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Abstract

Despite thousands of genetic loci identified to date, a
large proportion of genetic variation predisposing to
complex disease and traits remains unaccounted for.
Advances in sequencing technology enable focused
explorations on the contribution of low-frequency and
rare variants to human traits. Here we review
experimental approaches and current knowledge on
the contribution of these genetic variants in complex
disease and discuss challenges and opportunities for
personalised medicine.

Introduction
Genetic research has played an instrumental role in the
discovery of new biological pathways underpinning com-
plex human disease and the evaluation of new targets for
therapeutic development. The past decade has seen an ex-
ponential increase in the number of known genetic loci
predisposing to complex disease, enabled by large-scale
meta-analyses based on genome-wide single-nucleotide
polymorphism (SNP) arrays imputed into reference haplo-
type panels [1]. These efforts have identified thousands of
(mostly common) genetic loci associated with disease bio-
markers and disease endpoints [2], with some initial ex-
amples of how these genetic findings can be used to
inform disease prediction [3], identification of causal
mechanisms of disease [4, 5] and the prioritisation of new
biological targets in drug discovery programmes [6—8].
Many challenges continue to exist in both the discovery
and interpretation of findings from genome-wide associ-
ation studies (GWASs). Highly successful international col-
laborative efforts have enabled association studies to reach
unprecedented sizes of thousands to hundreds of thousands
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of study participants [9—12]. Despite the increases in statis-
tical power afforded by these large-scale studies, for the ma-
jority of human traits genetic associations discovered
account for a fraction of disease or trait heritability (the
“missing heritability” paradigm). Genetic variants that are
outside the reach of the most statistically powered associ-
ation studies [13] are thought to contribute to the missing
heritability of many human traits, including common vari-
ants (here denoted by minor allele frequency [MAF] >5%)
of very weak effect, low-frequency (MAF 1-5%) and rare
variants (MAF <1%) of small to modest effect, or a combin-
ation of both, with several possible scenarios all deemed
plausible in simulation studies [14].

Empirical studies attempting to understand the impact
of rare or less common variation on human complex dis-
eases and traits remain to date relatively limited [15, 16],
but some lessons on their properties are beginning to
emerge from exome-wide and genome-wide sequencing
studies. For most traits, these studies have demonstrated
an inverse relationship between the variant’s “regression
effect size” (or disease odds ratio) and its frequency in the
population, as predicted by population genetic models
[17]. Differential selective pressures acting on variants
across the allele frequency spectrum underpin the ob-
served shape of this relationship in different human traits.
Such a relationship tends to be skewed in favour of rare
variants for traits most strongly influenced by natural se-
lection, compared with quantitative phenotypes or late-
onset diseases [17]. Mendelian diseases are at the extreme
end of the spectrum because of the high impact of selec-
tion on transmission of rare variants to subsequent gener-
ations. Initial evidence for complex diseases suggests that
autism spectrum disorders may be skewed towards rarer
susceptibility variants [18] compared with diseases such as
type 2 diabetes [19], age-related macular degeneration
[15] and schizophrenia [20], and quantitative cardiometa-
bolic traits [21, 22]. Further efforts to discover associations
driven by low-frequency and rare variants through
genome sequencing and large-scale imputation efforts
allow continuous refinements of the proportion of trait
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heritability explained by variants across the frequency
spectrum [23]. Finally, it is worth noting that estimates of
missing heritability from genome-wide variants are
strongly dependent on assumptions on linkage disequilib-
rium, allele frequency and genotype certainty [13, 24].
Rare SNPs have been estimated to contribute substantial
fractions of heritability (half the heritability of common
SNPs [25]), but these early estimates will likely be revised
as data continue to be accrued.

Another important challenge for complex disease genet-
ics is the identification and functional characterisation of
causal variants, or mutations in relevant genes, responsible
for association signals detected through GWASs [26].
Common risk variants map overwhelmingly to regulatory
regions [12], where inference of the underlying causative
genes is difficult. Recent developments in cellular and func-
tional genomics provide effective strategies to annotate the
clinical and phenotypic consequences of genome sequence
variation [27]. These approaches, which investigate a range
of processes such as transcription, translation and epigen-
etic regulation at the organismal, physiological or cellular
level [28], are a necessary step towards our understanding
of the complex relationship between genotype and pheno-
type on a global (genome-wide) scale. Even in the presence
of expansive datasets for annotation, however, the interpret-
ation of the precise functional consequence of each variant
requires rigorous and often painstaking evaluation of many
genes in different possible cellular and environmental con-
texts [29]. On the other hand, rare variants in or near gene
targets display larger average effects on phenotype com-
pared with both regulatory variants of comparable allele
frequencies and common genetic variants [21, 30]. The dis-
covery of these variants through focused sequencing explo-
rations of protein-coding regions is expected to greatly
facilitate the task of annotating genes underpinning genetic
associations with complex disease and describing the func-
tional consequences of human sequence variation. There
are, therefore, compelling arguments to accelerate efforts to
identify variants within these regions because of the relative
ease with which these discoveries can be turned into bio-
logical insights.

