin samples exposed to the major risk factor
for LSCC (i.e. smoking). We propose that inactivation of this subset of TFs could be causal mediators between smoking and LSCC

squamous cell carcinoma (LSCC; a smoking-associated  Construction of LungNet: a lung-specific regulatory

lung cancer), to determine whether a significant num-  network

ber of these lung-specific TFs become preferentially — Using SEPIRA, we constructed a lung-specific regulatory
inactivated in LSCC (Fig. 1b). If true, this would indi- network (see “Methods”). The algorithm begins by identi-
cate that their inactivation is under positive selection.  fying likely gene targets of all given human TFs by
Finally, we estimate TF activity in precursor lung cancer  reverse-engineering a gene expression matrix into a cor-
lesions and normal (epithelial) cells exposed to smoke relation bi-partite network and subsequently using partial
carcinogens in order to identify a subset of the LSCC-  correlations to remove likely indirect associations [43]
inactivated TFs which are also inactivated in the earliest  (Fig. 1a). We note that by estimating correlations and par-
stages of carcinogenesis (Fig. 1b). tial correlations over many different tissue types, that this
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facilitates the identification of TF-target interactions for
“tissue-specific” TFs, which by definition, are active only
in a relatively small subset of tissue types. In contrast,
interactions of housekeeping TFs are not favored as these
are active in most if not all tissues. To infer the network,
we used the high-quality RNA-seq dataset from GTEX
[44], encompassing expression profiles for 23929 anno-
tated genes and 8555 samples across 30 different tissue
types (see “Methods;” Fig. 2a). In the second step, the
algorithm identifies TFs that are highly expressed in lung
tissue relative to all other tissue types. Cell-type hetero-
geneity, however, can notoriously confound this task [45].
Indeed, we observed, using the ESTIMATE algorithm
[46], that lung is among the epithelial tissues with the
highest contamination of immune cells (Additional file 1:
Figure S1). Thus, to avoid confounding by immune-cell
infiltrates, lung-specific TFs were identified by first
comparing lung to blood and spleen and then separately
by comparing lung to all other 27 tissue types (see
“Methods”). The bi-partite network was filtered to only
include these lung-specific TFs and their predicted targets.
This resulted in a bi-partite network of 38 TFs highly
expressed in lung tissue regulating a total of 1145 gene
targets (Fig. 2a), with TFs regulating on average 47 genes
(number of targets was in the range of 10-152)
(Additional file 2). All 38 TFs were predicted to have more
positively regulated downstream targets, with many
exhibiting a strong skew towards such activated targets
(Additional file 1: Table S1). We refer to this resulting bi-
partite TF-target network as “LungNet.”

Importantly, we point out that (not unlike other
algorithms such as ARACNE [41]) the predicted targets
may not be direct binding targets of the TF, but could
equally well represent indirect downstream targets
which faithfully measure upstream TF binding activity.
To investigate this further, we used the ChIP-Atlas
(http://chip-atlas.org) resource, which contains > 25,000
chromatin immunoprecipitation sequencing (ChIP-seq)
profiles, including those from ENCODE and the NIH
Roadmap (see “Methods”). For a total of 19 TFs in Lung-
Net, we found corresponding ChIP-seq profiles in the
ChIP-Atlas and for these we determined if there is
enrichment of TF binding targets (as derived by
integrating ChIP-seq binding profiles for the given TF
across all available cell lines/samples in the ChIP-Atlas)
among the targets inferred in LungNet. For approxi-
mately 50% of the 19 TFs (this list included AHR,
CEPBD, XBP1, ELF3, PPARG, PML, ETS1, etc.) we
observed significant enrichment (Benjamini—Hochberg
false discovery rate < 0.05) of binding sites within + 1 kb,
5 kb, and 10 kb of the inferred targets, as assessed using
Fisher’s exact test and verified by Monte Carlo randomi-
zations (Additional file 1: Figure S2). For > 70% of the 19
TFs, there was marginal enrichment (Fisher’s test, P <
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0.05), further supporting the view that a substantial
fraction of the inferred LungNet targets represent direct
targets of the given TFs (Additional file 1: Figure S2).

Among the 38 TFs in LungNet (Table 1), many have
already established roles as pro-differentiation factors in
the lung epithelium. For instance, in the case of TBX2, it
has been shown that in Tbx2-deficient mice differenti-
ation of type-1 alveolar epithelial cells is compromised
[47]. FOXA2 regulates airway epithelial cell differenti-
ation and is also required for alveolarization [48, 49].
NKX2-1 is a master TF of early lung development,
whereas FOXJ1 is important for the specification of the
ciliated epithelium [50]. SOX13 and SOX18 are SOX
TFs, which have been broadly implicated in lung
morphogenesis [51]. Other TFs in LungNet, such as
HIF3A, may have a distinct role: HIF3A has been shown
to be highly expressed in alveolar epithelial cells and
thought to be protective of hypoxic-induced damage
[52]. Another example is the aryl hydrocarbon receptor
(AHR), a regulator of mucosal barrier function, activa-
tion of which during lung development enhances CD4+
T-cell responses to viral infections, and which more gen-
erally may influence immune responsiveness in the lungs
[53, 54]. Thus, SEPIRA has identified TFs with key roles
in the establishment of a healthy lung epithelium.

