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Abstract

It is important for large-scale epigenomic studies to determine and explore the nature of hidden confounding
variation, most importantly cell composition. We developed MeDeCom as a novel reference-free computational
framework that allows the decomposition of complex DNA methylomes into latent methylation components and
their proportions in each sample. MeDeCom is based on constrained non-negative matrix factorization with a new
biologically motivated regularization function. It accurately recovers cell-type-specific latent methylation components
and their proportions. MeDeCom is a new unsupervised tool for the exploratory study of the major sources of
methylation variation, which should lead to a deeper understanding and better biological interpretation.
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Background

DNA methylation is one of the most extensively stud-
ied epigenetic marks in the human genome. Methods
of detection and quantification are relatively robust and
methylation data can be obtained at single-base resolu-
tion. DNA methylation closely mirrors the functional state
of a cell [1]. Each human cell type has a characteris-
tic methylation profile (methylome) covering its roughly
27 million CpG dinucleotides [2, 3]. DNA methylomes
undergo significant global and lineage-related changes
during development [4] and form cell-type-specific pat-
terns upon differentiation [3, 5, 6]. They also reflect the
individual (genetic) constitution [7], are influenced by
gender, are subject to environmental influences [8, 9],
and change with age [10]. In aging cells and in diseased
cells, they accumulate errors over time and DNA replica-
tions [11, 12]. DNA methylation can, therefore, be used
to infer the developmental origin, the cell-type speci-
ficity, and many other biological and sampling variables
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contributing to individual epigenetic profiles. A knowl-
edge of these confounding effects and their consequences
for methylome changes are of utmost importance for a
biological interpretation of DNA-methylation changes in
comparative studies.

For practical reasons, comparative epigenomic studies
often use tissue samples or cells extracted from body flu-
ids (mostly blood) [3, 13]. All these sources are composed
of several major and minor cell types with variable com-
position [14]. Blood, for example, includes up to ten major
and many more minor cell types. Cell type-attributed het-
erogeneity was shown to be a major source of variation in
comparative blood-based DNA methylome studies [15].
The same holds for studies performed with brain tis-
sue, where the compositional changes of cells are strongly
influenced by age, gender, and disease state [16—19]. Over-
all, genetic variation, variable cell composition, and age
appear to be the strongest confounders in DNA methy-
lome analysis [20-22].

To overcome the compositional confounding, DNA
methylation studies increasingly make use of cell enrich-
ment or cell separation techniques [23, 24] to decom-
pose samples experimentally prior to methylation analysis
[25, 26]. These methods clearly enhance the signal inter-
pretability, but they come at the risk of introducing new
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experimental variation caused by cell-sorting methods,
tissue dissection approaches etc. [24, 27]. In the worst
case, cell separation may even exclude unknown — but
informative — cell populations. Single-cell methylome
analyses would be an alternative. However, comprehen-
sive single-cell methylome data are still difficult to obtain
and too costly for studies in which large sample numbers
have to be compared [28-31]. Moreover, non-uniform
cell separation or sampling prior to single-cell approaches
may also introduce additional uncontrollable confound-
ing effects. Finally, the sequencing depth has to be high to
recover important changes in rare or difficult-to-recover
cell populations [31].

Possible approaches for dealing with the heterogeneity
problems include computational estimation or correction
(adjustment) methods [32]. Houseman et al. were the first
to develop a systematic approach that used reference DNA
methylation profiles of purified cell types to infer the
cell-type proportions in blood via a constrained projec-
tion procedure [33-36]. Similar reference-based correc-
tion approaches have also been used for complex tissues
such as brain [37, 38]. Recently, a series of reference-free
methods were developed that adjust for DNA methyla-
tion changes caused by cell heterogeneity, allowing for the
quantification of direct methylation effects [39-41].

Here we present a novel computational framework
called MeDeCom, which uses a special form of regular-
ized non-negative matrix factorization (NMF) to decom-
pose methylome data into a set of underlying latent DNA
methylation components (LMCs) and their proportions
in each sample. A similar NMF-based approach, RefFree-
CellMix, has recently been proposed [42]. However, a key
feature distinguishing MeDeCom from RefFreeCellMix
and other standard NMF approaches is the incorporation
of a biologically motivated regularizer that favors LMCs
with per-CpG values close to zero (unmethylated) or one
(methylated). In various experiments, we demonstrate
that this form of regularization is the key element for an
accurate estimation of LMCs corresponding to cell-type-
specific methylomes and their associated proportions.
Unlike RefFreeCellMix and other NMF-based methods,
which infer a correct decomposition only if measurements
of pure cell-types are implicitly present in the data set,
MeDeCom also works when only measurements of mix-
tures of different cell types and no purified references are
available. We demonstrate the performance of MeDeCom
in controlled experimental settings and its application in
more complex scenarios of cell populations and tissues.
We show that MeDeCom can be used for adjustment in
an epigenome-wide association study (EWAS) with excel-
lent performance on par with the most advanced methods
[39—-41]. Finally, we demonstrate that the unsupervised
decomposition of complex methylation data into LMCs
and their proportions can be used as a new exploratory
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tool to obtain novel biological insights going beyond the
analysis of confounding factors.

Results and discussion

MeDeCom: introduction to the computational framework
We developed MeDeCom, a novel computational frame-
work for methylation data decomposition. The conceptual
background of MeDeCom is illustrated in Fig. 1la. DNA
methylation profiles of complex tissues and cell mixtures
are a composite mix of patterns of individual cell types
with discrete (binary) position-specific methylation values
(Fig. 1a). In other words, the DNA-methylation pattern
generated, e.g., using 450K or EPIC bead arrays, is the
product of the cell-specific pattern variation C and the fre-
quencies in which individual cells are present in tissues or
cell mixes, F (Fig. 1a, top). MeDeCom decomposes such
mixed methylome patterns into two matrices, 7 and A. T
describes the LMCs and reflects an average methylation
pattern of an underlying cell type, while A contains the
proportions of LMCs in each sample (Fig. 1a, bottom).