Here we review the current state of knowledge from
rare variant association studies (RVASs) of complex traits
and review approaches for discovering and testing associa-
tions for rare variants. Further, we discuss the growing
body of literature documenting examples of highly clinic-
ally informative genetic variants identified through be-
spoke genotyping arrays, imputation and population-scale
whole-exome and whole-genome sequencing.

Genomic tools for assessing low-frequency and
rare variants

Three broad strategies are available to access low-
frequency and rare variants: genotype imputation, the
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use of custom genotyping arrays and the use of whole-
exome or whole-genome sequencing.

Imputation

Genotype imputation provides a cost-effective strategy for
expanding the SNP content of genome-wide genotyping
arrays. It relies on the availability of reference panels of
phased haplotypes that can be used to impute genotypes
into sparse datasets generated by commercial genotyping
arrays [31, 32]. Multiple different reference panels have
been generated since 2005, enabled by expanding collec-
tions of polymorphisms in human populations. The first
two widely used reference panels generated by the Hap-
Map project included 269 samples and just over one mil-
lion SNPs (phase I) [33] and 3.1 million SNPs (phase II)
[34], respectively. The ascertainment of these early panels
was strongly skewed towards common variants (MAF
>5%) found near human genes, thus limiting the represen-
tation of low-frequency and rare variants in early GWASs
[35]. HapMap phase III included 1.6 million SNPs in 1184
individuals from 11 populations, ascertained by common
SNP repositories and from targeted resequencing of ten
100-kb regions in 692 of these individuals. Compared with
previous reference panels, the authors demonstrated gains
in imputation accuracy particularly for low-frequency and
rare variants [36].

Further improvements in imputation panels were en-
abled by large-scale whole-genome sequencing (WGS)
efforts in reference human populations, and particularly
the 1000 Genomes Project (pilot, phase I and phase III).
In the first phase of the project (phase I), a combination
of low read depth WGS (2—4x) and targeted deep (50—
100x) exome sequencing was used to characterise 38
million single-nucleotide variants (SN'Vs) and 1.4 million
short insertion-deletions (INDELs) in 1092 individuals
from 14 populations. The authors further showed that
individuals from the various populations display different
profiles of rare and common variants with considerable
geographic differentiation [37]. The data set was ex-
panded in phase III where the genomes of 2504 individ-
uals from 26 populations were reconstructed by applying
a combination of low-read-depth WGS, deep exome
sequencing and dense microarray genotyping. This
resulted in over 88 million variants which were phased
onto high-quality haplotypes. The authors estimated that
this resource includes >99% of SNVs with a frequency of
>1% [38].

In addition to the 1000 Genomes Project, which com-
prises samples from all over the world, other panels
based on WGS have been generated in individual popu-
lations. One of these efforts was the UK10K Cohorts
Project, which carried out low-read-depth (approxi-
mately 7x) WGS in 3781 individuals of British ancestry
from two population-based cohorts. Overall, the project
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identified over 42 million SNVs and 3.5 million INDELSs,
of which about 80% were rare and about 5% were low
frequency, and in total 24 million were novel variants.
The UK10K WGS imputation reference panel was
shown to increase coverage and accuracy in European
populations, especially for low-frequency and rare vari-
ants, when compared with the 1000 Genomes Project
phase I (1000GP) reference panel (where the European
sample comprises only about 10% of the UK10K sample
size) [39]. Zheng and co-authors demonstrated the value
of using a combined UK10K/1000 Genomes Project ref-
erence panel to discover low-frequency variants associ-
ated with bone mineral density [40]. Other sequencing
studies, such as Genome of the Netherlands (GoNL)
[41], SardiNIA [42, 43] and HELIC-MANOLIS [44], also
reported the usefulness of population-specific samples
for the characterisation of rare variants.

