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Background: Gene body methylation at CG dinucleotides is a widely conserved feature of methylated genomes
but remains poorly understood. The Arabidopsis thaliana strain Cvi has depleted gene body methylation relative to
the reference strain Col. Here, we leverage this natural epigenetic difference to investigate gene body methylation

Results: Recombinant inbred lines derived from Col and Cvi were used to examine the transmission of distinct
gene body methylation states. The vast majority of genic CG methylation patterns are faithfully transmitted over
nine generations according to parental genotype, with only 1-4% of CGs either losing or gaining methylation
relative to the parent. Genic CGs that fail to maintain the parental methylation state are shared among
independent lines, suggesting that these are not random occurrences. We use a logistic regression framework to
identify features that best predict sites that fail to maintain parental methylation state. Intermediate levels of CG
methylation around a dynamic CG site and high methylation variability across many A. thaliana strains at that site
are the strongest predictors. These data suggest that the dynamic CGs we identify are not specific to the Col-Cvi
recombinant inbred lines but have an epigenetic state that is inherently less stable within the A. thaliana species.
Extending this, variably methylated genic CGs in maize and Brachypodium distachyon are also associated with

Conclusions: These results provide new insights into the features determining the inheritance of gene body
methylation and demonstrate that two different methylation equilibria can be maintained within single individuals.
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Background

Gene body methylation is a widely conserved feature of
methylated eukaryotic genomes and has been described
in plants [1-5], various insects [6], mammals, including
humans [7, 8], and others [9, 10]. Body-methylated
genes, which make up about 30% of genes in A. thaliana
[2, 3], are moderately expressed [2, 3, 7, 10, 11], longer
than unmethylated genes [3, 4], usually present in a sin-
gle copy in the genome [12], and slowly evolving [4, 13].
Levels of gene body methylation are well conserved be-
tween orthologs in related species, such as
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Brachypodium distachyon, rice, and maize [14], and hon-
eybee and the parasitoid wasp Nasonia vitripennis [13].
Together, these observations suggest that gene body
methylation levels might have been evolutionarily se-
lected for at some loci for an as-yet undetermined func-
tion. While some evidence suggests that gene body
methylation can affect gene expression [15], regulate
splicing [16], or prevent aberrant transcription initiation
[17], most studies find little evidence of a causal rela-
tionship between gene body methylation and gene ex-
pression in plants [2, 18-20]. This has led to the
suggestion that gene body methylation is merely a
byproduct of other methylation pathways [20] or
transcription [21].

The origin of gene body methylation remains unclear.
Gene body methylation only occurs at cytosines in the
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CG context. In plants, this is in contrast to methylation
elsewhere in the genome, which is found at cytosines in
the CG, CHG, and CHH sequence contexts. Methylation
co-occurring in all three contexts is often associated with
repetitive sequences and transcriptional silencing and is
established by the RNA-directed DNA methylation
(RADM) pathway. Non-CG methylation is maintained by
RdDM, CMT3, and CMT2 (reviewed in [22]). The ab-
sence of non-CG methylation in gene bodies [1-3] sug-
gests that these pathways do not presently target genes.
CG methylation is maintained by the maintenance meth-
yltransferase MET1, which methylates the new strand of
replicated DNA based on the pattern of methylation on
the old strand [22]. Loss of MET1 leads to almost
complete loss of gene body methylation, which often does
not return even many generations after functional MET1
is reintroduced [23-25].

The lack of genetic or molecular resources for targeted
alteration of gene body methylation has made investigat-
ing this type of methylation in isolation difficult. Mutants
that lack gene body methylation, such as met1, also lack
CG and non-CG methylation throughout the genome and
have pleiotropic phenotypes [26, 27]. However, Arabidop-
sis thaliana is distributed worldwide and exhibits consid-
erable natural epigenetic variation [12, 19]. We previously
showed that an A. thaliana strain from the Cape Verde
Islands (Cvi) has approximately half as much genic CG
methylation as the reference strains Col and Ler, but simi-
lar levels of non-genic methylation [28], making it a po-
tentially powerful tool for specifically studying gene body
methylation. Here, we further characterize gene body
methylation in Cvi and profile DNA methylation in ten
Col-Cvi recombinant inbred lines (RILs) [29] to examine
how different methylation states are transmitted to pro-
geny. While most genes in the RILs had CG methyla-
tion similar to the parent line from which the gene
was inherited, individual genic CGs gained or lost
methylation relative to the parent line at a low rate
(1-4%) in each RIL. We examined whether sequence
composition, sequence motifs, methylation patterns,
small RNAs, or various other features were associated
with these dynamically methylated sites. Dynamic cy-
tosines were associated with several distinct local
methylation features. Using a regression approach, we
found that intermediate local CG methylation and
variable methylation across A. thaliana strains were
the best predictors of dynamic CG sites in the RILs.

Results

Cvi genes lack methylation at a subset of CG sites

To better characterize the differences in methylation be-
tween Col and Cvi, we performed whole-genome bisul-
fite sequencing of leaf DNA (Additional file 1: Table S1).
Cvi lacked methylation at a subset of genic CG
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dinucleotides that were methylated in Col (Fig. 1la),
whereas transposable element (TE) methylation and
non-CG methylation were similar in both strains (Fig. 1a;
Additional file 1: Figure S1). For the purposes of this
study, genic CG dinucleotides are defined as all CGs be-
tween transcriptional start sites and transcriptional ter-
mination sites that do not overlap an annotated TE. The
majority (77.7%) of genic CG sites lacked methylation in
both strains (defined as <20% methylation), whereas
5.9% were highly methylated in both strains (defined as
>80% methylation). By contrast, 9.2% were methylated in
Col but not Cvi, and only 1.2% were methylated in Cvi
but not Col (Fig. 1a). To compare methylation between
Col and Cvi at the gene level, we calculated the fraction
of CGs in each of these four categories for each gene
and performed hierarchical clustering (Fig. 1b; Add-
itional file 1: Figure S1). Most genes had little to no gene
body methylation in either strain, consistent with previ-
ous reports [2, 3]. A set of 381 genes (cluster 7 in Fig. 1b)
were highly CG methylated in both strains. These genes
were also associated with significant non-CG methyla-
tion (Fig. 1c) and are likely RADM targets. Two small
groups of genes had high CG methylation specific to one
strain (clusters 5 and 6), as well as non-CG methylation
in the methylated strain (Fig. 1c). The presence of non-
CG methylation suggests that these genes are strain-
specific RADM targets. These genes also had higher bi-
sulfite sequencing read coverage in the strain with non-
CG methylation (Additional file 1: Figure S1). Although
preferential amplification of methylated DNA during bi-
sulfite sequencing could explain some of these differ-
ences [30], these results could also indicate that there
are strain-specific copy number increases at these loci,
which would be consistent with their methylation profile
since repetitive sequences are often RADM targets. The
93 genes methylated specifically in Cvi (cluster 6) were
strongly enriched for F-box genes (enrichment score
23.14, adj p value 9.2 x 10739 [31], one of the largest
and most rapidly evolving gene families in plants [32].
The remaining 7536 genes were partially methylated in
Col and had reduced methylation to varying degrees in
Cvi (clusters 1, 3, and 4; Fig. 1b). The majority of these
genes also lacked non-CG methylation in both strains
(Fig. 1c), suggesting that the differences in gene body
methylation were not due to differential RADM activity.
To determine whether Cvi gene body methylation pat-
terns were unusual compared to a broader panel of
wild-type Arabidopsis strains, we performed principal
component analysis (PCA) of weighted average CG gene
body methylation (calculated as in [33]) for 927 strains
characterized by Kawakatsu et al. [19] (Additional file 1:
Figure S1). The first principal component explained 92%
of the variance in the data, and likely roughly corre-
sponds to overall gene body methylation levels. Cvi was
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Fig. 1 Gene body methylation at individual CGs in Col and Cvi. a Smoothed scatterplot of average CG methylation in Col versus Cvi for individual
CGs within gene bodies (top) or transposable elements (TEs; bottom). CGs in the four corners of the top plot are used in b. Number of cytosines