To estimate T and proportions A for LMCs, MeDeCom
uses a constrained NMF algorithm together with a reg-
ularization function on 7. The regularization shifts the
estimated matrix of methylation patterns T towards bio-
logically plausible binary values close to zero (unmethy-
lated) or one (methylated). The regularization of T is
key to yielding accurate estimates of cell-type-specific
methylation patterns and their proportions (see below).
MeDeCom has two parameters: i) the number k of LMCs
that are supposed to be estimated and ii) the amount
of regularization A. We show that both parameters can
be reliably estimated by cross-validation. The details and
the mathematical background of MeDeCom are outlined
in “Methods”

To facilitate the interpretation of the MeDeCom results,
we designed an exploratory interactive visualization tool
called FactorViz. This tool allows the user to visualize the
performance of MeDeCom, explore the LMCs, and obtain
various kinds of information for further biological inter-
pretation. MeDeCom and FactorViz are publicly available
as a web resource at [43].

In the following sections, we will demonstrate the use of
MeDeCom on synthetic and real Infinium 450k data sets
of increasing complexity. We also demonstrate the use-
fulness of MeDeCom to decompose complex blood and
tissue methylation data (also in comparison to reference-
based methods) and provide examples showing how the
obtained LMCs can help explore the origin of variation.
We will adjust these parameters and provide novel ideas
for the biological interpretation of methylation data.

Illustration of the effect of regularization
While conceptually simple, the introduction of our bio-
logically motivated regularizer is the major determinant
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Fig. 1 Computational framework of MeDeCom. a The conceptional background of MeDeCom. The measured methylomes (e.g., as 450K data, shown
in the center) can be seen as a composition of binary single-cell methylome signatures (C) with their frequencies in each sample (F). Single-cell
signatures of a particular cell type form a cell-type specific cluster in C. MeDeCom decomposes the measured methylation data into a matrix T,
representing latent methylation components (LMCs), which in turn correspond to the averaged cell methylomes of a cell-type-specific cluster in C,
and into A, the relative proportions of LMCs (respectively, cell types) in the sample. b Histograms of the values in the estimated T matrices for the 500
most varying CpG sites for the cell reconstruction experiment of neuronal cells (see text). We observe that both MeDeCom with no regularization

(A = 0), and RefFreeCellMix are unable to match the distribution of the reference profiles (ground truth), which is biased towards zero and one.
However, MeDeCom with our regularizer (parameter A is chosen by cross-validation) biases the entries of the LMCs towards zero (unmethylated)
and one (methylated). Thus, the distribution of the entries of the estimated LMCs matches approximately the ground truth leading to a significantly
better estimation of T as well as A. e-d Geometric intuition about the different methods for a fully synthetic example of two CpGs (n = 30, k = 3).
Each LMC corresponds to a column of T and, thus, is a point in [0, 112. € shows the estimated LMCs (squares) of RefFreeCellMix and MeDeCom with
A =0and A = 1072, and the ground truth (black squares) together with the data (blue dots). The data points are mixtures of the ground truth points
and, thus, lie in the convex hull of the latter. Factorization problem (2) (see “Methods”) is ill-posed as the solution is not unique. MeDeCom with
appropriate regularization estimates T (red squares) very accurately as the solution is biased towards zero or one, whereas RefFreeCellMix and
MeDeCom with A = 0 are unable to find the correct LMCs. This also leads to huge errors in the estimation of the proportions as visualized by the
ternary plot for ten randomly selected data points (d). In contrast, MeDeCom with appropriate regularization estimates A very accurately
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of the superior decomposition achieved by MeDeCom
(Fig. 1b). The histograms of the estimated 7 matri-
ces are shown for an unregularized model and the
regularized model chosen by cross-validation (a more
detailed description of the corresponding cell reconstruc-
tion experiment follows below). The histogram of T for
the regularized model is very close to the histogram of the
true methylomes, while the histograms of the unregular-
ized model and of RefFreeCellMix are far from the ground
truth, which reflect the lack of bias towards biologically
plausible T. The correct estimation of T via regulariza-
tion allows us also to recover the correct proportions
(Fig. 1c, d). In our model scenario, all data points (blue
dots) lie in the convex hull of the three estimated LMCs
(squares), showing that there exist multiple solutions with
virtually the same fit to the data. MeDeCom breaks this
ambiguity in the solution as the regularizer shifts the val-
ues of the LMCs towards zero and one. We see that the
regularized model fits the ground truth well (Fig. 1c). A
misestimation of T also leads to a misestimation of the
proportions in A (Fig. 1d). The proportions of the three
LMCs in each sample as estimated by MeDeCom are very
close to the true ones for the regularized model while they
are completely wrong for the unregularized model and
RefFreeCellMix.

Decomposition of simulated methylation data

To examine the performance of MeDeCom in a controlled
setting, we analyzed synthetic DNA methylation mixtures
generated by simulation (see “Methods” for details). The
controlled data sets varied in the numbers of cell-type-
specific patterns (LMCs), the inter-LMC similarity, and
the variability of the mixture proportions (see Additional
file 1: Table S1).

Figure 2a—f summarizes the results for moderately vari-
able mixture proportions of five pure blood-derived cell-
type profiles (see below). FactorViz inspections show that
the cross-validation error (CVE) levels out at k > 5,
indicating that MeDeCom identified the correct number
of underlying LMCs (Fig. 2a). The optimal regularization
parameter . was found to be A = 0.01. The estimated
LMCs unambiguously match the source DNA methyla-
tion profiles (Fig. 2b). The individual methylation pro-
files were reconstructed with an overall root-mean-square
error (RMSE) of 0.064. MeDeCom also accurately repro-
duced the mixing coefficients (proportions) with mean
absolute error (MAE) of 0.0296 (Fig. 2c—f). We obtained
similar results for other cases with a varying number of
underlying components and mixture proportions (see the
MeDeCom web resource).