Finally, efforts are now in place to combine publicly
available WGS datasets to create a single reference panel
with increased depth of low-frequency and rare haplo-
types. To date, the Haplotype Reference Consortium has
combined low-read-depth WGS data (4-8x) from 20
studies of mainly European ancestry. The relative panel
contains 64,976 haplotypes from 39,235,157 SNVs with
minor allele count >5, and the large number of samples
and variant sites increases the accuracy of the genotype
imputation, especially at low-frequency variants down to
0.1% MAF and allows efficient phasing and imputation
on existing servers with the aim to carry out imputation
in a more streamlined manner [45, 46]. The Haplotype
Reference Consortium panel will continue to incorporate
samples from worldwide populations, which is import-
ant; since rare variants are, on average, younger than
common variants, they show more geographical cluster-
ing and they are more difficult to impute. In order to
provide a comprehensive imputation reference panel, it
is important to combine many samples and to include
samples from the geographical area of interest [47].
Additional advances to current reference panels are
likely to emerge from large-scale sequencing studies
such as the Trans-Omics for Precision Medicine
(TOPMed) Program [48] or the 100,000 Genomes Pro-
ject in the UK [49].

Custom genotyping arrays

An alternative strategy to imputation to survey low-
frequency and rare variants in association studies takes
advantage of bespoke genotyping arrays. These arrays
are often disease focused and aim to enrich standard
haplotype tagging SNP panels with variants of interest
identified through sequencing and fine-mapping efforts.
One such array was Immunochip, designed in 2009 by
investigators of 11 distinct autoimmune and inflamma-
tory diseases to assay 195,806 SNPs and 718 small
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INDELs. It included the top 2000 independent variants
for each disease that showed evidence for an association,
as well as SNPs from the 1000 Genomes Project and
resequencing data to densely cover 186 different disease
loci, including the major histocompatibility complex
(MHC) and the killer immunoglobulin-like receptor
(KIR) loci. The coverage of the low-frequency and rare
variant spectrum is incomplete since the array was de-
signed using early 1000 Genomes Pilot data (February
2010 release). Another limitation of the Immunochip is
that the design is based on studies of European samples,
and thus non-European variation is under-represented
in this array [50].

The Metabochip custom array interrogates nearly
200,000 SNP markers of 257 genome-wide significant as-
sociation signals for metabolic diseases (type 2 diabetes,
coronary artery disease, myocardial infarction) and
quantitative traits (body mass index, glucose and insulin
levels, lipid levels and blood pressure). This array, simi-
lar to Immunochip, was very cost-effective, meaning
more samples could be genotyped and its uniformity en-
abled direct comparison across phenotypes [51]. Meta-
bochip SNPs were selected from International HapMap
[34] and 1000 Genomes Projects [52] repositories to in-
clude SNPs across a wide range of allele frequencies.
Metabochip SNPs focus on trait-associated loci (1.5% of
the genome) by increasing their SNP resolution by fine-
mapping. Imputation accuracy in fine-mapping regions
is increased compared to traditional SNP arrays, as
54.4% of European SNPs from 1000GP phase I are
tagged with r*>0.8 [51].

More recently, custom genotyping arrays have been
developed to enhance representation of low-frequency
and rare variants genome-wide. The UK Biobank Axiom
Array contains 820,967 genetic variants, targeting specif-
ically disease-specific and rare coding variants [53]. The
Mlumina HumanExome BeadChip (ExomeChip) com-
prises 247,870 variants (of which about 75% have MAF
<0.5%) discovered through exome sequencing in approxi-
mately 12,000 individuals, including high-confidence non-
synonymous and protein-altering variants (splice-site and
stop gain or loss codons). Additionally, the exome chip in-
cludes common variants found through GWAS, ancestry
informative markers (for African and Native Americans),
mitochondrial variants, randomly selected synonymous
variants, HLA tag variants and Y chromosome variants.
The widespread application of the ExomeChip array has
resulted in relatively few novel discoveries, including the
identification of novel associations of a low-frequency
coding variant in GLPIR with fasting glucose and
type 2 diabetes [54], a number of novel low-frequency
lipid signals at previously known loci [55, 56] and a
large set of 32 rare and 51 low-frequency coding vari-
ants associated with height [57].
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Exome or whole-genome sequencing

Historically, candidate gene sequencing studies have been
used to explore sequence variation through relatively
small-scale sequencing efforts. These were based mainly
on capillary (Sanger) sequencing, typically focused on
small numbers of patients and healthy controls and on
genes with a strong a priori biological candidacy or im-
portance for a given trait of disease [58—64]. Studies based
on whole-exome sequencing (WES) and WGS have been
increasingly used to systematically assess the properties
and associations of rare variants, enabled by decreases in
sequencing costs and increases in sequencing throughput
[65]. WES probes only approximately 1.2% of the genome,
and is thus cheaper relative to WGS, but limits investiga-
tions to variants in protein-coding regions of the genome.
An enrichment analysis in the UK10K Project used func-
tional and regulatory features, such as genic annotations,
chromatin states, DNasel hypersensitive sites, transcrip-
tion factor binding sites, conservation scores and histone
modifications, to assess the relative contribution of low-
frequency and common variants to associations. The re-
sults showed that low-frequency variants in exonic regions
displayed the strongest degree of enrichment (25-fold,
compared with fivefold for common variants), which is
compatible with the signatures of purifying selection, such
as a negative correlation between functionally important
variants and allele frequency [66]. However, non-coding
low-frequency alleles were shown to also contribute to
phenotypic trait variation: both common and low-
frequency variants had comparably strong levels of func-
tional enrichment for several non-coding domains (i.e.
transcription start sites, DNase I hotspots and 3" UTRs of
genes) [21]. Additionally, it has been suggested that the
quality and the calling of coding SNVs and INDELSs is
comparable if not better in WGS, i.e. an estimated 3% of
coding variants were found by WGS but not called by
WES [67]. We review later results of recent exome- and
genome-sequencing studies of complex disease.