in each corner: Col-, Cvi—= 673,701; Col-, Cvi+= 10,500; Col+, Cvi—= 79,667; Col+, Cvi+ = 51,575. Total CGs in genic plot=867,234. b
Hierarchical clustering of the 22,149 genes with at least ten CGs classified into any of the four categories in a. Rows represent genes, columns
represent the four categories in a, and color represents fraction of CGs in each of the four categories for each gene. Genes were grouped into
seven clusters. ¢ Average non-CG methylation levels among genes in different clusters from b

a clear outlier compared to most other strains, suggest-
ing that this degree of gene body hypomethylation is un-
usual, although not unique, in the global A. thaliana
population.

Existing methylation states are stably transmitted for
many generations

Given the striking differences in gene body methylation be-
tween Col and Cvi, we evaluated the fidelity with which
these different epigenetic states were transmitted to pro-
geny. For these experiments we utilized Col-Cvi RILs,
which are homozygous for different combinations of Col-
and Cvi-derived sequence in individual RILs (Fig. 2a) [29].
We performed whole-genome bisulfite sequencing on

rosette leaves from two biological replicates (siblings) from
ten RILs at the Fy generation (Additional file 1: Table S1).
CG methylation profiles in biological replicates were highly
similar, with between-replicate Pearson correlation values
of 0.967-0.989 (Additional file 1: Table S2; see “Methods”).
We reconstructed the genotype of each RIL at fine scale
using reads that overlapped known Col-Cvi SNPs (Fig. 2b;
see “Methods”) and determined the set of genes inherited
from Cvi and the set inherited from Col in each line.
Weighted average CG methylation [33] was calculated
across each gene for all samples. In all ten RILs, CG methy-
lation levels in gene bodies were generally stably transmit-
ted according to the underlying genotype: genes inherited
from Col remained relatively highly methylated and genes
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inherited from Cvi remained relatively lowly methylated
(Fig. 2¢).

Differences in gene body methylation are not associated
with gene expression differences

Because the stable transmission of methylation states led
to the preservation of parental methylation levels for indi-
vidual genes in the RILs, we examined whether differences
in gene body methylation within a RIL were associated
with differences in gene expression. We performed RNA-
seq on leaf tissue from two RILs and from the Col and Cvi
wild-type parent lines (Additional file 1: Figure S2;

Additional file 1: Table S3). Despite the substantially lower
levels of gene body methylation in Cvi, the overall rela-
tionship between gene body methylation and gene expres-
sion was quite similar between Col and Cvi, with
moderately expressed genes associated with the highest
levels of gene body methylation in both strains (Additional
file 1: Figure S3), as has been previously described [2, 3].
Not surprisingly, PCA demonstrated that the expression
of Col genes in the RILs was more similar to the expres-
sion of the same genes in the Col parent than in the Cvi
parent and vice versa (Additional file 1: Figure S2). Be-
cause higher gene body methylation levels are associated
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with moderately high expression [2, 3, 34], we tested
whether body methylated genes were globally more highly
expressed in Col than in Cvi. We compared the distribu-
tion of FPKM values at Col-inherited genes to Cvi-
inherited genes in the RILs (Additional file 1: Figure S3).
Because each RIL inherits random sets of genes from each
of the parent lines, one set of genes could be inherently
more highly expressed than the other simply by chance.
To control for this, we also compared the expression of
these same sets of genes in each of the parent lines. This
analysis was performed over three groups of genes with
progressively larger differences in gene body methylation
between Col and Cvi (Fig. 1b, clusters 1, 3, and 4). If
higher average gene body methylation leads to higher
average expression, a shift towards higher expression
levels in the Col-derived genes compared to the Cvi-
derived genes is expected in the RIL samples, but not in
either parent line. However, we found no evidence for
such a shift in any of the three groups of genes analyzed
(Additional file 1: Figure S3). These data demonstrate that
although gene body methylation and expression are corre-
lated, the differences in gene body methylation between
Col and Cvi have not led to global changes in expression
at body-methylated genes in the RILs (Additional file 1:
Figure S3). Our data suggest that, consistent with previous
studies [2, 18-20], gene body methylation does not
broadly affect gene expression.

A small number of CG sites consistently fail to maintain
the parental methylation state

Although the methylation state of individual genes
was highly conserved by genotype in the RILs (Fig. 2),
data from two biological replicates per line allowed us
to identify with high confidence between 10,000 to
20,000 “dynamic” genic CGs in each RIL that either
gained or lost methylation relative to the parent line.
Dynamic sites corresponded to between 1 and 4% of
all genic CGs (Fig. 3a; see “Methods”). In Col-derived
genes, roughly equal numbers of CGs gained or lost
methylation; the same was true in Cvi-derived genes,
although these genes contained fewer dynamic CGs in
total (Fig. 3a). Most dynamic CGs were in genes lack-
ing non-CG methylation in the parent (Additional file
1: Figure S4). In contrast to genes, and as demon-
strated in prior studies [35, 36], methylation in TEs
was generally more stable than in genes, with only
0.6-1.7% of CG sites differentially methylated between
the RIL and parent line (Additional file 1: Figure S5).
We validated four loci containing at least one dy-
namic cytosine using locus-specific bisulfite PCR
(Additional file 1: Figure S6), after first confirming by
DNA sequencing that the putative dynamic CGs did
not correspond to unannotated SNPs. All four loci
were validated, behaving exactly as indicated from the
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whole-genome bisulfite sequencing data. Using the
dynamic CGs, we calculated the ratio of the rate of
methylation loss to the rate of methylation gain for
each RIL (Additional file 1: Figure S7; see “Methods”).
TEs had much lower ratios of methylation loss to
methylation gain than did genes, regardless of paren-
tal genotype, consistent with their much higher CG
methylation levels. For genic CGs, the ratio of loss to
gain was higher in the Cvi-derived regions than in
the Col-derived regions for most RILs. These findings
are consistent with the lower gene body methylation
levels found in Cvi-derived regions.