The summary plots of the LMC recovery rate
(Additional file 2: Figure S1) show that, given a low
number of samples, the choice of the model and the
variability level of the mixture proportions were key
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factors in the performance of LMC reconstruction in
MeDeCom. However, decomposition became impossi-
ble when the variability of the mixture proportions was
very low and, at the same time, the noise level was
high (see an example in Additional file 2: Figure S2 and
the MeDeCom web resource). In this case, the varia-
tion in the data due to uneven cell-type composition
is comparable or smaller than the noise, and, thus, it
becomes impossible to estimate LMCs and their pro-
portions. We also did the same experiments for Ref-
FreeCellMix. For simple cases, it performs similarly to
MeDeCom, but RefFreeCellMix is outperformed consis-
tently by MeDeCom once the setting gets more difficult
(Additional file 2: Figure S1).

Decomposition of reconstructed cell mixtures
Next, we analyzed the performance of MeDeCom on pub-
licly available 450K data sets of cell mixtures with known
proportions [37] (data set ArtMixN in Table 1). In this
study, brain cell nuclei were separated using a neuron-
specific marker NeuN, and fluorescence activated cell
sorting (FACS) into NeuN* (neuronal) and NeuN™ (non-
neuronal) fractions. These fractions were mixed incre-
mentally (Additional file 1: Table S2) and methylomes
measured on a 450K array. We were interested in find-
ing out how well MeDeCom could recover the source
NeuN*/~ methylomes and their mixing ratios. We show
the results for five mixtures: {(0.3,0.7), (0.4, 0.6), (0.5, 0.5),
(0.6,0.4), (0.7,0.3)}. The results for all nine mixtures can
be found in Additional file 2: Figures S6 and S7.
MeDeCom indeed identified two major LMCs at CVE
minimum close to A = 5 x 10~* (Fig. 2g; Additional
file 2: Figure S3). Each of the recovered LMCs showed high
CpG-wise correlation to the average profile of either the
NeuN™ or NeuN~ fractions (Additional file 2: Figure S4)
and reproduced it with high accuracy (RMSE 0.029).
The mixture proportions were accurately recovered as
well (MAE 0.025; Fig. 2h). As in the artificial example
of Fig. 1c, RefFreeCellMix is inferior both in the esti-
mation of T (RMSE 0.037) and A (MAE 0.162) due to
the lack of a bias towards biologically plausible values
(Fig. 2h and Additional file 2: Figure S5). The difference
in the results for MeDeCom and RefFreeCellMix becomes
even more pronounced if one computes the RMSE for
T limited to the 500 most varying CpG sites, where
MeDeCom has a RMSE of 0.082 compared to 0.190 for
RefFreeCellMix and 0.194 for MeDeCom with no regu-
larizer (A = 0). In Fig. 1b, we visualize the difference
by showing the histogram of the estimated entries of
T for the 500 most varying CpG sites. Our estimated
histogram is close to the ground truth whereas the his-
tograms of RefFreeCellMix and the unregularized model
are much further off, which is then reflected in the wrong
estimation of the proportions for RefFreeCellMix. Since
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Fig. 2 Testing MeDeCom on simulated and artificial cell mixture data. a—f Results for the simulated data example with five methylation
components, moderately variable mixing proportions, and medium noise level. a Selection of parameters k and A by cross-validation. b Matching of
the recovered LMCs to the true underlying profiles. The dendrogram visualizes the agglomerative hierarchical clustering analysis with
correlation-based distance measure and average linkage. e—f Recovery of the mixing proportions. Truth stands for true mixing proportions and
regression denotes the reference-based proportion estimation as described in “Methods.” In each line plot, the synthetic samples are sorted by
ascending true mixing proportion. g, h Results for the ArtMixN data set. g Selection of parameters k and A by cross-validation. h Recovery of mixing
proportions (only NeuN* is shown) for MeDeCom and RefFreeCellMix. RefFreeCellMix misinterprets the most extreme mixtures as pure cell types
and, thus, estimates T (see Fig. 1b) as well as the proportions in A wrongly. Notation is the same as in ¢—f

the synthetic experiments as well as the artificial mix-
ture experiment show that RefFreeCellMix cannot reliably
recover cell-type LMCs and their proportions when there
are only mixtures as samples, we do not compare to
them in the analysis of complex mixtures from blood or
brain tissue.

Methylome decomposition of whole-blood cell samples

Following the successful test of MeDeCom on synthetic
data and artificial cell mixtures, we applied our method
to whole-blood Infinium 450k samples from two inde-
pendent studies (Table 1). Our aim was to test the per-
formance, reproducibility, and robustness of our method
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Table 1 Public Infinium 450k data sets used in the study

ID Source GEO Accession Brief description n Reference

Blood data sets

PureBC [44] GSE35069 Seven MACS-purified blood cell types from 42
blood of six healthy male donors: neu-
trophils, monocytes, B cells, CD4+ and CD8+
T cells, NK cells, and eosinophils

WB1 [35] GSE42861 Whole blood of healthy controls from a 87 PureBC
rheumatoid arthritis study (technical batch II)

WB2 [45] GSE51032 Whole blood of the EPIC Italy study partici- 442 PureBC
pants who remained cancer-free in 2010

Neuronal data sets

PureN [37] GSE15745 Cortical NeuN*/~ fractions of the 29 healthy 58
controls

ArtMixN [37] GSE15745 Nine titration mixtures of the NeuN*t/~ frac- 9 PureN
tions

FCI [371 GSE15745 Frontal cortex of ten MDD patients and ten 20 PureN
healthy controls

FC2 [19] GSE15745 Frontal cortex from a large AD study 114 PureN

AD Alzheimer’s disease, GEO Gene Expression Omnibus, MDD major depression disorder

in a side-by-side comparison. We first applied MeDeCom
to control samples from a large rheumatoid arthritis
study [35]. To avoid known technical confounding effects
(Additional file 2: Figure S9), we confined our first analysis
to 87 samples forming a technically homogeneous batch
(data set WB1).