Optimal methods for association analysis with
low-frequency and rare variants

Approaches typically used for testing associations of
genetic variants with phenotype based on simple regres-
sion models are underpowered for rare variants [68].
Moreover, many more rare independent variants are
found throughout the genome compared with common
variants, increasing the multiple testing penalty for these
studies. To overcome both of these issues, several statis-
tical methods have been proposed to increase statistical
power in association studies, typically by seeking to
combine information across multiple rare variants
within a specific genomic functional unit (e.g. gene,
exon). Rare variant region-based methods can be
grouped in four broad categories (Table 1).

Page 4 of 17

Burden tests

Burden tests (ARIEL test [69], RWAS [70], CAST [71],
CMC method [72], MZ Test [73], WSS [74], aSum [75],
Step-up [76], EREC test [77], VT [78], KBAC method
[79], RBT [80]) collapse information for genetic variants
within a predefined functional unit into a single score
and then regress this score against the trait of interest.
The various burden tests differ in how this information
is summarised. For example, the simplest form of
burden test counts the number of minor alleles across
all variants in the set producing a genetic score for each
individual [69]. The cohort allelic sums test (CAST) [71]
sets the genetics score to 0 or 1 based on the presence
or absence, respectively, of at least one rare variant in
the region tested. A more sophisticated weighting func-
tion was proposed by Madsen and Browning [74] with
the weighted sum statistic (WSS) that takes into account
all the variants’ frequencies without the need to set a
fixed threshold to define rare and common variant as in
CAST. Moreover, WSS considers other information on
functional annotation of variants in its weighting
method. Other kinds of burden tests have been devel-
oped to combine the collapsing methods with a multi-
variate test, such as the combined multivariate and
collapsing (CMC) method [72]. Main limitations of bur-
den tests are the strong assumption that the variants
tested within the functional unit are all causal and asso-
ciated with the trait with the same direction and magni-
tude of effect. This assumption is violated most of the
time due to the highly variable and unknown allelic
architecture of complex traits. For example, the PCSK9
gene carries alleles with both loss and gain function
effects on LDL cholesterol [81, 82].

Variance-component tests

Varience-component tests (C-Alpha test [83], SKAT
[84], SSU test [85], KBAT [86]) have been developed to
consider the particular scenario where both risk and
protective alleles may be found within a given gene or
functional unit, testing for the distributions of genetic ef-
fects within a set of variants. This approach is flexible
and allows for a mixture of effects in the rare variant set.
The sequence kernel association test (SKAT) is one of
the most widely used approaches, can take into account
weightings of rare variants, family structure and covari-
ates and is primarily designed for quantitative traits.
Other tests (C-alpha [a special case of SKAT], WSS and
CMC) can be applied only in case—control studies [84].

Combined tests

Combined tests (SKAT-O [87], EMMPAT [88], Fisher
method [89], MiST [90]) have been developed to maxi-
mise power in a broad range of allelic architecture sce-
narios. In fact, this is the more realistic assumption and
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there are a number of statistical approaches to combine
p values from two or more complementary tests. Among
these approaches Fisher’s method [89] has been exten-
sively used. More recently Lee and colleagues proposed
an optimisation of the SKAT test (SKAT-O) that com-
bines the burden and SKAT tests considering their best
linear combination [87, 91].

Other tests

Other tests have been developed to account for signal
sparsity across the tested region and include least abso-
lute shrinkage and selection operator (LASSO) and the
exponential combination (EC) test [92, 93]. Also Bayes-
ian approaches have been proposed, but due to the com-
putational time they are not as widely used as the
aforementioned frequentist approaches [94]. A critical
problem is to account for sequence quality, especially in
next-generation sequencing data with relatively low
coverage per individual. Two previous approaches are
able to incorporate weights based on genotype uncer-
tainty metrics for imputed genetic variants or for
sequencing-derived variants [95], outperforming some
pre-existing models [96].