We also examined the effect of these dynamic CGs on
gene expression. We found that genes with more dy-
namic cytosines had similar expression in the RIL com-
pared to the parent line, regardless of whether those
dynamic cytosines represented gain or loss of methyla-
tion in the RIL (Additional file 1: Figure S3). These re-
sults again suggest that alterations in gene body
methylation do not alter gene expression.

Changes in CG methylation are not stochastic

Although each RIL contained only a small fraction of dy-
namic cytosines, the same CG sites were often identified
as dynamic in multiple RILs, at a much higher rate than
would be expected by chance (Fig. 3b; hypergeometric
test p~0 for all four panels). This was true for any pair
of RILs, for both sites that gained methylation in the RIL
not present in the parent line (RIL gain sites) and sites
that lost methylation compared to the parent (RIL loss
sites). These data suggest that some genic CGs are con-
sistently more prone to methylation changes than others,
in agreement with similar findings from other studies
[35-37]. Dynamic CGs also tended to occur at sites
where the Col parent line was more methylated than Cvi
(Additional file 1: Figure S8; one-sided hypergeometric
test p =0 for both panels in Figure S8a), and to a lesser
extent at sites where the Col parent line was less methyl-
ated than Cvi (Additional file 1: Figure S8; hypergeo-
metric test p~ 0 for the left panel and p = 1.7 x 10°% for
the right panel in Figure S8b). Thus, dynamic cytosines
are predominantly a subset of sites where the Col and
Cvi parent lines are already differentially methylated.

To determine whether there was evidence for dy-
namic methylation at these same sites outside of the
Col-Cvi RIL context, we examined how variable
methylation was at these sites within the natural A.
thaliana population. Each genic CG (n =1,634,516) in
the genome was classified into one of six categories
according to its methylation variability among 927
wild-type strains [19] (Fig. 3¢c; see “Methods”). “Invari-
ant low” and “invariant high” classifiers designated CG
sites with consistently low or high levels of methyla-
tion across the 927 strains, respectively, whereas the
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remaining four categories indicated variable methyla- could have lost methylation. Overall, these results in-
tion levels of differing types (Fig. 3c). Dynamic CGs dicate that CGs with variable methylation levels
that gained methylation in the RILs were more likely among different wild-type strains were more likely to
to be classified into the four “variable” categories com- be dynamic CGs in the RILs. This suggests that the
pared to all CGs that could have gained methylation dynamic nature of these CGs is not specific to the
(Fig. 3d). A similar, although less strongly biased, rela-  Col-Cvi RILs, but is instead an inherent property of
tionship was also observed for dynamic CGs that lost  particular CG sites in the A. thaliana genome, regard-
methylation in the RILs compared to all CGs that less of strain background.
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Dynamic CGs are clustered and share local methylation
features

Because our data indicated that dynamic genic CGs in
the RILs were shared (Fig. 3b), we looked for features
that could distinguish these sites from non-dynamic
genic CGs. Specifically, we sought features that could
distinguish RIL gain sites from other genic CGs with low
methylation in the parent lines (potential RIL gain sites)
and/or could distinguish RIL loss sites from other highly
methylated genic CGs in the parent lines (potential RIL
loss sites). (Only lowly methylated sites in the parent
lines have the potential to gain methylation in the RILs
and vice versa.) We evaluated whether DNA sequence,
methylation, or small RNA features were associated with
each type of dynamic CG.

RIL gain sites were physically much closer to each
other than random subsets of equal size drawn from all
CGs with low methylation levels in the parent line
(Fig. 4a; z-score =49.3, p = 0; see “Methods”), suggesting
that gain of methylation in the RILs occurred at discrete
loci. RIL loss sites were also significantly closer to each
other than a random number of sites highly methylated
in the parent, but to a much lesser extent (Fig. 4a; z-
score = 13.25, p = 0; see “Methods”). In addition, dynamic
CG sites were not randomly distributed within gene
bodies. RIL gain sites were strongly depleted at the 5" end
of genes relative to CGs randomly drawn from the set of
all potential RIL gain sites (Additional file 1: Figure S4; see
“Methods”). RIL loss sites were also depleted near the
transcription start site and transcription termination site,
but enriched in the 3" portion of genes. Interestingly,
while RIL loss sites were evenly distributed around in-
tron—exon boundaries, RIL gain sites were enriched at
those boundaries and in introns, but somewhat depleted
in exons (Additional file 1: Figure S4; see “Methods”).
These differences suggest that RIL gain and RIL loss
events may occur through different mechanisms and
might, therefore, be associated with different features.

We examined whether dynamic cytosines were associ-
ated with specific local methylation patterns in the
200 bp flanking each site. RIL gain sites occurred in re-
gions with intermediate levels of local CG methylation;
proximal methylation (red line in Fig. 4b) was higher
than that observed around genic CGs that lack methyla-
tion (light gray line in Fig. 4b), but lower than that
around genic CG sites that are highly methylated in the
parent (dark gray line in Fig. 4b). Similarly, RIL loss sites
(blue line in Fig. 4b) also occurred in regions with inter-
mediate methylation. Dynamic CGs, particularly RIL
gain sites, were associated with low levels of non-CG
methylation, although to a lesser extent than genic sites
already methylated in the parent lines (Fig. 4b). De novo
methylation through the RADM pathway could be one
mechanism to explain gain of methylation in the RILs,
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although gene body methylation is generally not associ-
ated with small RNAs (sRNAs) [2]. We compared the
levels of 24-nucleotide sRNAs from Col leaves (Add-
itional file 1: Figure S9) [38] and Col and Cvi embryos
(Fig. 4c) around dynamic CGs. Less than 3% of RIL gain
sites from either parent were associated with sRNAs,
suggesting that RADM activity does not explain methyla-
tion gain at the majority of these sites. Interestingly, of
these 3%, the Col-derived RIL gain sites were specifically
enriched for sRNAs only found in Cvi, whereas the Cvi-
derived RIL gain sites were enriched for sRNAs from
Col (Fig. 4c; Additional file 1: Figure S9). These data
suggest that gain of methylation initiated by RADM oc-
curred in tranms at these sites, likely in the ColxCvi F;
plant.

We also examined local sequence composition around
dynamic cytosines. We found that RIL loss sites did not
have any substantial differences in C context or GC con-
tent compared to methylated sites in the parent line
(Additional file 1: Figure S10). RIL gain sites, however,
were in regions that were locally somewhat GC-poor
and depleted of CG sites compared to all sites unmethy-
lated in the parent line. Using DREME [39], we identi-
fied sequence motifs enriched in the 200 bp around RIL
gain sites compared to background (Additional file 1:
Figure S10; see “Methods”), including TGCWR and
RCATW. However, all of the sequence features associ-
ated with RIL gain sites (CG depletion, reduced GC con-
tent, and identified sequence motifs) were also found
around CGs stably methylated in the parent lines and
the RILs, as well as around sites that were methylated in
the parents but lost methylation in the RILs (Additional
file 1: Figure S10), suggesting that they are more general
features of methylated CGs in gene bodies. Thus, RIL
gain sites are most likely to arise in places with local se-
quence features resembling those around methylated
DNA, even though the parent line is actually unmethy-
lated at these sites. RIL loss sites, which by definition
must occur at parentally methylated CGs, are not distin-
guishable from other parentally methylated sites based
on the local sequence features examined here.