The CVE continued to decline until K = 20 implying
a large number of distinct variation confounders that is,
LMC:s (Fig. 3a). We, therefore, examined the factorization
results for increasing values of k to understand the rela-
tion between LMC recovery and underlying major and
minor confounding variants (i.e., cell types, subtypes etc.).
For a biological interpretation, we compared the LMCs
of increasing values of k to published reference methy-
lomes of FACS-sorted major blood cell types [44] (data set
PureBC).

From k = 2 on, the recovered LMCs distinguish the
cell populations of the myeloid and the lymphoid lineages,
respectively (Additional file 2: Figures S10 and S11). This
split in the two lineage clusters is maintained at increasing
values, e.g., k = 20, A, = 1.0 x 1073 (Fig. 3b; Additional
file 2: Figure S12). Altogether, 11 LMCs in the myeloid
arm cluster show greater similarity to LMCs describing
FACS-sorted references for monocytes, eosinophils, and
neutrophils while the remaining nine LMCs cluster with
CD4+ T cells, CD8+ T cells, NK cells, and B cells. In
the myeloid cluster, we fail to detect direct sub-lineage-
specific LMC matches. In the lymphoid cluster, however,
we observed one LMC closely matching the CD4+ T-cell
profile, and one LMC corresponding to the sub-cluster of
CD8+ T cells and NK cells, indicating a better separabil-
ity of the T-cell signatures based on the 450K data used.

Finally, our analysis directly identified a number of LMCs
with high proportions in single donors, most probably
reflecting sites with genetic variation (Additional file 2:
Figures S13 and S14).

The results of the first data set were reproduced on a
second independent whole-blood data set (WB2) from the
EPIC Italy study [45], which recovered a highly similar
clustering of LMCs (Fig. 3b and c). A direct comparison of
the LMC clustering between both whole-blood data sets
reveals a considerable agreement of LMCs matching side
by side, suggesting that MeDeCom recovers robust and
reproducible LMC signatures (Fig. 3d).

An aggregated comparison of LMCs matching to ref-
erence cell types in both blood analyses showed good
correspondence to the regression-based estimations of
cell proportions (Additional file 2: Figure S15). For several
LMCs in WB1 and WB2, we observed that their propor-
tions correlated with age, e.g., for WB1 the LMC12 related
to CD4+ T cells (Additional file 2: Figure S17). Although
the total number of CD4+ T cells was reported to change
non-significantly with age [46], T-cell-specific immuno-
logical senescence is a well-known phenomenon charac-
terized by depletion of the naive T-cell sub-populations
[47, 48]. This might imply that LMC12 rather reflects the
methylation pattern of the naive CD4+ T cells. Indeed, a
comparison to reference methylomes of isolated T cells
supports this suggestion (Additional file 2: Figure S16).

Correction of the phenotype association analysis

Next, we examined if LMCs estimated by MeDeCom can
be efficiently used for data adjustment in phenotype asso-
ciation analyses. We first verified the potential of the
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adjustment in a fully synthetic setting mimicking a typical
EWAS in blood (see “Methods” for details). We added true
methylation effects at the level of single cell type as well
as confounding by cell-type proportions (Additional file 2:
Figure S29a and b). Adjustment for LMC proportions
indeed helped to decrease the confounding and recover
the true methylation effects with performance close to
the reference-based adjustment of the best available third-
party methods (Additional file 2: Figure S29c—e).

We then applied this approach to a large rheumatoid
arthritis data set (WB1), which previously has been used
by others for confounding corrections [35, 39-41]. We
started by selected CpGs significantly associated with the
rheumatoid arthritis status using linear modeling (see
“Methods” for details) with and without adjustment for
common covariates. The deviations of the observed P
value distribution from the expected uniform distribution
indicated a large inflation of significance (Additional file 2:
Figure S19a). This effect is due to the confounding caused
by the unequal distribution of the cell types in rheumatoid
arthritis patients and controls [35]. We then performed
an independent correction for cell composition variabil-
ity using one reference-based [33] and four reference-
free methods [39-42], and compared these results to the
results obtained with MeDeCom. Comparative Q-Q plots
of the P values show that the methods indeed decrease
the inflation of significance (Fig. 3e and Additional
file 2: Figure S19). In this test, the adjustment using the
LMCs estimated by MeDeCom showed comparable per-
formance with reference-based analysis and the results
of ReFACTor. We conclude that the LMCs generated by
MeDeCom are useful for covariate correction.