To verify the validity of the predicted targets in
LungNet, we estimated TF activity levels in the same
GTEX samples by regressing the expression profile of
each sample against the predicted TF gene target
profile (see “Methods”). As required, the estimated
TF activity level was higher in lung tissue compared
to all other tissue types for effectively all 38 TFs
(Additional file 1: Figure S3), with the average TF
activity highest in lung tissue (Fig. 2b). Importantly,
we note that activity of these TFs was low in blood
and spleen, thus confirming that their high activity in
lung is driven by cells other than immune-cell infil-
trates. Confirming this further, Gene Set Enrichment
Analysis (GSEA) over the 1145 targets was character-
ized by the absence of genes marking immune-cell
types (Additional file 3).

Validation of LungNet in independent RNA-seq data

Next, we sought to validate the regulatory interactions
in LungNet using independent RNA-seq data. To this
end, we estimated TF activity levels for the 38 TFs in
each of 200 samples, encompassing 32 different tissue
types, using expression data from the RNA-seq Normal-
Atlas, generated as part of the ProteinAtlas project [55].
We estimated the activity level of a given TF in a given
sample as the t-statistic of a linear regression of the sam-
ple’s genome-wide expression profile against the pre-
dicted gene target profile (see “Methods”), a procedure
previously shown to work well [34, 56-58]. Having
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Fig. 2 Derivation and validation of LungNet. a Using the multi-tissue RNA-seq compendium dataset from GTEX encompassing genome-wide
gene expression measurements for > 8000 samples encompassing 30 tissue types, we inferred a lung-specific regulatory network for 38 TFs highly
expressed in lung and a total of 1145 downstream gene targets. b Boxplot of TF-activity levels inferred using LungNet for each tissue-type in the
same GTEX data, confirming the validity of the TF-activity estimation procedure. ¢ Validation of LungNet in an independent multi-tissue RNA-seq
dataset (NormalAtlas). Color bars compare the estimated average TF-activity levels of the 38 TFs between lung and all other 31 tissue types. In
bold, we indicate those TFs which exhibit statistically significant higher TF-activity levels in lung. d Example boxplots of estimated TF-activity levels
for five selected lung-specific TFs. P values are from a one-tailed Wilcoxon rank sum test. e Boxplot comparing t-statistics of differential TF activity
between lung and all other tissues for the 38 TFs against the corresponding t-statistics obtained after randomizing the gene targets for each of
the 38 TFs. P value is from a paired Wilcoxon rank sum test. f Scatterplot of t-statistics of differential TF activity (y-axis) against the t-statistics of
differential TF expression (x-axis). Green dashed lines indicate significance threshold P=0.05 for significantly positive statistics (i.e. higher activity or
expression in lung tissue compared to all other tissue types). g Comparison of SEPIRA to simple differential expression (DE) analysis in predicting
increased activity of the 38 LungNet TFs in the normal lung tissue of three independent gene expression datasets compared to other normal
tissue types: the RNA-seq set from the ProteinAtlas (PrAtlas) and two microarray expression sets (Roth et al. and Su et al, see “Methods")

estimated TF activity across all samples of the NormalA-
tlas set, we then asked how many of the 38 TFs exhib-
ited higher activity levels in lung tissue compared to all
other tissue types. Out of the 38 TFs, 35 (92%) were pre-
dicted to be more active in lung compared to other tis-
sue types, thus validating LungNet (Fig. 2¢c, d). As a
negative control, we randomized the gene targets among
all genes (1000 distinct randomizations), keeping the
number of targets per TF fixed, which resulted in most
TFs not exhibiting higher activity in lung tissue (Fig. 2e,
Additional file 1: Figure S4). Of note, using TF gene
expression level as a surrogate for TF activity, only 13
(i.e. 34%) TFs were predicted to be more active in lung,
demonstrating that improved inference of TF activity is
possible by studying the patterns of differential expres-
sion of predicted TF targets (Fig. 2f, g). To substantiate
this last result further, we analyzed two additional mes-
senger RNA (mRNA) expression datasets encompassing
many normal tissue types, including lung tissue [59, 60]
(see “Methods”). We posited that SEPIRA would exhibit
increased sensitivity to detect lung-specific TFs in these
sets compared to using differential expression. Confirm-
ing this in the Roth et al. dataset [59], out of the 38 TFs
in LungNet, SEPIRA predicted 33 to be more active in
the lung tissue samples compared to all other tissues
combined, whereas differential expression analysis only
predicted 26 (Fig. 2g). Similarly, in the Su et al. dataset
[60], SEPIRA correctly predicted 28 TFs to be more
active in lung, whereas simple differential expression
analysis did marginally worse (25 TFs) (Fig. 2g).

Integration of LungNet with differential DNAm patterns
to predict TF activity

Having validated LungNet, we next asked if promoter
DNAm patterns at the predicted targets would also
allow us to infer TF activity. This is important, as it
would provide a means to infer TF activity in EWAS for
which matched gene expression data are not available.
We obtained Illumina 450 k DNAm data for 60 somatic

tissue samples from the Stem-Cell Matrix Compendium
(SCM2) [61], encompassing 11 different tissue types and
including seven samples from lung tissue (see
“Methods”). In order to assign a DNAm value to a gene,
we used a previously validated procedure which assigns
to each gene the average DNAm of probes around the
transcription start site (TSS), or the average of probes
mapping to the first exon if probes mapping to within
200 bp of the TSS are not available [37] (see “Methods”).
Thus, we inferred activity for each of the 38 TFs in each
of the 60 samples by regressing the sample’s promoter
DNAm profile (centered across samples) to the corre-
sponding gene target profile, reversing the sign of acti-
vating, and repressing interactions since low promoter
methylation normally implies higher binding activity (see
“Methods”). Despite the relatively small sample size
(comparing seven lung vs 53 other tissues), 34 of the 38
TFs exhibited higher activity levels in lung with 11 of
these 34 (FOXA2, TBX4, NKX2-1, EPASI, ERG, FOXA1,
TNXB, SOX18, MEOX2, HIF3A, and PPARG) being
statistically significant (Wilcox rank sum test, P =2e-8,
Fig. 3a—c). We note that these results could not have
been inferred using differential promoter DNAm levels
of the TFs themselves (Additional file 1: Figure S5). To
further check the statistical and biological significance
of our result, we randomized the targets in LungNet
(1000 distinct randomizations), keeping the number of
targets per TF fixed, which resulted in similar numbers
of positive and negative differential activity levels, with
corresponding t-statistics indistinguishable from zero
(Fig. 3b, Additional file 1: Figure S6). We confirmed
that the higher predicted activity in lung was driven by
loss of DNAm at the promoters of the predicted
targets (Fig. 3d).