Prediction of dynamic genic CGs using a logistic
regression framework

To assess how informative the various features associ-
ated with dynamic CGs are in determining where dy-
namic CG sites occur, we used a logistic regression
framework [40] to test 26 models consisting of various
combinations of 13 features, including local DNA
methylation level, sequence composition, presence of se-
quence motifs, presence of sRNAs, gene expression
level, and population variability (Fig. 5a). We assessed
the ability of each model to correctly identify RIL gain
sites, RIL loss sites, and non-dynamic sites in a subset of
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the data after training the model on a different subset
(see “Methods”). Subsets were selected to contain 50%
RIL gain or loss sites and 50% sites from the appropriate
background. Thus, prediction accuracy above 50% indi-
cated that a model performed better than by chance.
Models incorporating either local CG methylation
levels (model 1) or methylation variability across the 927
A. thaliana strains (model 11) performed best at predict-
ing RIL gain sites (Fig. 5b). Alone, each model correctly
predicted gain sites in either Col- or Cvi-derived regions
~82% of the time, much higher than the ~50% accuracy
achieved by randomly guessing. However, models in-
corporating both predictors simultaneously performed
only slightly better, suggesting that these two features
contained more or less the same information with re-
spect to predicting RIL gain sites. Similarly, the complete

model (model 26) performed barely better than either of
these two predictors individually, suggesting that the
other predictors contribute very little, if any, useful in-
formation in the estimation of CG gene body methyla-
tion gain. In general, models performed equally well for
gain sites in Col- and Cvi- derived regions in the RILs.
An exception was model 4, which encoded whether the
parent from which the CG was not derived had methyla-
tion at that CG. Knowing the methylation state in Col
strongly informed which sites gained methylation in Cvi-
derived regions in the RILs, consistent with other obser-
vations (Additional file 1: Figure S8). Models 1 and 11
also generally performed the best for predicting RIL loss
sites (Fig. 5c¢). Interestingly, several regression models
that used non-CG methylation (models 2 and 3) and
sRNAs (models 12 and 13) performed better in Cvi-
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derived regions than in Col-derived regions at predicting
RIL loss sites, but did not predict RIL gain sites for ei-
ther genotype. These results suggest that RADM influ-
ences RIL loss events only in Cvi-derived regions.
Opverall, however, all models were considerably less able
to accurately distinguish RIL loss sites than RIL gain
sites. In conclusion, although there likely remain features
not examined here that are associated with dynamic cy-
tosines, particularly RIL loss sites, our models achieve
substantially higher prediction accuracy than random.
To extend our findings on dynamic CG gene body
methylation beyond the specific Col-Cvi RIL context,
we used our regression approach to determine whether
genic CGs variably methylated across A. thaliana strains
could be distinguished from a background of invariably
methylated CGs (methylated or unmethylated) using
only local methylation levels as predictors (Additional
file 1: Figure S11). All seven models tested performed
better than random. Local CG methylation was the
strongest predictor for which sites were variably methyl-
ated compared to unmethylated CGs (conceptually simi-
lar to RIL gain sites). However, in comparing variably
methylated sites to methylated sites (conceptually similar
to RIL loss sites) local CG methylation was not as strong
a predictor. This is consistent with our finding that RIL
loss sites are less well predicted than RIL gain sites
(Fig. 5). We next examined whether these relationships
existed in two other species with distinct genic methyla-
tion profiles. Zea mays (maize) has extensive CG methy-
lation in gene bodies, but unlike A. thaliana also has
high levels of genic CHG methylation (Additional file 1:
Figure S11) [41]. B. distachyon has higher genic CG
methylation than A. thaliana but lower genic CHG
methylation than maize (Additional file 1: Figure S11)
[42]. We used bisulfite sequencing data from five maize
inbred lines [43] and seven B. distachyon inbred lines
[42] to identify CGs that were variably methylated across
strains within each species (see “Methods”). CG and
non-CG methylation levels around variably methylated
sites were intermediate compared to other CGs in both
maize and B. distachyon (Additional file 1: Figure S11),
which is similar to our observations in A. thaliana
(Fig. 4b). We then repeated our logistic regression analysis
on these species using the seven models that incorporate
local methylation as predictors (Additional file 1: Figure
S11). As in A. thaliana, levels of surrounding CG methyla-
tion strongly predicted which sites were variably methyl-
ated in maize and in B. distachyon, particularly in
comparison to invariably unmethylated CGs. Consistent
with our previous results, little additive effect was ob-
served in any model combining multiple predictors, sug-
gesting that the different types of methylation do not
behave independently with respect to predicting variably
methylated sites. Thus, despite differences in gene body
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methylation patterns between A. thaliana, maize, and B.
distachyon, the overall relationship between variably
methylated CGs and local methylation is similar, indicat-
ing that our results on dynamic genic CG methylation are
likely not specific to A. thaliana, but are instead broadly
applicable.

Discussion

Recent studies have highlighted the natural epigenetic
variation present within the A. thaliana population
[12, 19]. Here we assessed the fidelity of methylation
inheritance, and uncovered features associated with
non-random changes in gene body methylation, by
taking advantage of a RIL population created from
two wild-type strains with large, naturally occurring
differences in this type of methylation. Our results
demonstrate that gene body methylation levels are
generally stably inherited, with individual genic
methylation levels in the RILs resembling those in the
parent genotype even after nine generations of separ-
ation. A methylation analysis of soybean RILs also
found that methylation was generally inherited ac-
cording to genotype [18], but did not assess heritabil-
ity at specific genic CG sites. Several other studies
have suggested that CG methylation states can be
quite stable [14, 23, 24]. However, examination of
methylation across multiple generations in lines prop-
agated by single-seed descent from Col (mutation ac-
cumulation lines or MA lines) concluded that CGs in
gene bodies had higher epimutation rates compared
to CGs in TEs or other regions [35, 36, 44], suggest-
ing that gene body methylation is one of the least
stable types of methylation in the genome. In agree-
ment with previous results from the MA lines, the
dynamic CGs identified in this study were more com-
mon in gene bodies than in TEs [35, 36, 44]. How,
then, are gene body methylation patterns conserved
on evolutionary time scales? Gene body methylation
levels, at equilibrium, are determined by the ratio of
the rate of methylation loss to the rate of methylation
gain. Cvi-inherited genic CGs had a higher ratio of
loss to gain in most RILs than did Col-inherited genic
CGs, consistent with the lower gene body methylation
level observed in the Cvi-inherited regions (Additional
file 1: Figure S7). Additionally, similar numbers of
CGs gained methylation and lost methylation in Cvi-
derived regions in each RIL, and the same was true
in Col-derived regions (Fig. 3a). These observations
suggest that gene body methylation levels in the RILs
are already at equilibrium, with a different equilib-
rium methylation level for Col- and Cvi-derived
genes. If this is the case, Col- and Cvi-derived genes
are likely to retain the parental methylation state over
very long time periods, rather than move slowly
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towards a common methylation level. This suggests
that although epimutation rates may be highest for
CGs in gene bodies [44] (Additional file 1: Figure S7),
equal flux in both directions (Fig. 3a) will lead to
overall methylation levels remaining consistent over
time.