Purified blood cell populations

Our whole-blood analyses revealed a limitation in an
unambiguous assignment of reference cell types by sin-
gle LMCs, which may have several reasons. One possi-
ble explanation is that the methylomes of FACS-sorted
CD marker-positive purified cells, which we and others
use as references, constitute composed methylomes of
donors with a varying content of cell subtypes. First, a
recent single-cell-resolution study of transcriptional het-
erogeneity in mammalian hematopoiesis [49] revealed
that the potential of the canonical cell-surface markers
to discriminate fine blood cell populations is limited,
and their use as FACS gates for cell separation is prone
to errors. Second, in particular for B and T cells, it is
known that the proportion of cell subtypes may vary
and different types of quiescent or dividing cells, such
as naive, effector, or memory sub-populations, may con-
found a clear LMC assignment. We addressed this ques-
tion by performing a MeDeCom analysis on the seven
purified blood cell populations derived from six donors
(data set PureBC) [44].
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In this analysis, the CVE stabilized at k = 16 and A =
1073 (Fig. 3f; Additional file 2: Figures S21 and S22). A
matrix of mixture proportions (Fig. 3g) showed that the
recovered 16 LMCs could be classified into two distinct
groups. Six LMCs (LMCs 6, 7, 8, 10, 15, and 16) could
be associated with individual donors, most likely reflect-
ing donor-specific genetic variation at the informative
CpG positions underlying these LMCs. In a second group,
LMCs 1, 3,4, 5,7,9, and 11 corresponded to the enriched
cell-type-associated profiles; e.g., LMC4 was predomi-
nantly present in CD4+ T cells, LMCI11 in neutrophils etc.
Nevertheless, we also observed that several LMCs were
shared by related cell types. For instance, eosinophil sam-
ples show enrichment of the neutrophil-specific LMC11,
CD8+ T cells (LMC9) show overlaps with CD4+ T cells
(LMCS5). Finally, we observed LMCs that were associated
with more than one cell type, but which were not a dom-
inating LMC in any of them. For instance, LMC14 was
present at low proportion both in CD8+ T cells and NK
cells. The co-occurrence of two or more LMCs within
one isolated cell population, as well as sharing of LMCs
between the populations, suggests that these cell pop-
ulations could be either mixtures of still not separated
distinct cell types, or that these cell populations share
epigenetic features that may indeed co-occur in different
cell types.

A clear split for sub-population heterogeneity was
observed for CD19+ B cells. Here two LMCs, LMC2
and LMC13, apparently separate naive and memory B
cells. To support this conclusion, we selected 401 CpG
positions with a methylation difference of more than
0.33 in LMC2 compared to LMC13. First, we saw that
many of these CpGs were located in the vicinity of
known B-cell-associated genes (Additional file 3), such
as PTPRCAP (Additional file 2: Figure $23). We then
compared the LMC2- and LMC13-specific CpG 450K val-
ues to reference WGBS methylome profiles of memory
and naive B-cell samples, obtained by the BLUEPRINT
project [50]. Then, 44 CpGs (Additional file 3) indeed
directly correspond to the methylation state differences
reported by Kulis et al. [50] in memory and naive B-
cell sub-populations, respectively (Fig. 3d). We would
like to note that LMC2 and and LMC13 have almost
inverse proportions for individual donors, indicating that
the MeDeCom analysis directly reflects the differences
in sample-specific abundance of memory and naive B
cells, which suggests individual- or isolation-attributed
variation.

In our blood analysis, we observed that CpGs, which
clearly discriminated cell types in purified myeloid and
lymphoid lineages, did not exhibit this power in complex
samples. To understand this better, we preselected 15,000
marker CpGs with the highest discriminative power
between cell types (highest CpG-wise p = 2.91 x 10~
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ANOVA F-test). A visual comparison of these CpGs
between individual reference populations and whole-
blood data (Additional file 2: Figure S18) clearly showed
that they have a rather low variation across whole-blood
samples. Indeed, only a relatively small proportion of
marker CpGs also showed a high variance across whole-
blood samples detectable by MeDeCom (see the row color
code in Additional file 2: Figure S18). We conclude that
CpGs, which can be assigned to isolated cell types in puri-
fied myeloid and lymphoid lineages, are less informative
in complex samples since their level of informative varia-
tion in an NMF-based analysis of whole blood is low. This
may be a second reason to explain why a series of LMCs
recovered in whole blood and in the extreme cases of our
simulations do not unambiguously match the reference
methylomes.

Decomposition of the brain tissue methylomes

Next we applied MeDeCom to examine the heterogene-
ity of tissue methylomes. The human brain is composed
of many neuronal and glial cell types. Current studies
apply FACS-based methods to separate glial cells and
neurons. The RBFOX3 protein localized in the nuclear
membrane of most neuronal cells (also known as NeuN)
is used as a selection marker. While the NeuN-enriched
and NeuN-depleted cell fractions serve as references in
methylome analysis, the question remains to which extent
these separated methylomes represent the composition of
whole-brain tissue.

We applied MeDeCom to 20 frontal cortex methylomes
from a major depression disorder study [37] (data set FC1
in Table 1). The data set also included NeuN™ and NeuN~
cell fractions (data set PureN), which we analyzed in com-
parison to total brain tissue. In addition, we examined an
independent bulk frontal cortex methylome data set from
a recent large-scale Alzheimer’s disease (AD) study [19]
(data set FC2).

For both the FC1 and FC2 data sets, the inspection of
CVEs showed a substantial change at k > 3, strongly
suggesting the existence of more than three main epi-
genetically distinct cell components (LMCs) (Fig. 4a and
Additional file 2: Figure S24). We carefully examined the
factorization results and compared the three main LMCs
atk = 3and A = 5 x 1073 to the NeuN* and NeuN~
profiles. Clustering analysis (Fig. 4b) showed that the aver-
age NeuN~ reference profile is related to LMC3 while
the NeuN™ profile is more similar to LMC2. The third
component LMC1 was truly distinct from both reference
methylomes retaining a slightly higher similarity to LMC2
and the NeuNt methylome. All three LMCs were remark-
ably well reproduced in the independent FC2 data set at
k = 3 (Fig. 4c).