Lung-specific TFs exhibit preferential inactivation in lung
squamous cell carcinoma

Next, we inferred activity levels for the 38 TFs in the
NADJ and LSCC samples from the TCGA project for
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Table 1 The 38 lung-specific TFs in LungNet and their differential activity characteristics

Page 7 of 18

LungNet TF LSCC (RNA-seq) LSCC (DNAm) LCIS (MRNA) LCIS (DNAm) Smoking (DNAm) Smoking® (MRNA-Affy)
TFEC -24.14 1861 29 5.16 -4.58 up
TBX2 -33.08 -18.69 -5.52 -1.16 -6.55 DN
FOXA2 -22.01 =17.57 -143 -7.91 141 NA
TALT -40.65 -18.45 -2.28 -0.87 -533 DN
TBX4 -44.91 -7 -1.68 —4.45 1.61 DN
NKX2-1 -34.8 -2.76 1.73 -2.63 5.18 NA
GATA2 -40.81 -11.36 -2.47 -153 -5.26 NA
EPAST -35.72 -32.7 -3.28 =525 -1.69 DN
FOXJ1 —-9.44 -16.65 -1.73 -6.94 -1.86 NA
LDB2 -44.35 ~11.99 -3.16 2.14 -532 DN
ETS1 -32.67 =525 0.15 342 -537 NA
ETVI -33.76 -93 -5.97 0.25 -2.66 NA
ERG -33.38 -23.56 -3.16 -2.76 =523 DN
ELF3 356 10.57 1.96 —4.44 573 NA
SOX13 -3047 15.77 -7.33 -1.8 1.13 NA
AHR -21.6 -0.61 =267 -2.98 1.7 NA
PML -9.33 -7.3 2.82 -156 -2.06 NA
FOXA1 -9.57 11.95 -0.21 =557 551 NA
MLLT4 -1.28 1225 253 2.16 1.52 DN
BGN -9.85 -24.23 -4 -6.12 3.08 NA
ZFP36 -11.43 -7.05 29 1.05 262 NA
TNXB -27.31 -12.72 -4.44 -3.58 419 NA
SOX18 -3937 -13.51 -3 1.23 -4.88 NA
TEAD2 -19.59 -32.39 -3.26 -4.49 -2.64 NA
XBP1 5.66 -6.78 -0.54 1.69 -0.07 NA
MEOX2 -40.54 -3.58 -4.73 -16 1.28 NA
KLF4 -14.85 2.89 4.05 -0.33 544 NA
HIF3A -36.97 -9.37 -5.85 344 365 NA
LSR 9.53 4.06 251 4.1 527 NA
KLF9 -29.79 -21.26 -5.49 1 =51 NA
STONT -36.61 =775 -4.79 -3.04 19 NA
PPARG -25.61 -19.38 -045 -4.53 =577 up
ZFP36L2 -29.34 -4.42 -3.63 1.66 -3.36 NA
CEBPD ~-154 -0.86 -0.07 -0.14 -4.08 NA
TRIP10 0.09 -5.79 -3.52 -122 3.94 NA
NR2F2 -20.82 -8.14 -6.41 -7.52 361 NA
TGFBI1I1 -15.65 -25.46 -4.86 -4.96 1.52 NA
EHF 6.17 25.89 23 -3.08 598 NA

Table lists for each of the 38 lung-specific TFs, the t-statistics of differential activity in five different studies. In LSCC (RNA-seq), t-statistic reflects differential activity
of LSCC relative to NADJ tissue as measured using RNA-seq of the predicted TF targets; in LSCC (DNAm) t-statistics of differential activity are shown but as inferred
using promoter DNAm levels of targets, in LCIS (messenger RNA [mRNA]) and LCIS (DNAm) t-stats reflect differential activity between LCIS and NADJ tissue as
assessed using gene expression and promoter DNAm levels of targets, respectively (expression and DNAm are from unmatched cases and cohorts); and finally, in
Smoking (DNAm) we give the t-statistics of differential activity between buccal samples of heavy smokers compared to non-smokers (measured in smoking pack-
years) and as assessed using promoter DNAm levels of targets. Numbers in italic represent cases of significant inactivation
A gene expression study comparing NADJ lung tissue of smokers to non-smokers and which only provided a table of differentially expressed genes