Genic methylation in Cvi-derived CGs in the RILs is,
somewhat counter-intuitively, more stable than in Col.
Both gain and loss of methylation were substantially less
frequent at Cvi-derived CGs than at Col-derived CGs
(Fig. 3a). This observation is seemingly contradictory be-
cause it is Cvi, not Col, that has unusual gene body
methylation compared to the rest of the A. thaliana
population (Additional file 1: Figure S1). One possible
explanation is that because Cvi has already lost methyla-
tion at many genic CG sites, the methylated CGs that re-
main are those that are particularly stable and
potentially reinforced by other mechanisms. Consistent
with this hypothesis, methylated genic CGs in Cvi are
much more likely to be associated with local non-CG
methylation (dark gray line in Fig. 4b) and sRNAs
(Fig. 4c) than methylated CGs in Col. This suggests that
a greater proportion of genic CG methylation in Cvi is
reinforced by RADM than in Col.

Gain of methylation in the RILs did not appear to in-
volve RADM activity at most CGs; nearly all RIL gain
sites were not associated with sRNAs from either Col or
Cvi (Fig. 4c), and sRNA levels poorly predicted RIL gain
sites (Fig. 5b). However, because we did not profile
sRNAs in the RILs themselves, we cannot definitively
rule out the possibility that RIL gain sites may arise in
these lines due to the action of SRNAs not observed in
parental embryos or leaves. The small number of RIL
gain sites that were associated with sRNAs contained al-
most exclusively sSRNAs specific to the parental genotype
from which that CG was not inherited (Fig. 4c). These
are likely strain-specific RdDM targets that became
methylated in the ColxCvi F; plants through trans-acting
sRNAs. This phenomenon has been previously observed
[45], though more often in TEs than in gene bodies. The
association of embryo and leaf sRNAs with gain of
methylated CGs in gene bodies, although limited, sup-
ports the hypothesis that gene body methylation can be
acquired through an RdADM mechanism, with non-CG
methylation lost when reinforcing sRNAs are no longer
present [3, 46].

RIL gain sites were highly predictable because they
possessed features that were easily distinguishable from
stably unmethylated DNA. Intermediate levels of prox-
imal CG methylation and higher methylation variability
within the A. thaliana population were strongly associ-
ated with RIL gain sites. By contrast, RIL loss sites were
less predictable because they shared many features with
stably methylated sites and were thus difficult to
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distinguish from these sites. However, the best models
could predict both gain and loss sites much better than
random. Interestingly, different combinations of predic-
tors in the models rarely had any additive effect on the
ability to predict RIL gain and loss sites: if either local
CG methylation or methylation variability are known,
the remaining predictors are largely dispensable. This
suggests that many of these predictors are either corre-
lated or otherwise contain similar information relevant
to predicting dynamic cytosines. This would not be sur-
prising in several cases; the presence of SRNAs would be
expected to correlate with local CHH methylation, for
example. However, the lack of additivity in some models
can reveal additional information about the predictors.
For example, both gain of methylation in Cvi-derived re-
gions and loss of methylation in Col-derived regions
were more likely at sites where Col is methylated but
Cvi is not (Additional file 1: Figure S8). This led to
increased prediction accuracy for RIL gain sites in Cvi-
derived regions and for RIL loss sites in Col-derived re-
gions when the methylation state of the other parent
was known (Fig. 5, model 4). Methylation changes could
be more likely at these sites because they are more likely
to be variably methylated across strains in general, which
would explain why a model combining both of these
predictors (Fig. 5, model 17) does not perform better
than either predictor alone (Fig. 5, models 4 and 11). By
contrast, CGs where Cvi is methylated but Col is not are
concentrated in a small number of genes and are likely
Cvi-specific RADM targets (Fig. 1b, c). Our results sug-
gest that RdADM plays a limited role in gain or loss of
methylation in the RILs, which likely accounts for both
the lower overlap between these sites and dynamic CGs
(Additional file 1: Figure S8) and for the lack of predict-
ive power for Col-derived RIL gain sites and Cvi-derived
RIL loss sites using model 4. Overall, the regression re-
sults further suggest that dynamic cytosines do not
occur at random and demonstrate that some features as-
sociated with dynamic sites are strongly predictive,
whereas others are only weakly associated.

The tendency of genic CGs in regions of intermediate
local methylation to be less stably methylated is not lim-
ited to the A. thaliana RILs used in this study. Local
methylation levels predict methylation variability to a
similar extent in maize and Brachypodium as in A. thali-
ana, despite the divergent gene body methylation pro-
files found among these three species. Thus, these
results are not specific to a certain type of genome or
genotype, but reflect more generally on fundamental
properties of gene body DNA methylation stability.

Conclusions
We have provided a detailed view of how gene body
methylation is inherited in A. thaliana mosaic genomes.
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Our results demonstrate that two different equilibrium
gene body methylation levels can be independently
maintained over many generations in a RIL. We also
show that genic CG sites that become differentially
methylated compared to the parent are conserved and
predictable, and appear to belong to a larger group of
CG sites that are highly variable across the A. thaliana
population.

Methods

Plant material

Col-Cvi RILs and their parent lines were obtained from
the lab of Fred Ausubel (originally obtained from INRA
Versailles, generated by [29]). Plants were grown in a
greenhouse in soil with 16 h light at 21 °C.

Bisulfite sequencing

Approximately 100 mg of leaf tissue was harvested from
two individual 3-week-old rosettes for ten RILs (lines 8,
22, 84, 124, 242, 258, 303, 332, 363, and 495) and from
the Col and Cvi parent lines. Tissue was pulverized with
a Qiagen TissueLyser II, and DNA was extracted using
the Qiagen DNeasy plant mini kit (catalog number
69104). DNA was bisulfite converted using the Methyl-
Code bisulfite conversion kit (Invitrogen, catalog num-
ber MECOV-50). Bisulfite sequencing libraries were
constructed using the EpiGnome Methyl-seq kit from
Epicentre (now the TruSeq DNA methylation kit from
[lumina, catalog number EGMKS81312, index primers
provided separately with catalog number EGIDX81312).
Reads were sequenced on an Illumina HiSeq2000 using
a 40 x 40, 50 x 50 or 100 x 100 bp paired-end protocol at
the Whitehead Institute Genome Technology Core
(Additional file 1: Table S1). Reads were quality filtered
using trim_galore v.0.3.7 [47] with parameters —phred64
—paired -a AGATCGGAAGAGCACACGTCTGAAC -a2
AGATCGGAAGAGCGTCGTGTAGGGA -stringency 3
-rl 32 -r2 32 —clip_R1 8 —clip_R2 8 -q 25 and all other
parameters default. Filtered reads were aligned to the
genome using Bismark v0.16.1 [48] with mapping pa-
rameters -q —bowtiel —phred64-quals -n 1 -1 40 -k 2
—best —minins 0 —maxins 500 and all other parameters
default. To improve the mapping of Cvi-derived reads,
reads for all samples were initially mapped to a Col-Cvi
metagenome, which consisted of the Cvi pseudogenome,
created by substituting the Cvi allele of all Col/Cvi SNPs
into the TAIR10 assembly, appended to the TAIR10
(Col) sequence. Reads mapping ambiguously to the
metagenome were then remapped to TAIR10 using
Bismark, with the same parameters noted above. PCR
duplicates were removed with a script provided with the
Bismark installation [48], which avoids introducing bias
at this step by choosing a random read to keep from
each set of presumed PCR duplicates. All reads were
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then classified based on overlapping SNPs into reads
from Col, reads from Cvi, and all other reads using a
custom script (assign_to_allele.py; see “Availability of
data and materials” section below). The Bismark methy-
lation extractor function was used to obtain methylation
data from all mapped reads.