This finding indicates that the FACS separation of
brain tissues into NeuN™ and NeuN~ cells introduces
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a new confounding variable. In most cases, the NeuN™
and NeuN~ fractions together do not fully recapitu-
late the methylomes of total brain tissues. To get more
insights into the biological nature of the LMCs, we asked
which loci differ in their methylation between the LMCs
and examined the biological annotation of genes associ-
ated with LMC-specific CpGs. LMC-specific CpGs were
selected to have methylation differences more than 0.33
between one LMC against the two other ones (Additional
file 4). We then mapped LMC-specific CpG positions to
their neighboring genes (Additional file 4; see “Methods”)
and performed a functional annotation of the associated
genes using GREAT [51] (Additional file 2: Figure S25).
LMC2 (NeuN™)-specific CpGs map to genes with a
clear enrichment for neuronal-related terms, while LMC3
(NeuN™)-specific CpGs were close to genes associated
with non-neuronal, mostly oligodendrocyte-related, cat-
egories. LMC1-specific CpGs map close to genes asso-
ciated with developmental and stem-cell-related terms.
Strikingly, among the genes associated with LMC1, we
found several markers of the neuronal stem-cell lineage,
such as PAX6, ZIC1, ZIC4, and NEUROGI (Additional
file 4). Notably, the DNA methylation patterns at LMC1-
specific CpGs showed significantly higher or lower methy-
lation levels in crude brain tissue than in NeuN™ and
NeuN™ reference methylomes (see PAX6 as an example
in Fig. 4d and Additional file 2: Figure $26). Furthermore,
a recent study on neuronal heterogeneity in the mouse
brain [52] provided a reference for the fine cellular sub-
types possibly present in the mammalian frontal cortex.
We found several of the most significant LMC1-specific
genes among the DMRs reported in [52] (Additional file 1:
Table S3).

As outlined earlier, LMC proportions tended to be
biased when k was significantly lower than optimal
(see the WB1 analysis with kK =2 above). We, there-
fore, explored MeDeCom results at k = 4 and A = 0.005
(Additional file 2: Figure S27). The analysis revealed
that the NeuN*-specific LMC3 rather accurately repro-
duced a reference-estimated NeuN™ content in most
brain samples (Additional file 2: Figures S7a and S28a).
However, samples with the highest deviation from the
reference-based proportions had the highest proportion
of co-purified cells (and methylomes), characteristic of
LMC2 (equivalent to LMC1 for k = 3; Additional file 2:
Figures S27b and S28b). For k =4, two LMCs match
to NeuN~. For each of them, the proportions recovered
by MeDeCom deviated significantly from the reference-
based estimates for NeuN ™~ (Additional file 2: Figure S28c
and d). Nevertheless, the combined proportions largely
reflected the reference-estimated NeuN™ content across
all samples (Additional file 2: Figure S28e). Again, we
observe that samples with the lowest correspondence
had a high contribution of LMC2 (Additional file 2:



Lutsik et al. Genome Biology (2017) 18:55 Page 10 of 20

a b
e}
o )
S N lambda A
o —=— 1e-04 o
153 —m- 0.003 e -
W oo \\ = 0.004 <
33 |\ -m- 0.005 0
° \ 0.006 °
7 - -=- 0.008
T 3 o
o o 0.01 S
0 — o« | -~ N +
* ¢ ¢ ¢ ¢ 3
9] [}
.} z - - =z
cg03405909
c 5 d = FC
— = NeuN+
1.0 4 = NeuN-
<
P
[ 0.8
AT
= E;
S 06
]
S & ) é ) é ) &
] - - ) o N K]
O o o O 6] o 04 7
= = = = = =
- - - - - -
| I | | I | 02
— N — N — o .
(@] (@] (@] O (@] (@]
I I s I I -
0.0 -
M N B O O O M = MO ¥ ¥ © O N O ¥ O T N O
O ~ «— N M © © W v« < v M < 0O ~ O O < < N
- - - A N N O 1 © O © ©O© K~ = N N S S~
- - v v - - v v = = § & ¢ © © © W W
Donor
e © 4 o Control ° 3
= AD o
0 < |
(=] ° o o
o —
< | Q |
5 ©° - ° T ° 2 3+ Bl :
LS A B T T Te o T - T
g L 3 ° SRR N S B g 34 — o T 3
o - i ° ; Lo : [ I 19 - : :
S : TI 8 - 8 Q - : L ' a :
Ml SOl gemcl - pguls
- 4 T T 0 o
(=] T H ' " "
. H: E. [ ~ i l . — Q N : :
o 1oL = L - L . . L 1oL Filinn Lo R o | - e I
b5 15
T T T T T T T T T T T T T T T T
S S 8 3 8 8 5 3 3 0 1 I m v v v
= = = = = = = = =
3 3 3 3 3 3 3 3 3

Braak stage

9 h

rhombomere development

1.2

yngeal nerve mor,
cranial nerve morphogenesis
glossopharyngeal nerve development
rhombomere 3 development
rhombomere 2 development

rhombomere 3 morphogenesis
brain segmentation

7

N L ©® = o+ NWN® ST M

o % O 0O 000 % O 0O 0O 0O 00 specification of organ position

E g E E E E E g E E E E E E parathyroid gland development

T 29588 $L%0TD e
x\ x\ x\ x| x\ x\ x| x\ x\ x\ x\ x| ’ ’ ) ’ ’ * * b
o~ NN NN NN NN Ny —log10(p—value)

O O 0O 0 0O OO0 0000

'S Lo wowow Lo o wow

Fig. 4 Results for brain methylomes. a-d Decomposition of the FC1 data set. a Selection of parameters k and A by cross-validation. b Matching
frontal cortex LMCs to the reference NeuN+/~ profiles. The dendrogram visualizes agglomerative hierarchical clustering analysis with a
correlation-based distance measure and average linkage. € Matching of LMCs between FC1 and FC2. d Example of an LMC1-specific CpG (k = 3) in
the PAX6 locus. e, f AD-associated LMCs in the FC2 data set. @ LMC2 is associated with the AD phenotype (Wilcoxon rank sum test P = 3.1 x 1074). f
LMC2 is also significantly associated with the Braak stage (P = 4.8 x 1073, T test of the linear regression coefficient). g Clustering of the recovered
LMCs for k = 9 with the LMCs for k = 3 and reference profiles. LMC2 belongs to the NeuN~-associated cluster. h Most significant gene ontology
terms from the biological process category for the LMC2-associated hypermethylated genes