Power, replication and confounding affecting rare
variant association tests

An ongoing challenge is to systematically evaluate the
relative merit, assumptions, implementation and statis-
tical power of different analyses. Attempts to systematic-
ally evaluate the power of different methods for different
allelic predisposition scenarios have been carried out
using both simulations and empirical data [68, 69, 97—
99]. They have shown that gene-based tests are sensitive
to variables such as the choice of analysis unit (e.g. exon
versus whole gene), the number of variants tested within
an aggregation unit and also the choice of particular
functional classes of variants (e.g. loss-of-function, non-
synonymous, etc.) or the magnitude of linkage disequi-
librium between variants. As an example, Moutsianas
and colleagues carried out a comprehensive study based
on simulated data of similar size to current next-
generation sequencing (NGS)-based association studies
(3000 case—control individuals) [68]. The authors
assessed power to detect associations using the main
gene-based rare variant tests and for six different archi-
tecture scenarios informed by an empirical study of type
2 diabetes (T2D) (described in [68]). They showed that
power to discover associations was low (<20%, for type I
error («) = 2.5 x 107°), and even with sample sizes more
than triple those of current empirical studies (about
10,000 case—control individuals) the power remained
modest (on average about 60%). The authors further
showed that combined tests (e.g. SKAT-O and MiST)
had marginally greater power to detect associations
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across the number of simulated allelic architectures.
This suggests that the application of these tests may
be preferable in the context of genome-wide explora-
tions in order to capture the widest possible range of
allelic scenarios at different genes. Burden tests were
shown to have more power to identify associations
for deleterious variants, especially when neutral vari-
ation is filtered out. However, it is still unclear to
what extent the simulations used in this and other
studies may reflect the true allelic architecture of
traits, highlighting the importance of implementing
flexible testing scenarios in RVASs.

Other strategies for increasing statistical power are
also liable to potential problems. For instance, the
benefits of increases in sample size that are achieved
through combining different sequencing studies can
potentially be outweighed by issues of heterogeneity
in disease state or in environmental exposures, or
even differences in allele frequency between studies.
Furthermore, studies focusing solely on certain cat-
egories of variants (e.g. loss of function variants)
could on one hand increase the power by only con-
sidering variants with strong effect on phenotype. On
the other hand, it has been suggested that removing
flanking variants could potentially decrease the overall
power to detect an association signal [100]. To ad-
dress these issues, Liu et al. [101] developed a new
method to meta-analyse rare variants that instead of
using p values combines score statistics for each indi-
vidual variant and employs a covariance matrix be-
tween variants reflecting the linkage disequilibrium
structure inside the tested region.

Another challenge for RVASs is to achieve robust
replication of signals, particularly in the instances
where associations present allelic and locus hetero-
geneity [102]. For rare variants identified through
single variant association tests, replication can be
achieved by genotyping the identified variant in rep-
lication cohorts, provided obviously that the variant
is indeed polymorphic in that cohort. For variants
identified through aggregation methods, replication
may be achieved by genotyping all the variants
within the functional units discovered or direct se-
quencing of all the functional units [103]. Advances
in sequencing and target-capture technologies reduce
the cost of resequencing and, although it is more ex-
pensive than genotyping, resequencing can poten-
tially identify new variants inside the functional unit
that the discovery cohorts were not able to pinpoint
[104, 105].

Finally, population stratification poses unique chal-
lenges in RVASs. In fact, systematic differences in allele
frequencies due to differences in ancestry are more
pronounced for rare variants [37]. Moreover, strong
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patterns of population stratification are predicted to arise
in the presence of sharp spatial distributions for non-
genetic risk of disease [106]. Adjusting for population
stratification using traditional methods such as principal
component analysis (PCA) and linear mixed effect models
may, in most of the cases, not be suitable for rare variant
tests [106—109]. Alternatives to reduce the confounding
effects of population stratification in rare variant tests are
using family-based designs or including spatial/geograph-
ical information [21, 106]. Moreover, calculating principal
components using all or only common variants has shown
to be more effective than using only rare variants [110].
Babron et al. [111] reported differences in population
stratification patterns between rare and common variants
in the UK population.

Study designs for enriching or prioritising rare
variants

Study designs exploiting unique characteristics of differ-
ent populations have been used to boost power in asso-
ciation studies of rare and low-frequency alleles. One
notable example is population isolates, which provide
powerful study designs for medical genetics due to a
number of advantageous characteristics. For example,
variants of medical importance that are rare in outbred
populations might be found at higher frequencies in iso-
lated populations due to past bottleneck events, genetic
drift or adaptation and selection [43, 112], increasing
power to detect associations with medically important
phenotypes [113, 114].