DN TFs that were reported in this study to be underexpressed in the normal lung tissue of smokers, UP TFs reported to be overexpressed, NA not reported to be
consistently differentially expressed across three independent studies
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which both RNA-seq and Illumina 450 k DNAm data
are available (45 NADJ and 473 cancers [RNA-seq] and
41 NADJ samples and 275 cancers [DNAm]) [62]. We
posited that the 38 lung-specific TFs would exhibit
preferential inactivation in lung cancer, which would
further support results obtained by us previously [24].
Using RNA-seq data, 32 of the 38 TFs (i.e. 84%) were
significantly inactivated in LSCC (Fig. 4a, b, Table 1).
To demonstrate that this result is indeed driven by
LungNet, we randomized for each TF the gene targets
among all available genes (keeping the number of tar-
gets per TF fixed), which resulted in only a much
smaller fraction of inactivated TFs (Fig. 4c, Additional
file 1: Figure S7). Of the 38 TFs, 31 were also downreg-
ulated in LSCC and we observed a strong correlation
between differential TF expression and their estimated
differential activity (as predicted from their gene

targets) (Pearson correlation coefficient [PCC] =0.71, P
<le-6, Fig. 4d). Using the matched DNAm data, we
obtained an independent set of TF-activity levels, which
were in remarkably good agreement with those
estimated using gene expression, with PCC values
between the two sets of estimates being significantly
positive (P < 1e-7, Fig. 4e). For 29 of the 38 TFs (ie.
76%), their activity levels were significantly lower in
LSCC as estimated using promoter DNAm levels
(Fig. 4f, Table 1). Between the 32 and 29 TFs predicted
to be inactivated in LSCC based on differential expres-
sion and differential methylation of their targets,
respectively, we observed a strong overlap of 26 TFs,
which included TBX2, FOXA2, FOX]J1, BGN, TGFB1I1,
HIF3A, and SOX18 (Table 1). Finally, we verified that
the inactivation of lung-specific TFs in LSCC was also
seen in lung adenoma carcinoma (LUAD) (P =8e-7,
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Additional file 1: Figure S8) and that the inactivation
was significantly more pronounced in lung cancers
compared to other cancer types (Additional file 1:
Figure S8).

LungNet predicts preferential inactivation of lung-specific
TFs in lung carcinoma in situ (LCIS)

Next, we explored if the 38 lung-specific TFs also
exhibit preferential inactivation in precursor lung can-
cer lesions, such as LCIS. We first obtained TF-activity
levels in 122 lung tissue biopsies from 77 individuals,
for which mRNA expression data were available,
encompassing all major histological stages in the deve-
lopment of LSCC, including normal, hyperplasia,
metaplasia, dysplasia, LCIS, and LSCC/ILC [63] (see
“Methods”). From these activity levels, we computed t-
statistics of differential activity between each disease
stage and the normal reference (Fig. 5a). We observed a
striking increase in the number of significantly inacti-
vated TFs between the metaplasia and dysplasia stages,
with the number of inactivated TFs remaining constant
between dysplasia, LCIS, and invasive lung cancer
(ILC/LSCC) (Fig. 5b). A formal comparison of the sta-
tistics of differential activity confirmed that the most
significant inactivation occurred at the LCIS and ILC
stages (Wilcoxon rank sum test, P < 0.001, Fig. 5c). For
LCIS, 21 of the 38 TFs (i.e. 55%) were inactivated
compared to the normal reference (Table 1). Using
linear regressions of predicted TF activity against
disease stage also revealed a clear skew towards TFs
becoming inactivated, with 23 out of the 38 TFs being
statistically significant (Fig. 5d) and with a subset of
these (e.g. TBX2, SOX13, HIF3A) exhibiting a clear
linear pattern (Fig. 5e). All these results were robust if
the multiple biopsies from the same patient and disease
stage were averaged before estimating TF activity
(Additional file 1: Figure S9; see “Methods”). We note
that, had we used gene expression levels as a surrogate
for TF activity, we would have found 20 TFs to exhibit
a significant linear decrease in activity with 16 specific-
ally inactivated in LCIS, compared to the 23 and 21
TFs inferred using SEPIRA, respectively.

Next, we explored if the same pattern of preferential
inactivation is also evident from analysis of DNAm
data. To this end, we estimated TF-activity levels in 35
LCIS samples plus 21 NAD]J lung specimens for which
[llumina 450 k DNAm profiles had been generated [6].
A total of 19 TFs (i.e. 50%) exhibited significantly lower
TF-activity levels in LCIS compared to NADJ tissue
(Table 1). The distribution of t-statistics of differential
activity of all 38 TFs was significantly <0 (Wilcoxon
rank sum test, P =0.0002, Fig. 5f), further supporting
the view that the TFs are preferentially inactivated.
Confirming the importance of LungNet, upon
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randomizing the gene targets of each TF (1000 Monte
Carlo randomizations), differential t-statistics were
significantly less negative (Fig. 5f).

Patterns of differential activity in normal cells exposed to
smoke carcinogens

It is plausible that a fraction of the 32 lung-specific TFs
inactivated in LSCC, already become inactivated in nor-
mal epithelial cells exposed to smoke carcinogens. Given
that the smoking exposure information of a large gene
expression dataset of normal lung tissue from smokers
and non-smokers is not publicly available [11], we
decided to explore this question in a large EWAS con-
ducted in buccal tissue [6], a tissue that includes squa-
mous epithelial cells (the type of cell thought to give rise
to LSCC). Using LungNet and the DNAm profiles at the
promoters of the predicted targets, we estimated TF-
activity levels in the buccal samples from 790 women
with varying levels of lifetime smoking exposure (mea-
sured in units of smoking pack-years [SPY]) (see
“Methods”). Interestingly, we observed 15 TFs which are
less active in smokers (Table 1) and there was no prefer-
ence for inactivation over activation (Wilcoxon rank
sum test, P =0.38). Among the 15 TFs were several (e.g.
TBX2, TAL1l, GATA2, FOX]J1, PPARG, ETS1, ERG,
ETV1, TEAD2, and PML) which also exhibited inactiva-
tion in LSCC and LCIS.