Determining RIL genotype

Coverage of Col- and Cvi-derived reads was obtained
over non-overlapping 200-bp windows using the bed-
tools coverage function. Depth values for each win-
dow were smoothed using the moving average of a
sliding window of 51 windows, centered on the win-
dow being smoothed. Preliminary genotype determi-
nations were made by considering all windows with
at least 2 depth in both strains combined (after
smoothing), and assigning windows with [Col depth] >
1.5 x [Cvi depth] and [Col depth] - [Cvi depth] >2 to
Col, and windows with [Col depth] x 1.5 < [Cvi depth]
and [Cvi depth] - [Col depth] >2 to Cvi. Regions with
abs([Col depth] - [Cvi depth])<2 but with [Col
depth] + [Cvi depth] >2 were called heterozygous,
while all other windows were considered undeter-
mined. Adjacent windows with the same genotype call
were merged to obtain the initial set of homozygous
Col or homozygous Cvi regions. These initial regions
were refined by iteratively merging small “undeter-
mined” windows into bigger flanking regions. Briefly,
if a small region (<2000 bp) was flanked on both
sides by larger regions with the same assignment
(e.g., both are “homozygous Col”), then the small re-
gion was given the same assignment. This was re-
peated until genotype assignments did not change.
Code for this analysis is provided in script call_re-
gions.R (see “Availability of data and materials” sec-
tion). The script was run with parameters —mindepth
2 —strainl “Col” —strain2 “Cvi” and all other parame-
ters default.

Identifying differentially methylated cytosines

CG methylation is typically similar for the cytosines
on opposite strands because of the way CG methyla-
tion is maintained. Thus, treating the two symmet-
rical cytosines in CG dinucleotides as independent
cytosines is not usually appropriate. Therefore, we
identified all CGs for which there were data on both
strands, and used a two-sided Fisher’s exact test to
test if there was a significant difference in methyla-
tion at symmetrical sites. CGs with a corrected p
value <0.05 and a difference in methylation greater
than 40% between the two strands were considered
inconsistent and were censored from all remaining
analyses; this occurred at less than 0.2% of all cyto-
sines with data on both strands. All other CGs with
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data on both strands were assigned an overall methy-
lation score equal to the weighted mean of methyla-
tion on the forward and reverse strands, and were
treated as a single record for all subsequent analyses.
The script for this process is get_CG_consistency.sh
(see “Availability of data and materials” section). Add-
itionally, all cytosines overlapping a known Col/Cvi
SNP were censored to avoid errors in methylation
calls. To identify differentially methylated cytosines
between two samples (e.g., Col versus Cvi), we com-
pared the number of methylated/unmethylated reads
in sample 1 to sample 2 and performed a two-sided
Fisher’s exact test. Only cytosines with at least 5 read
coverage in all sample comparisons were used, and
the test was conducted separately between all four
possible combinations of replicates (e.g., Col 1 versus
Cvi 1, Col 2 versus Cvi 1, Col 1 versus Cvi 2, Col 2
versus Cvi 2). P values for each pairwise comparison
were corrected for multiple testing using the Benja-
mini-Hochberg method. Cytosines with a corrected p
value below 0.05 and a difference in percentage
methylation greater than 40, 40, or 20% (for CGs,
CHGs, and CHHs, respectively) were considered sig-
nificantly differently methylated and assigned a “sig-
nificance score” equal to 1 if sample 1 was more
methylated than sample 2, or -1 if sample 1 was less
methylated. Cytosines not significantly different were
assigned a score of 0. Once this was performed for
all four pairwise comparisons separately, an overall
significance score was calculated by summing together
the four separate significance scores, resulting in
scores in the range of [-4,4]. Cytosines with an over-
all score >3 were considered significantly more meth-
ylated in sample 1 than sample 2, while scores<-3
were considered significantly more methylated in
sample 2 than sample 1.

Calculating correlation between replicates

Using the corrected CG methylation data for each
sample, we calculated the Pearson correlation between
all pairs of samples using Stata’s pwcorr command.
All CGs with non-missing data in both samples were
used to evaluate correlation between a given pair of
samples.

Estimating rate of gain and loss of genic methylation in
the RILs

Because we required a minimum difference in methyla-
tion of 40% in order to identify a CG as differentially
methylated in the RIL compared to the parent line, we
considered all CGs with 240% methylation in the parent
line as potential RIL loss sites and all CGs with <60%
methylation as potential RIL gain sites. We then
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estimated the rate of gain and loss of methylation for
each RIL as:

Rate of gain = [ Number of observed RIL gain sites |

+ [ Number of potential RIL gain sites] * 100

Rate of loss = [ Number of observed RIL loss sites |

=+ [ Number of potential RIL loss sites] * 100

This was calculated separately for Col-derived and
Cvi-derived CGs. The ratio of the rate of loss to gain
was then calculated as:

Ratio = [Rate of loss | + [ Rate of gain |

PCA of gene body methylation levels in 927 strains

We obtained weighted average CG methylation levels in
927 A. thaliana strains [19], considering only positions
with at least 5 read coverage in the calculation (after
processing data at symmetrical CGs as described in
“Identifying differentially methylated cytosines”). If
weighted average methylation levels were calculated over
fewer than five CG sites (with >5 coverage each), that
observation was censored. We dropped all genes with
censored or missing methylation values in at least one of
the 927 strains, retaining 14,736 genes with data in all
strains. PCA was performed using the R function
prcomp, and the projection of each strain onto the first
two principal components is plotted in Additional file 1:
Figure S1.