A particularly interesting case of rare variation is vari-
ants that lead to inactivation of the corresponding pro-
tein. Such so-called loss-of-function (LoF) variants
include variants predicted to lead to premature termin-
ation of the protein (stop-gain variants or protein-
truncating variants) and insertion or deletion polymor-
phisms that affect the overall codon sequence of the pro-
tein (frameshift INDELS) or alter pre-mRNA splicing of
essential exons (essential splice-site variants). LoF vari-
ants provide powerful tools to understand the impact of
“knocking out” human genes, akin to gene knockout ex-
periments commonly conducted in model organisms
[115]. Understanding the phenotypic and clinical conse-
quences of carrying LoF alleles, particularly when they
are carried in the homozygous (i.e. complete knockout)
state, has been shown to provide crucial insights into the
identification of new disease genes and druggable path-
ways [116-118]. Further, studies of LoF variants in
established drug targets, when carried by an otherwise
healthy individual, provide evidence for safety of modu-
lating that particular target to reduce disease risk. The
data set of 60,706 individuals collated by the Exome
Aggregation Consortium (ExAC) can assist in filtering
of candidate disease-causing variants and in the
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discovery of human “knockout” variants in protein-
coding genes [119].

Efforts to discover these mutations are boosted in pop-
ulations with high rates of homozygosity, for example in
populations with a tradition of consanguineous marriage,
and where such variants occur more often in a homozy-
gous state. Analysing samples from the PROMIS study,
it was found that 961 genes were completely inactivated
in at least one participant. Combined with rich pheno-
type information, this enabled the discovery of geno-
type—phenotype associations of clinical importance, such
as the association of APOC3 with absent plasma apoli-
poprotein C-III levels [120]. Another study predicted
LoF in 781 genes after analysing 3222 British Pakistani
heritage adults with high parental relatedness [121]. The
whole genomes of 2636 Icelanders together with imput-
ing additional 101,584 chip-genotyped and phased Ice-
landers has begun to enable studies of rare complete
human gene knockouts in the Icelandic population. The
authors are also planning to characterise most homozy-
gous LoF variants in the Icelandic population and to
carry out bespoke phenotyping of the carriers [122]. A
caveat of this approach is that the functional conse-
quences of sequence variants are typically bioinformati-
cally annotated as based on generic transcript
annotations (for instance based on the most deleterious
consequence among all annotated transcripts). LoF vari-
ants may therefore not lead to protein inactivation in a
biologically relevant context, which could be due to gene
redundancy, or to heterozygosity, or to genuine variants
that do not actually disrupt gene function, or to variants
that are only active in certain tissue-specific (or rare)
isoforms [112, 115]. Thus, extensive and painstaking
follow-up efforts are required to validate the predicted
consequences of these variants.

Initial results from associations from large-scale
sequencing projects

A growing number of studies have explored properties
of low-frequency and rare variants and their relevance
for complex traits and disease (Fig. 1, Tables 2, 3,
Additional file 1). A first exploration based on exome-
sequencing in 200 individuals from Denmark identified
an excess of low-frequency deleterious, non-synonymous
SNVs compared with synonymous SNVs [123]. In an-
other study 15,585 human protein-coding genes were se-
quenced to an average median depth of 111x in 2440
individuals of European and African ancestry. The ma-
jority of the SNVs were rare (MAF <0.5%), previously
unknown and population-specific. It was estimated that
2.3% of the 13,595 SNVs each person carried were pre-
dicted to affect protein function of about 313 genes per
genome and most of the variants that affected the
protein function were rare [66].
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A study by the UKIOK Project exploited low-read-
depth WGS and focused on 64 different quantitative
cardiometabolic traits in the general UK population
[21, 39]. While yielding initial discoveries of rare infor-
mative alleles [22, 124-126], these initial efforts have
highlighted a clear need to increase the statistical power
of studies of complex human disease, particularly to
target the contribution of rare variation. Further, they
showed that highly penetrant alleles contributing to
phenotypic variance of cardiometabolic traits are likely to
be found at frequencies well below 1% in the general
European population, but are poorly tagged by imput-
ation reference panels, suggesting that direct assessment
through genome sequencing will be required to compre-
hensively access this frequency range for complex traits.