Figure S28f). The proportion analysis shows that by separate LMC with a distinct cell composition. The latter
using MeDeCom we can infer realistic LMC proportions ~LMC is variably convoluted into the other main NeuN™
for NeuN™, NeuN~ in individual samples, and a third and NeuN~ cell fractions in the reference-based analysis.
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We conclude that reference-independent decomposition
is a very helpful approach for exploring, identifying, and
quantifying heterogeneity effects across composite tissue
samples and will allow us to obtain important and unbi-
ased correction parameters for epigenetic studies of the
brain.

Discovery and annotation of the AD-related LMCs

Finally, we applied MeDeCom for a phenotype-related
analysis on samples where reference methylome adjust-
ment is impossible. To demonstrate the exploratory
potential of MeDeCom over other methods in such a set-
ting, we first tested MeDeCom on a simulated data set
with an admixture of a rare cell population in one of the
compared sample groups as the only phenotype-related
effect (see “Methods”). In this example, MeDeCom cor-
rectly estimated the number of underlying methylation
components, and revealed the enrichment of the rare
LMC only in the case group (Additional file 2: Figure S30).
Encouraged by these results, we applied MeDeCom for an
association analysis of the AD phenotype in the FC2 data
set. The authors used a canonical CpG-wise approach to
identify methylation changes associated with AD. Braak
staging was used as a main phenotypic readout. Standard
linear modeling using Braak stage as the response vari-
able corrected for sex and age at death revealed residual
inflation of significance, arguing for the presence of an
unknown confounding variability component (Additional
file 2: Figure S31a). A search for the strongest associations
with LMC proportions across all obtained factorization
solutions revealed that for the decomposition case with
k = 9 and A = 0.09, the proportion of some LMCs,
in particular LMC2, is significantly correlated with both
AD phenotype and Braak stage (Fig. 4e and f). When
we included the proportions of the three most signifi-
cant LMCs as covariates in the association analysis, the
remaining P value inflation was eliminated (Additional
file 2: Figure S31b). When compared to the LMCs recov-
ered at k = 3, LMC2 was the closest to the NeuN ™ -related
cluster (Fig. 4g). We used GREAT to annotate the LMC2-
specific CpG positions. Gene ontology terms with sig-
nificant enrichment included rhombomere development,
brain segmentation, nerve morphogenesis etc. (Fig. 4h).
We also observed an enrichment for gene promoters
overlapping the vitamin D receptor and MEIS1 bind-
ing motifs (Additional file 2: Figure S32). LMC2 might,
therefore, represent one or several cell populations that
are enriched in AD samples; however, a more in-depth
biological analysis and validation would be necessary to
confirm this finding.

Conclusions
DNA methylomes of multicellular samples can be mod-
eled as mixtures of several latent variables. Here we
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present a novel computational framework called MeDe-
Com, which decomposes complex DNA methylation data
into latent components and sample-dependent propor-
tions based on a mixture model for methylomes. We show
that the method performs reproducibly and with high
sensitivity on both synthetic and biological data sets.

MeDeCom provides significant advances compared to
existing methods. First of all, our method does not require
reference cell-type measurements. It can be applied to any
DNA methylation data set to explore the compositions of
mixtures. Note that reference methylome data are not yet
available for many cell types, and MeDeCom offers the
possibility of exploring non-standard data in a reference-
free manner. Second, MeDeCom has strong concep-
tual differences to other reference-free methods, such as
the surrogate variable analysis (SVA) methods [53, 54],
EWASHER [40], or the SVA-inspired RefFreeEWAS [39]
method. All these methods focus on the correction of
significance analysis for a phenotypic trait of interest
by calculating and eliminating confounding heterogene-
ity effects. In contrast, MeDeCom uses a variant of NMF
specifically designed to recover latent DNA methylomes
by using biologically motivated constraints and regular-
ization. The imposed constraints on the factorization inte-
grate biological prior knowledge, such as non-negativity
of the estimated methylation profiles and their propor-
tions. However, we show that these constraints alone are
not sufficient to get biologically meaningful methylation
profiles and accurate estimates of their proportions. A key
element distinguishing MeDeCom from other methods
based on naive matrix factorization, in particular RefFree-
CellMix [42], is that we add a regularizer encoding the
prior expectation that most sites in the methylation pro-
files are close to zero or one. This prior expectation is
because at the level of a single cell, methylation profiles
are binary and for most CpG sites this is true also at
the level of a homogeneous population of cells, such as a
particular cell type. This allows us to estimate methyla-
tion profiles and their proportions simultaneously, with-
out any reference profiles. In contrast to RefFreeCellMix,
the employed regularizer enables MeDeCom to identify
methylation profiles even in blood and brain tissue where
each sample is a heterogeneous mixture of different cell
types.