Classifying CGs according to methylation variability
across 927 A. thaliana strains

Using CG methylation data from 927 A. thaliana strains
[19], we classified CGs into a number of categories
based on the variability of methylation levels across
these strains (Additional file 1: Figure S12). Briefly, CGs
covered by at least five reads in at least 627 of the strains
(after processing data at symmetrical CGs as described
in “Identifying differentially methylated cytosines”) were
used for this analysis. Data for all strains with at least 5
read coverage at that CG were binned into five equal
bins according to methylation level (0-20, 20—40%, etc.).
The distribution of the strains among these bins, a vec-
tor of length 5 summing to 1, was used for classification.
All bins corresponding to local maxima (peaks) were
identified, with peaks required to contain at least 5% of
strains. CGs were classified into various categories based
on the number of peaks in the distribution and how
much of the density of the distribution was in those
peaks (Additional file 1: Figure S12). Subcategories were
used to indicate where the majority of the density of the
distribution resided. For unimodal distributions, the sub-
category was the peak location itself (Additional file 1:
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Figure S12; the five bins from lowest methylation to
highest are named “lo”, “medlo”, “med”, “medhi”, and
“hi”). For bimodal distributions, the subcategory was
“mostly” if the highest peak was more than four times
the second peak (e.g., “mostly lo”), “biased” if the highest
peak was more than 1.5x the second peak (e.g., “biased
hi”), and “similar” otherwise. Trimodal distributions
were not assigned subcategories. We then grouped these
categories into six overall classes (Fig. 3). All CGs classi-
fied as “unimodal sharp” or “unimodal inter” (Additional
file 1: Figure S12) were grouped into the “invariant”
class, with subcategories “lo” or “medlo” considered “in-
variant low” and subcategories “hi” or “medhi” consid-
ered “invariant high”. All CGs classified as “bimodal
sharp” or “bimodal inter” were grouped into the “bi-
modal” class, with subcategories “mostly hi” and “mostly
medhi” considered “bimodal high”, subcategories “mostly
lo” and “mostly medlo” considered “bimodal low”, and
all “biased” or “similar” subcategories considered “bi-
modal med”. All other categories were grouped into the
“distributed” class. The Python script used to perform
the classification is classify_variation_across_samples.py
(see “Availability of data and materials” section).

Physical clustering of RIL gain or RIL loss sites

We determined whether the distribution of distances be-
tween RIL gain sites or RIL loss sites shown in Fig. 4a
represented a significant deviation from the expected
distribution. To simplify comparisons between histo-
grams, we used the fraction of distances <100 bp (figo)
as a measure of how strongly a particular group of CGs
was clustered. Since RIL gain and loss sites are a subset
of a larger population of CG sites (the set of all potential
RIL gain or loss sites), we obtained the background dis-
tribution of fioy by repeatedly drawing random subsets,
of size equal to the number of true RIL gain or true RIL
loss sites, from the set of all potential RIL gain or RIL
loss sites. This was repeated N =1000 times, and the
mean and standard deviation of f;, across the random
samples was then used to calculate the z-score and p
value corresponding to the fjoy observed using the true
RIL gain or loss sites. Results are shown in Table 1.

Distribution of RIL gain or loss sites across gene bodies
and intron-exon boundaries

To determine how RIL gain and RIL loss sites are dis-
tributed around gene bodies and intron—exon boundar-
ies, we generated metaplots over these features of the

Table 1 Data for physical clustering of dynamic cytosines
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average fraction of all potential RIL gain or loss sites that
are true RIL gain or loss sites (see “Availability of data
and materials” section, script ends_analysis.sh, and
“Methylation profile plots” section below). The value
plotted does not show the actual distribution of RIL gain
or loss sites, but rather their distribution relative to the
set of all potential RIL gain or loss sites. Therefore, if the
true RIL gain or loss sites represent random draws from
the set of all potential RIL gain or loss sites, without re-
gard to position within genes or around intron—exon
boundaries, the expected distribution should be roughly
uniform across these features, as confirmed in Add-
itional file 1: Figure S4, where an equal number of CGs
was drawn randomly from the set of all potential RIL
gain or loss sites for comparison (see gray lines in
each plot).

Methylation profile plots

The script used to generate methylation profile plots like
those in Fig. 4b is ends_analysis.sh (see “Availability of
data and materials” section). For plots in Fig. 4b, parame-
ters used were -1 0 -O 100 -w 20. For plots in Additional
file 1: Figure S4, parameters used were -I 500 -O 0 -w 20
for part B (feature = genes) and -I 200 -O 200 -w 20 for
part C (feature = exons). For plots in Additional file 1:
Figure S11, parameters used were -I 2000 -O 1000 -w 20.

sRNA analysis

Mapped 24-nucleotide sRNA reads from Col and Cvi
embryos collected 6 days after pollination (Robert
Erdmann and Mary Gehring, unpublished data) and
from Col young and mature leaves (GEO accession
number GSE55151) [38] were obtained. The genomecov
function in the bedtools suite was used to obtain per-
position coverage information. Counts were normalized
by converting to RPM by dividing the coverage at each
position by [Total reads in the library]/1,000,000. The
per-position data were intersected with genic CG posi-
tions, and the average of the RPM at both positions was
used as the final value for that CG.

Comparison of [CG] and GC content at dynamic cytosines
versus background

To determine whether [CG] or percentage GC content
significantly differed around RIL gain or loss sites com-
pared to all potential RIL gain or loss sites, 10,000 ran-
dom subsets of n=(Number of RIL gain or RIL loss
sites) were drawn from the RIL gain or RIL loss

Background mean f;qo Background f;qg s.d. Observed true value of ;o Corresponding z-score P value
RIL gain CGs 0.06 0.0029 0.203 4931 0
RIL loss CGs 0.116 0.004 0.169 13.25 0

s.d. standard deviation
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background. For each subset, average [CG] or percent-
age GC content was calculated and then compared to
the average value from true RIL gain and RIL loss sites.
If fewer than 100 out of the 10,000 random subsets had
average [CG] or percentage GC content greater than
(right tail) or less than (left tail) the true value, then the
true RIL gain or RIL loss sites were considered signifi-
cantly different from background with p < 0.001.

Motif analysis

DREME [39] was used to identify motifs significantly
enriched around RIL gain and RIL loss sites compared
to potential RIL gain or potential RIL loss sites (defined
as <60% and >40% methylation in the parent line, re-
spectively; see “Estimating rate of gain and loss of genic
methylation in the RILs”). We obtained all RIL gain or
loss sites and an equal number of randomly selected po-
tential RIL gain or loss sites to use as a control. We ob-
tained sequences corresponding to 100 bp upstream and
downstream of each CG from TAIR10, then ran DREME
using the sequences from RIL gain or loss sites as the
positive sequence file (-p), the sequences from the subset
of potential RIL gain or loss sites as the negative se-
quence file (-n), with the options -dna -e 0.01. Similarly,
to identify motifs enriched around methylated CGs in
the parent lines (defined as >40% methylation), these
CGs were compared to all CGs with data in the parent
lines. Because DREME is extremely slow for large num-
bers of input sequences, any analysis where the positive
sequence file contained more than 50,000 sequences was
instead performed by drawing three different random
subsets of size n = 50,000 from the positive sequence file
and running DREME separately on those three subsets
matched to equal size subsets drawn randomly from the
negative sequence file.