deCODE gathered genotypic and medical data of more
than half of the Icelandic population [127]. They gener-
ated a population-specific reference imputation panel
based on WGS data for approximately 2000 study partic-
ipants. They then applied imputation not only to the ap-
proximately 90,000 participants with genome-wide SNP
arrays available, but also to over 250,000 participants
where genotypes could be inferred from comprehensive
genealogical records; this led to novel discoveries for a
range of different complex traits and diseases. As one
example, Styrkarsdottir et al. [128] identified a nonsense
variant in LGR4 associated with low bone mineral dens-
ity (osteoporosis). The study included 4931 individuals
with low bone mineral density and 69,034 individuals as
control group. Steinthorsdottir et al. [129] discovered
four previously unreported rare and low-frequency vari-
ants in CCND2, PAM and PDXI genes affecting risk of
T2D. Helgason et al. [130] found a rare variant in the
C3 gene associated with age-related macular degener-
ation. Also, rare variants in TREM2 and APP genes were
associated with Alzheimer’s disease [131, 132]. Further,
this project identified 6795 autosomal LoF SNPs and
INDELSs in 4924 genes of which 7.7% were homozygotes
or compound heterozygotes with a MAF below 2%

[122], boosting further effort to study gene inactivation
in humans. Recently, a rare variant in ASGRI gene was
found to lower the risk of a heart attack by more than
one-third in Icelanders [133]. The function of this gene
needs still to be elucidated, but possibly it could be
protective against heart disease with an alternative mech-
anism rather than acting on blood lipids, making it a
potentially promising drug target to prevent heart disease.

The Genome of the Netherland (GoNL) project used
WGS to characterise DNA sequence variation in the
Dutch population, focusing on a representative sample
consisting of 250 trio-families from all provinces in the
Netherlands [41, 134]. Significant improvement in the
imputation quality for rare variants (MAF 0.05-0.5%)
compared with the 1000GP were demonstrated for the
Dutch population, illustrating the value of using large,
population-specific reference panels for imputing rare
variants [135]. Further, use of this panel led to the iden-
tification of a rare deleterious missense variant in
ABCAG6 associated with LDL-C and TC in the Dutch
population [136].

Similarly, the African Genome Variation Project, con-
sisting of dense genotypes from 1481 individuals and
whole-genome sequences from 320 individuals across
sub-Saharan Africa, demonstrates the importance of
adding population specific cohorts to existing reference
panels to improve imputation accuracy [137] to account
for the greater genetic diversity in these regions com-
pared with the other populations who have expanded
out of Africa.

The SardiNIA project is a longitudinal study including
genetic and phenotypic data for 1257 multigenerational
families from four villages in the Lanusei valley in
Sardinia, Italy. In a recent study, WGS was performed in
a total of 2120 participants [43], discovering 76,000
variants that were common in the SardiNIA study (fre-
quency >5%) but rare elsewhere (<0.5% in the 1000GP).
This study identified 14 associations for lipid levels (in-
cluding two major new loci) and 19 for inflammatory
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markers (including two novel loci). In a companion
study [138], the authors also identified five variants regu-
lating haemoglobin levels at previously undetected loci
(MPHOSPHS, PLTP-PCIF1, ZFPM1 (FOGI), NFIX and
CCND3), highlighting the importance of sequencing iso-
lated populations in finding variants that may be very
rare and possibly not present in other populations.

The Cohorts for Heart and Aging Research in
Genomic Epidemiology Consortium (CHARGE) design
includes five prospective cohort studies from the USA
and Europe: the Age, Gene/Environment Susceptibili-
ty—Reykjavik Study, the Atherosclerosis Risk in Com-
munities Study, the Cardiovascular Health Study, the
Framingham Heart Study and the Rotterdam Study
[139]. Among the studies published by this project
(Table 2), one for instance identified rare variants with
large effects associated with HDL-C levels through WGS
of individuals sampled from the tails of the phenotypic
distribution, some of which overlap with previously
identified variants in Mendelian disorders [140].

ENGAGE was a successful consortium effort bringing
together data from large-scale research in genetic and gen-
omic epidemiology from population cohorts to be trans-
lated into information relevant for future clinical
applications [141]. In a recent study based on imputation
using the 1000GP, 15 loci with low-frequency and ten loci
with missense lead-SNPs and two loci with an accumula-
tion of rare variants were found to be associated with lipid
levels, and were also found to increase the proportion of
variance explained for LDL-C and TC [142].

As part of the National Heart, Lung, and Blood Insti-
tute (NHLBI) Exome Sequencing Project, Emond et al.
[105] identified missense variants in DCTN4 that are as-
sociated with resistance to Pseudomonas aeruginosa in-
fections. This study was conducted using an extreme
phenotype design in which WES was carried out on pa-
tients with cystic fibrosis (n=91). A large WES study (n
=2005), also part of the Exome Sequencing Project,
identified a novel gene, PNPLS5, affecting LDL-C levels
[143]. Do et al. [144] found rare variants in LDLR and
APOAS, increasing risk for myocardial infarction. In an-
other study, rare and common variants were found to be
associated with von Willebrand disease and factor VIII
levels in African Americans [145]. Finally, analysis of
whole exome sequences of 3734 participants of Euro-
pean or African ancestry identified rare mutations dis-
rupting APOC3 function associated with lower levels of
plasma triglycerides and a reduced risk of coronary heart
disease for carriers of these mutations [104].