We also mapped our 38 LungNet TFs onto a list of
genes differentially expressed between NAD] lung tissue
of smokers vs non-smokers [11]. A total of nine TFs
exhibited consistent differential expression in the three
independent studies considered in [11], of which, inter-
estingly, seven exhibited underexpression in the normal
lung tissue of smokers (Table 1). These seven included
three (TBX2, TAL1, and ERG) which also exhibited
inactivation in the buccal tissue of smokers.

Discussion

Using a novel systems-epigenomics approach, we have
derived a landscape of TF regulatory activity in lung
cancer, precursor lung cancer lesions, and normal cells
at risk of neoplastic transformation. Among the lung-
specific TFs inactivated in lung cancer and precursor
lesions, and which may be implicated in early causal
pathways, it is worth highlighting the following:

(1)the TF FOXJ1 was found to be inactivated in LSCC,
LCIS, and marginally so in buccal tissue of smokers
(Table 1). FOX]J1 is a master TF for the generation
of airway epithelial ciliated cells, which play a central
role in clearing the lung of inhaled pathogens and
xenobiotics. Cilia length, in particular, is important
for airway clearance [64] and in vivo studies have
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shown that the airway epithelium of smokers has achieved [68]. Thus, our analysis strongly supports a
shorter cilia than that of non-smokers [65], model in which inactivation of FOXJ1 may
suggesting that TFs responsible for cilia growth contribute causally to lung cancer progression;
become inactivated in smokers and that this may (2)a related TE, acting upstream of FOX]1, is FOXA?2,
contribute to related pathologies such as lung cancer which we observed to be also inactivated in LSCC
(66, 67]. Interestingly, a recent study has shown that and LCIS (Table 1). FOXA2 has established roles in
components of cigarette smoke suppress genes lung morphogenesis, with deletion of FOXA2
involved in cilia growth and that by stimulating leading to inhibition of lung differentiation markers,
ciliogenesis via FOX]J1 overexpression, partial including FOX]J1 [69]. Furthermore, it has been

re-expression of cilia-growth related genes can be observed that targeted disruption of Foxa2 in the
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mouse lung inhibited cell maturation, causing goblet
cell hyperplasia in the lung airways [69].
Interestingly, the goblet cell’s role is to enable
secretion of airway mucus, whose function is to
protect the lung (through mucociliary clearance)
against foreign particles and chemicals entering the
lung [69]. Thus, FOXA?2 inactivation and goblet cell
dysfunction may facilitate exposure of the lungs to
more harmful particles/viruses;

(3)the TF AHR was found inactivated in LSCC and
LCIS, although not in buccal tissue of smokers. The
observed inactivation in LSCC and LCIS is of great
significance given that the locus of its repressor
(AHRR) is observed to be consistently and
reproducibly hypomethylated in buccal, blood, and
lung tissue of smokers [6, 23, 70]. The
hypomethylation of the AHRR locus in normal cells
exposed to smoke carcinogens is consistent with its
observed overexpression in normal lung tissue of
smokers [11, 23]. Here, too, we observed
overexpression of AHRR in the normal lung tissue
of smokers compared to ex-smokers
(Additional file 1: Figure S10A) and interestingly this
overexpression was also seen in hyperplasia,
metaplasia, dysplasia, and even in LCIS
(Additional file 1: Figure S10B). However, AHRR
overexpression and hypomethylation of the AHRR
locus is not observed in LSCC (see Additional file 1:
Figure S10C and [6]), suggesting that AHRR
overexpression merely reflects a response to smoke
toxins. In contrast, the predicted loss of TF binding
activity of AHR in LSCC and LCIS parallels its
observed underexpression in LSCC and LCIS
(Additional file 1: Figure S10E-F), while AHR
underexpression or inactivation is not observed in
early lesions or in normal cells exposed to smoke
carcinogens (Additional file 1: Figure S10D, E,
Table 1). This last observation is not inconsistent
with recent reports of an increase in enhancer
activity at a few AHR regulatory elements in exposed
normal cells [23]. At present it is unclear why the
observed overexpression of AHRR in early lesions
and exposed normal cells may not result in reduced
expression and binding activity of AHR. However,
the relation between AHRR and AHR is complex
due to a negative feedback loop, with AHR acting to
overexpress AHRR but with AHRR acting to repress
AHR [71]. Thus, AHRR hypomethylation and
overexpression in exposed normal cells may not lead
to AHR inactivity, consistent with our observations.
Instead, the observed gradual inactivation of AHR
from dysplasia to LCIS and LSCC suggests that the
onset of lung cancer may select for cells for which
AHR is inactivated. Given that AHR activation in
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lung epithelia is associated with an enhanced CD4+
T-cell immune response [53, 54], it is plausible that
its observed gradual inactivation in dysplasia, LCIS,
and LSCC may lead to an altered immune response
which facilitates oncogenesis, although the relation
between AHR and inflammatory pathways is also
complex and strongly model dependent [54]. To the
best of our knowledge, however, the potential role of
AHR inactivity in compromising a healthy immune
response sheds entirely novel insight into the
potential causal role of the AHR pathway in lung
carcinogenesis;

(4)another interesting TF is HIF3A, which according
to our model exhibits gradual inactivation between
dysplasia, LCIS, and LSCC (Fig. 5, Table 1). Given
that HIF3A is highly expressed in alveolar epithelial
cells and thought to protect cells from hypoxia-
induced damage [52], it is tempting to speculate that
its inactivation may predispose cells to DNA
damage, contributing to the onset of lung dysplasia
and carcinoma.