Locus-specific bisulfite-PCR

DNA was bisulfite treated using the Epigentek BisulFlash
bisulfite conversion kit (catalog number P-1054) and
PCR amplified (primers listed in Additional file 1: Table
S4). Products were purified using the Bioneer AccuPrep
PCR purification kit (catalog number K-3034) and
cloned into TOPO or pJET and bacteria were grown O/
N on selective plates. PCR products from colony PCR
were purified using exo-SAP and sequenced. Sequences
were aligned to a reference sequence using SeqMan Pro,
and Cymate [49] was used to produce methylation plots
in Additional file 1: Figure S6.

RNA-seq

Leaf tissue (100 mg) was harvested from three individual
3-week-old rosettes for RILs 124 and 242, as well as
both parent lines. All plants were grown together under
the same conditions and harvested at the same time.
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Tissue was pulverized using the Qiagen TissueLyser II,
and RNA was extracted using the RNeasy plant mini kit
(Qiagen, catalog number 74903). Libraries were con-
structed from 1 pg RNA using the RNA Truseq
stranded library kit (Illumina) with 15 cycles of amp-
lification. Reads were sequenced on an Illumina
HiSeq2000 using a 40-bp single-end protocol. Reads
were quality filtered using trim_galore [47] with pa-
rameters —phred64 -a ACACTCTTTCCCTACAC
GACGCTGTTCCATCT -stringency 3 -q 25 and all
other parameters default. Filtered reads were mapped
to the Col-Cvi metagenome (see “Bisulfite sequen-
cing” section above) using TopHat v2.0.13 [50] with
parameters —phred64-quals —library-type fr-firststrand
—segment-length 20 -i 70 -I 10000 —read-edit-dist 2 -N 1
with a Bowtie2 (v.2.2.5.0) installation. Additionally, a GTF
file of the Araportll annotations of Col-0 [51] was used
with -G to improve junction mapping. To reformat this
file for use with the metagenome, the original GTF file
was appended to itself, and chromosomes were renamed
to match the metagenome. Ambiguously mapped reads
(defined as mapQ <5) were remapped to TAIR10 using
the same TopHat parameters as previously. FPKM values
for genes in each sample were obtained using Cufflinks
[52] with parameters —library-type fr-firststrand -m 20
and all others default. We also provided a GTF file of the
Araportll annotations [51] to Cufflinks with the -G
option.

PCA analysis of RNA-seq data

We obtained read counts in each gene for each sample
using htseq-count v.0.6.1p1 [53], with parameters -s re-
verse -a 10 -t exon -i gene_id -m union. We then loaded
the count data for all samples into DESeq2 [54] using
DESeqDataSetFromMatrix and applied the rlog trans-
formation. PCA was performed on the resulting data
using plotPCA over all genes.

Logistic regression model fitting

We defined 26 models consisting of different combina-
tions of 13 predictors that could potentially influence
the probability that a particular CG site will switch its
methylation status between the parental generation and
Fy RIL generation (Fig. 5a). These models were tested
separately on each RIL, and separately for CGs in Col-
and Cvi-derived regions. To test the ability to predict
gain of methylation in the RIL, all genic CGs with <60%
methylation in the parent line were obtained. We then
dropped all CGs with missing data in one or more of the
predictors in the model to be tested. Note that observed
values of zero (e.g., 0 RPM of sRNAs at a locus) were
not considered missing values, and only methylation-
related predictors (e.g., local CG methylation, methyla-
tion of other parent, variability among strains) had the
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potential to have missing values. Because of the physical
proximity of some CGs to others, the raw data have a
high degree of autocollinearity. To reduce this, we sam-
pled the data such that no two CGs in the data were
within 200 bp of each other. We then counted the num-
ber of successes (CGs where the RIL gained methylation
relative to the parent line) remaining in the data, and
randomly sampled the same number of failures, to ob-
tain a subset of the data where 50% of the observations
are successes and 50% are failures, and all observations
are 2200 bp apart. We fit a logit model to these data
(see logit command from Stata [55]), then evaluated the
model by using it to predict success and failure for a sec-
ond subset, obtained as previously described, and calcu-
lating the percentage of CGs correctly classified (see
Estat classification command from Stata [55]). Because
half the observations in the dataset are successes by de-
sign, a naive predictor (that randomly guesses success or
failure) will be correct 50% of the time. We repeated this
analysis ten times for each RIL, obtaining 100 total esti-
mates of prediction accuracy for each model. These 100
observations were used to construct each boxplot shown
in Fig. 5. Similarly, to predict loss of methylation in the
RILs, we obtained all CGs with >40% methylation in the
parent line, then proceeded as described for gain of
methylation. Stata code used for this analysis is provided
in predict_logit_train_test.do, and the full dataset used in
this analysis is provided in full_dataset.txt (see “Availability
of data and materials”). Code to perform a simplified ver-
sion of this analysis using only local methylation to predict
methylation variability across strains (Additional file 1:
Figure S11) is provided in predict_logit_train_test_mini.do
(see “Availability of data and materials”).

Analysis of Z. mays and B. distachyon methylation data

We downloaded bisulfite-sequencing reads for five maize
accessions (B73, Mol7, CML322, Oh43, and Tx303)
published in [43] from the SRA (accession numbers
SRR850328, SRR850332, SRR1610959, SRR1610960, and
SRR1610961, respectively). B. distachyon reads for seven
inbred lines [42] were also obtained from the SRA
(Bd21, SRR1972494; Bd21-3, SRR1972495; Bdl-1,
SRR1972498; Bd3-1, SRR1972496; Bd30-1, SRR1972497;
BdTR12C, SRR1972499; Koz3, SRR1972500). Maize
reads were mapped to the B73 reference genome version
2, and B. distachyon reads were mapped to the Bd21 v2
reference genome. All datasets were mapped using the
same pipeline and parameters as for the A. thaliana RIL
bisulfite-sequencing data (see above). Data for CGs on
both strands were combined as above, and all CGs with
data missing in no more than one strain were classified
into three categories using the same approach noted
above, except because of the small number of strains,
the three “bimodal” categories were combined with the
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“distributed” class (collectively referred to as “variable”
in the text). Regression analysis proceeded as above, ex-
cept “successes” were defined as all CGs classified as
“variable,” and the background (“failures”) were defined
separately as either all “unimodal lo” CGs or all “uni-
modal hi” CGs (Additional file 1: Figure S11). Code to
perform the regression analysis for maize is provided in
predict_logit_train_test_maize.do (see “Availability of data
and materials” section), and the full dataset used in this
analysis for B73 is provided in full_maize_B73_data.txt
(see “Availability of data and materials”). Code to per-
form the regression analysis for B. distachyon is pro-
vided in predict_logit_train_test_distachyon.do, and
the full dataset used in this analysis for Bd1-1 is pro-
vided in full_distachyon_Bd1l-1_data.txt (see “Avail-
ability of data and materials”).

Additional file

Additional file 1: Supplemental figures and tables. Figures $1-512 and
Tables S1-S4. (PDF 12503 kb)
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