A large-scale sequencing study by the GoT2D and
T2D-GENES consortia [19] investigated lower frequency
variants discovered from WGS of 2657 European
individuals with and without T2D and WES of 12,940
individuals from five ancestry groups. The variants
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discovered were not sufficient to explain the large frac-
tion of heritability missed from previous GWASs.

Extending to neuropsychiatric disorders, a recent
study identified rare LoF variants in the SETDIA gene to
be associated with schizophrenia. The WES study of
4264 schizophrenia cases, 9343 controls and 1077 trios
identified three de novo mutations and seven LoF vari-
ants found in cases in the discovery cohort but none in
controls. Two analytical approaches, one based on Fisher’s
method to combine de novo and case—control p values
and the other using the transmission and de novo associ-
ation (TADA) model, were used in the study [146].

Finally, cancer such as breast cancer has a high incidence
worldwide with 5-10% of cases associated with highly
penetrant germline susceptibility alleles. BRCAI and
BRCA2 are the first genes found to be associated with a
higher predisposition to breast cancer [147]. Most BRCA1
and BRCA2 pathogenic variants are predicted to produce a
truncated protein product and thus loss of protein func-
tion [148]. However, the prevalence of BRCAI and BRCA2
mutations is only approximately 24% [149, 150]. Recently,
exome sequencing has uncovered substantial locus hetero-
geneity among affected families without BRCAI or
BRCA2 mutations [151, 152]. The new pathogenic
variants are rare, posing challenges to estimation of risk
attribution through patient cohorts. Among these, rare
monoallelic LoF variations within the PALB2 gene (part-
ner and localiser of BRCA2) are associated with breast
cancer at a risk two to four times that among non-
mutation carriers [153].

These and other examples illustrate the value of different
designs, including sequencing population-specific cohorts
to enhance the imputation quality of rare and low-
frequency variants, exploiting population isolates, and se-
quencing of extremes of phenotypic traits. Despite limita-
tions of power and resolution, rare variant association
studies are becoming increasingly mature. The majority of
associations with low-frequency and rare variants demon-
strate relatively small effects on complex traits and disease.
Interestingly, a study conducted by Wood et al. [154] in an
Italian cohort (InCHIANTTI) specifically compared pheno-
typic effects of low-frequency and rare variants to those of
common variants. While some low-frequency variants with
larger effect sizes (and similarly phenotypic variance
explained) were detected, these represented a very small
proportion of all association. This suggests that, particularly
for outbred populations, greater sample sizes will be neces-
sary to realise the potential of RVASs to identifying new
genes involved in human disease pathways and biology.

Future prospects

Despite the success of GWASs in identifying thousands
of robust associations with complex diseases and traits,
few examples of these results have been successfully
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translated into clinical use [118, 155, 156]. Nevertheless,
GWAS loci have been shown to increase the therapeutic
validity of selected targets by twofold compared with
previous target selection [157]. Substantial decreases in
sequencing costs, coupled with increases in throughput
afforded by massively parallel sequencing, offer the
promise to greatly boost the discovery of highly inform-
ative rare and low-frequency genetic variants through
WES and WGS. Advances in phenotyping (including
multivariate measures of traditional disease risk factors,
disease-relevant endpoints derived from electronic
health records or molecular traits driven by advances in
functional and cellular genomics) will further boost the
power of these genomic approaches. Multiple areas of
research will benefit from these enhancements. First,
they will lead to discoveries of highly informative rare al-
leles, including LoF mutations, associated with risk of
disease. Second, they will provide more powerful genetic
tools to assess the causal contribution of novel biological
pathways to disease risk through Mendelian randomisa-
tion approaches. Finally, they will enable efforts to dis-
sect and refine understanding of causal regulatory
variants through genome-scale molecular and cellular
assays. Thus, the discovery of associations driven by
low-frequency and rare variants are expected to contrib-
ute to efforts to validate therapeutic targets, for instance
by identifying alleles that mimic the effect of modulating
drug target genes, which can inform the likelihood of
success in treating disease by modulating biological
pathways through novel and existing drugs. These ap-
proaches thus offer great promise for reducing the attri-
tion rate in drug development by identifying new drugs
with higher efficacy and by informing repositioning of
existing drugs towards new disease indications.

Additional file

Additional file 1: All rare variants (allele frequency <5%) that were
discovered across different traits, together with chromosomal position
(GRCh37), mapped gene, disease or traits, sample size, allele frequency,
effect size, population and reference. (XLSX 39 kb)
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