Beyond identifying key TFs which may be causally
implicated in lung cancer etiology, other contributions
of this study include the following. First, we have built
and validated a high-confidence regulatory network for
lung tissue using two of the largest RNA-seq compendia,
encompassing > 30 tissue types and almost 9000 samples.
The construction of this network used partial correla-
tions to remove likely indirect associations and further
used a strategy to ensure that the TFs overexpressed in
lung tissue are not due to immune-cell contamination.
Second, using this lung-specific regulatory network, we
have shown that it is possible to successfully infer TF
activity in independent samples, using either mRNA
expression or promoter DNAm patterns. Importantly,
using three independent mRNA expression datasets, we
have shown that SEPIRA improves the sensitivity to
detect lung-specific TFs compared to simple differential
expression analysis, in line with previous studies who
have shown the feasibility and added value of predicting
TF activity from the gene expression values of a high-
confidence set of TF targets (see e.g. [33]). In this regard,
it is worth pointing out that SEPIRA does not require
expression values for the TF of interest in order to infer
TF activity and that it also does not require expression
values for all predicted targets. As long as expression
values are available for a sufficient number of the pre-
dicted targets, inference of TF activity is possible. Of
particular novel importance is the demonstration that
similar inference of TF activity can be achieved by using
only promoter DNAm patterns. While we acknowledge
that promoter DNAm patterns are only imperfect pre-
dictors of gene expression (compared to say histone
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modifications [72]), the novel strategy used here to infer
the downstream targets using co-expression correlations
over a very large number of tissue types is likely to hone
in on downstream targets (direct or indirect) that are
under epigenetic regulation [73]. Future work may
attempt to infer TF activity using DNAm patterns for
the enhancers linked to the genes identified in LungNet,
using enhancer-promoter networks [74, 75]. A third
important contribution of our work is the demonstration
(further confirming our previous observation [24]) that
inactivation of tissue-specific TFs is an event that
appears to be under positive selection in the correspond-
ing cancer type. This key observation suggests that a
potential subset of these TFs may be causally implicated
in the progression to cancer. A novel aspect of this study
is that this result was derived using estimates of TF
activity, as opposed to TF expression (which was used in
our previous work [24]). Consistent with the results
obtained on the normal-tissue expression sets, the
results in lung cancer and LCIS further point towards
TF binding activity (as estimated using SEPIRA) as a
better measure of TF activity than gene expression.
Fourth, we have extended all of these observations to
the demonstration that a substantial number of these
TFs already become inactivated in precursor lung cancer
lesions (LCIS), further supporting the view that their
inactivation is an early event which is under positive
selection. Of note, this result was obtained in two separ-
ate LCIS cohorts using different data types (mRNA
expression and DNAm). Fifth, the algorithm SEPIRA,
which was used to construct the tissue-specific regula-
tory network and estimation of TF binding activity, is of
a general nature and could be applied to any tissue type
present in the GTEX database. The ability to infer regu-
latory activity from a DNAm profile further opens up its
application to EWAS and cancer epigenome studies,
offering a complementary approach to other recent
methods [76].

While SEPIRA has led to novel insights into potential
mechanisms underlying lung carcinogenesis, there are of
course a number of limitations which need to be pointed
out. First, although we did adjust for immune-cell infil-
tration, other stromal infiltrates (e.g. fibroblasts, adipo-
cytes) may explain the presence of some of the TFs in
our list. For instance, this is the case of TGBI1I a
marker of smooth muscle cells, which also exhibited
inactivation in dysplasia, LCIS, and LSCC (Fig. 5,
Table 1). Thus, the observed changes in TGFBI1I activity
could be due either to alterations in the stromal milieu
within the lung microenvironment or to DNAm
alterations in the stromal cells themselves. At present we
cannot distinguish between these two possibilities. A
similar limitation applies to the patterns of alteration for
all other TFs, as these could be due to changes in the
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epithelial cell composition of the lung or due to
selection of specific lung progenitor/stem cells. We
envisage that as the full repertoire of cell types within
tissues gets mapped at the transcriptome and epigenome
levels [77], that improved cell-type deconvolution
methods [45, 78-81] will help clarify these outstanding
issues. Another potential limitation of our study is that
we ignored other regulatory players (e.g. microRNAs
[miRNA] [82]), when constructing LungNet. However, it
is generally well accepted that TFs play a more promin-
ent role in controlling the larger tissue-specific changes
in gene expression (such as in development and repro-
gramming). Moreover, although inferring miRNA activ-
ity from the expression of predicted targets is also
possible [83], this has not yet been clearly demonstrated
using DNAm patterns. In contrast, DNAm patterns at
regulatory elements exhibit a fairly strong and generally
inverse association with TF binding [31].

Conclusions

Using a novel systems-epigenomics algorithm (SEPIRA)
for inferring TF binding activity from either gene expres-
sion or DNAm data, we have shown that lung-specific
TFs become consistently and preferentially inactivated in
lung cancer, in precursor lung cancer lesions, and in
some instances also in dysplasias and normal cells
exposed to smoke carcinogens. Our data point towards
inactivation of the AHR pathway and not hypomethyla-
tion of the repressor AHRR, as the more fundamental
and potentially causal event in smoking-mediated lung
carcinogenesis. We therefore anticipate that SEPIRA will
be a useful general tool to identify disrupted regulatory
networks in a wide range of different studies, including
EWAS.

Methods

RNA-seq datasets

We used two RNA-seq dataset compendia, one from
GTEX (https://www.gtexportal.org/home/) [44] and
another one generated as part of the ProteinAtlas pro-
ject [55] and which is available from the EBI arrayex-
press (E-MTAB-2836). The GTEX dataset was used for
construction of LungNet, whereas the NormalAtlas set
was used for validation. In the case of GTEX, we down-
loaded the normalized RPKM data for 23,929 unique
Entrez gene IDs and 8555 samples. Data were further log-
transformed via log,(RPKM +1). The 8555 samples
encompassed 30 tissue types, of which 320 were lung. In
the case of ProteinAtlas, we downloaded the normalized
RPKM RNA-seq data, which was available for 25,020
unique Entrez gene IDs and 200 samples, encompassing
32 tissue types of which eight were lung samples. Data
were log-transformed using the transformation
log»(RPKM/10 + 1). The factor of 10 was introduced to
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reduce the unrealistic dynamic range for lowly expressed
genes (RPKM < 10), as assessed from studying the distri-
bution of RPKM values.

Other mRNA expression datasets encompassing normal
tissue types

Two additional datasets were used for comparing
SEPIRA’s sensitivity to detect lung-specific TFs against
using simple differential expression analysis. One dataset
is from Roth et al., [59] consisting of 21,025 Entrez gene
IDs and 353 samples, encompassing 65 different ana-
tomical regions/tissues in the human body, including
three from lung tissue, while the other was drawn from
Su et al. [60], comprising 13,262 Entrez gene IDs and
158 samples, encompassing 79 human tissues, including
four from lung tissue. In all cases, the normalized data-
sets were downloaded from GEO (GSE1133 and
GSE3526). Probes mapping to same Entrez gene IDs
were averaged and data further quantile-normalized
using the limma package [84]. Differential expression
analysis between lung tissue and all other tissues was
performed using an empirical Bayes framework as
implemented in limma [84, 85].

Cancer TCGA RNA-seq and lllumina 450 k datasets

We downloaded and processed level-3 Illumina 450 k
and RNA-seqV2 data from the TCGA [86], as described
by us previously [87]. Here, we specifically focused on
LSCC, consisting of 45 NAD] samples and 473 cancers
(RNA-seq) and 41 NADJ samples and 275 cancers
(Ilumina 450 k DNAm). In addition, to assess specificity
of TF-activity changes in cancer, we also considered the
RNA-seq data of LUAD, the two types of kidney cancer
(KIRC/KIRP), colon cancer (COAD), and bladder cancer
(BLCA). Data were processed as described by us previ-
ously [87].

lllumina DNAm 450 k set from the Stem-Cell-Matrix Com-
pendium (SCM2)

We processed an Illumina 450 k dataset generated as
part of SCM2 [61] and which we have previously ana-
lyzed [24]. We used the same normalized data as in our
previous publication, consisting of 479,328 probes (after
QC) and 153 samples. Here, we only used the 60 sam-
ples from somatic tissues, which included seven lung
tissue samples and 53 samples from other tissues. In
total, there were 11 tissues represented: lung (n=7),
adrenal (n=5), blood (n=2), pancreas (n=2), bladder
(n = 2), heart (1 =5), skeletal muscle (1 =2), ureter (n =
2), spleen (n=5), thymus (n =2), adipose (n =2), stom-
ach (n=6), brain (n=5), liver (n=4), kidney (n=>5),
tongue (1 =2), and lymph node (n = 2).
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Gene expression dataset encompassing all major stages
in lung carcinogenesis

We downloaded a normalized Agilent (whole human
genome microarray 4x44K G4112F) gene expression
dataset encompassing 122 samples from a total of 77
patients from GEO under accession number GSE33479
[63]. The samples correspond to all major states: normal
(n =27), hyperplasia (n = 15), metaplasia (n = 15), dyspla-
sia (n = 38), LCIS (n = 13), and LSCC (n = 14).

DNA methylation data of LCIS

Ilumina 450 k DNAm profiles were generated for 56
lung tissue samples, of which 21 were NADJ tissue
and 35 were LCIS. This dataset was analyzed by us
previously [6]. We used the same probe-level normal-
ized DNAm dataset as in our previous publication.
To assign a unique DNAm value to each gene, we
used the same procedure as described above for the
TCGA dataset.

EWAS of smoking in buccal tissue

[lumina 450 k DNAm profiles were generated for buccal
samples from 790 women, all aged 53 years at sample
draw, as described by us previously [6]. Extensive epi-
demiological information for all 790 women is available.
We used SPY as a measure of smoking exposure, as this
better approximates lifetime exposure to smoke carcino-
gens and its effect is also better reflected in DNAm data
[6]. We used the normalized probe-level data as used in
our previous publication and followed the same proced-
ure as described for the TCGA dataset to assign a
unique DNAm value to each gene.

Construction of LungNet: a lung-specific TF-regulatory
network

Here, we describe the construction of LungNet. From
the GTEX dataset, we selected genes with a standard
deviation (as assessed over the 8555 samples) of at least
0.25, to remove genes of little or no variance. This left a
total of 19,478 genes. We then computed PCCs between
a total of 1313 human TFs (we used the curated human
TF list from MSigDB) and all non-TF genes (a total of
18,165 genes), over all 8555 samples. PCCs were Fisher z-
transformed and P values of significance estimated using
as the null distribution a Normal centered at 0 and with a
standard deviation equal to 1/YnT-3 where nT is the num-
ber of distinct tissues (nT =30). We note that although
PCCs were estimated over 8555 samples, we used the
effective number of samples which is the number of tis-
sues. This was done to impose a more stringent criterion
for statistical significance but also to remove the bias due
to intrinsic correlations between samples within the same
tissue type. As a significance threshold we used the
Bonferroni level (0.05/(1313*18165) = 2e-9). From the
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correlation matrix, we constructed a binary matrix with 1
indicating significant correlation/anti-correlation and 0
indicating no significant association. Thus, a unit entry
between a TF and a gene g, means that gene g is a poten-
tial target of the TF. Next, we selected those TFs with at
least ten predicted targets, leaving 938 TFs. For each gene
potentially regulated by at least two TFs, we then com-
puted partial correlations between all variables (i.e. the
gene plus all TFs potentially regulating that gene). We
used an absolute partial correlation coefficient threshold
of 0.2 to identify the TFs more likely to be regulating the
gene. Given that correlations and partial correlations were
estimated > 8555 samples, a threshold of 0.2 is extremely
conservative. Thus, partial correlations between g and TFs
< 0.2 were set to zero in the binary gene-target TF matrix.
After this filtering step, some TFs may have < 10 gene tar-
gets and these were removed, leaving 722 TFs. Finally, we
used an empirical Bayes framework (the limma package
[84, 85]) to select the subset of TFs more highly expressed
in lung tissue compared to: (1) all other tissues (moder-
ated t-test, P value < 0.05 and log,FC > 1); and (2) only by
comparison to blood and spleen (moderated t-test, P
value < 0.05 and log,FC > 1.5).The latter comparison was
included since lung tissue exhibits a relatively high level of
immune-cell infiltration, hence by demanding that a TF
be significantly more highly expressed in lung compared
to blood and spleen, we guarantee that we select the TFs
identified in (1) which are not immune-cell markers. This
resulted in a lung-specific regulatory network (called
“LungNet”) consisting of 38 TFs more highly expressed in
lung compared to other tissues and a total of 1145 (non-
TF) gene targets. In LungNet, there are 1511 regulatory
interactions, of which 1438 are positive and 73 are nega-
tive. The number of targets per TF in LungNet was in the
range of 10-152 and the number of regulators of genes
was in the range of 1-5.

Inferring TF activity using LungNet

Having constructed LungNet, we then estimate activity
of a TF t in a given sample s, by first z-score normalizing
the expression profile of each gene g in LungNet across
all the samples in a given dataset. We then perform a
regression of a sample’s gene expression profile against
the binding profile of the given TF, i.e. a corresponding
vector with + 1 encoding positive regulations, — 1 nega-
tive regulations, and 0 no regulation. We interpret the t-
statistic of this linear regression as a proxy to the activity
level of the TF ¢ in the given sample s. These TF-activity
levels should be interpreted as relative activity levels, to
be interpreted in the context of the dataset. Observe that
the estimation of activity levels is not done in a multi-
variate regression as we have already taken into the
account multiple regulation in the construction of Lung-
Net itself.
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Validation of LungNet in the NormalAtlas set

We used the above procedure to estimate TF-activity
levels of the 38 TFs in each of the 200 samples from the
NormalAtlas RNA-seq set and used t-statistics to deter-
mine which TFs exhibit higher levels in lung tissue com-
pared to all other tissues. To further test significance,
we randomized the targets within LungNet, keeping the
number of targets per TF fixed, re-estimated TEF-
activity levels.

Inferring TF activity integrating promoter DNAm levels
with LungNet

Although promoter DNAm levels are imperfect corre-
lates of gene expression, we posited that relative TF ac-
tivity could be inferred by regressing the sample’s
promoter DNAm profile (defined over the targets de-
fined in LungNet) against the corresponding TF binding
profile. To assign a unique DNAm value to each gene
from Ilumina 450 k/EPIC bead array data, we used a
previously validated procedure [88]. This procedure uses
the average DNAm over probes mapping to within
200 bp of the TSS. If no such probes are present on the
beadarray, we estimate the average using probes map-
ping to the first exon. If these are also not present for
the given gene, we use the average over probes mapping
1500 bp upstream of the TF. The 200-bp region up-
stream of the TSS, first exon region, and 1500 bp up-
stream of the TF are the most predictive regions of gene
expression, in the context of Illumina beadarray probe
representation [88], which justifies the above procedure.
Having assigned a unique DNAm value to each gene, we
then z-score normalize the DNAm profile of each gene
across samples and estimate TF activity as the t-statistic
of a linear regression of this z-score normalized DNAm
profile against the TF binding profile, reversing the signs
of +1 and — 1 in LungNet, since lower promoter DNAm
levels are normally associated with TF binding.

Enrichment analysis of LungNet targets among binding
targets of TFs using ChIP-Atlas data

For 19 TFs in LungNet, we found corresponding ChIP-
seq profiles in ChIP-Atlas (http://chip-atlas.org), which
contains over 25,000 ChIP-seq profiles from public
repositories, including NCBI, DDBJ, ENA, ENCODE,
and the Epigenomics Roadmap. For these 19 TFs, we
downloaded the predicted binding targets from ChIP-
Atlas using + 1 kb, + 5 kb, and + 10 kb windows to assess
overlap between ChIP-seq peaks and the TSS of genes.
For each TF and window size we used all predicted bind-
ing targets with an average binding score larger than 0,
as assessed over all available samples/cell lines. For each
of the 19 TFs, we computed the overlap of the ChIP-
Atlas binding targets and the predicted targets from
LungNet, estimating a P value of enrichment using a
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one-tailed Fisher’s exact test. We verified the validity of
the P values with 10,000 Monte Carlo randomizations
whereby for each TF, an equal number of gene targets in
LungNet were randomly selected from the full GTEX
dataset. P values were adjusted for multiple testing using
Benjamini—Hochberg procedure.

Software availability
R-scripts implementing SEPIRA are freely available from
http://github.com/aet21/SEPIRA.
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