Our proof-of-concept analysis shows that MeDeCom
acts robustly and reliably on complex artificial and nat-
ural methylome mixtures measured by Infinium 450k
arrays. MeDeCom identifies key signatures of major cell
populations present in complex whole-blood and brain
methylomes without any prior knowledge of references
or data adjustment. However, our analysis also reveals
the limits of a MeDeCom analysis. The method strongly
depends on a fair number of discriminatory methyla-
tion positions and a sufficient level of sample-to-sample
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variation (Additional file 2: Figure S18). In complex 450k
whole-blood methylomes, both parameters are affected
such that a clean separation and assignment of LMCs
specific for blood cell subtypes becomes challenging.
Two major aspects are the likely causes of this difficulty.
First, the Infinium 450k platform covers only a limited
number of CpGs informative for the minor cell sub-
types, which can easily become indistinguishable from
the remaining technical noise of the 450k arrays. Sec-
ond, the proportions of most cell subtypes in blood
are too low. MeDeCom factorization requires a certain
grade of sample-to-sample variation to identify compo-
nent (cell type)-specific CpG signals. We had noticed
both of these limitations in our simulation analysis with
artificial mixtures. In the future, these problems may be
partially overcome by using WGBS/RRBS or extended
array platforms such as the Methylation EPIC array cov-
ering additional cell-type-specific variable CpG positions.
Furthermore, cell-enrichment or cell-depletion strategies
may help to obtain deeper sample-specific compositional
insights.

Since MeDeCom does not require predefined refer-
ences, it can be flexibly applied to any level of methylome
analysis. We show that MeDeCom can facilitate a deeper
insight into cell composition if the sample complexity is
experimentally reduced. As one example, we investigated
the composition of methylomes generated after cell pre-
selection, e.g., by surface marker-based separation [44].
Our results on pre-sorted CD4+ (T cell) or CD19+ (B
cell) blood cells clearly show that their methylomes still
maintain a substantial level of heterogeneity. We iden-
tify a number of additional separable DNA methylation
components, some of which we can associate with age-
dependent changes in T-cell populations or show that they
discriminate naive from primed B cells. In both cases,
the characteristic CpG signatures vary in their sample-by-
sample proportions. Such observations are very important
for the biological interpretation of methylation changes
across populations of samples. Many of the components
identified by MeDeCom are likely to carry such biological
information, which can be extracted for further explo-
ration. Furthermore, we show that MeDeCom can, in
principle, be extended to include prior information, such
as known cell-type profiles and the approximate range
of cell-type proportions for certain cell types (Additional
file 5: Supplementary Note 2).

The decomposition of brain methylomes provided by
MeDeCom further supports the usefulness of unsu-
pervised exploratory decomposition for the analysis of
complex methylome data. The separation of brain cells
into neuronal and non-neuronal fractions has become
a new standard procedure for brain-specific epigenetic
studies in human postmortem samples. Our first find-
ing shows that NeuN*t/~ mixture models do not fully
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capture the composition of the full brain tissue. In fact,
we identify an additional component that differs from
the NeuN" (neuron) and NeuN™ (non-neuron)-specific
components in full brain tissues. This new component
is apparently sorted out or even lost in the enrichment
procedure. Our analysis shows that the samples denom-
inated as NeuN™ and NeuN~ contain variable contri-
butions of this unknown cell fraction. Here, MeDeCom
opens a new possibility for identifying the differences in
cell composition and, hence, making data from different
NeuN separations more comparable. Moreover, a biolog-
ical analysis of the CpGs and genes associated with this
new component reveals a strikingly different association
of biological terms compared to the NeuNt and NeuN™
fractions. Finally, we show that a phenotypic re-analysis
of complex brain data sets using LMCs allows us to iden-
tify novel associations with cellular origin (neurons) and
disease-state progression.

In summary, our analysis demonstrates that MeDeCom
is a broadly applicable reference-free tool allowing us to
explore complex data sets for confounding variables and,
thus, to improve the biological interpretation of large-
scale DNA methylation data sets. For the pilot demonstra-
tion, we exclusively used Infinium 450k data. In principle,
MeDeCom is applicable to any complex methylome data
set. However, since MeDeCom requires a low level of
technical noise and a high level of biological variation, we
suggest that the method is applied to carefully controlled
data sets that fulfill such requirements. A high standard
technical preprocessing of 450k array data minimizes pos-
sible pitfalls of quality, technical batch effects, or other
non-biological issues. We, therefore, recommend using
data after passing them through available bioinformatic
pipelines (see, e.g., [55] or [56]).

Methods

MeDeCom element I: mixture model for DNA methylation
measurements

Let D €[0,1]"*” be the matrix of absolute methylation
values of m CpGs obtained from » multicellular speci-
mens, with m typically being much larger than n. Here,
entry D;; represents the methylation level for CpG i for
specimen j, with i = 1,...,mand j = 1,...,n. We
consider an approximate low-rank model for D assum-
ing that the cell populations of samples consist of a
finite number of sub-populations each contributing a dis-
tinctive methylation profile. We also assume that pop-
ulation mixtures are similar but slightly variable across
biological samples collected in the same manner. Both
assumptions suggest that the methylation profiles of the
samples are a weighted average (mixture) of the methy-
lation profiles associated with the underlying cell types,
where the weights equal the proportions of these cell
types. Note that we verified this concept in our analysis
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with artificial cell mixtures. Our matrix factorization
model,

D=TA+E, (1)

represents this concept where T € [0,1]”*F represents
the methylation profiles of k cell prototypes or other
recurrent variables (in most cases representing a spe-
cific cell type) and A € R/f” such that AT1;, = 1,
(i.e., the entries of A are non-negative and its columns
sum to one). Entry Tj; equals the methylation profile
of CpG i of prototype s, with i = 1,...,m and s =
1,...,k, while A; equals the relative abundance (propor-
tion) of prototype s in specimen i. The matrix E represents
errors, capturing model misspecification and noise arising
from the measurement process. Note that the biologi-
cally motivated constraints for 7 and A distinguish our
model from other low-rank models as they are used for
adjustment of the phenotype association analysis [39-41].
Notably, (1) can be seen as an approximation of a
more general constructive or exact model while the
emerging approximation error can be estimated analyt-
ically (see Fig. 1la and Additional file 5: Supplementary
Note 1).

MeDeCom element II: model fitting
Using a straightforward least-squares approach to fit
model (1), yields the optimization problem:

miny 4 [|D — TA||12: =i ;’Zl(Dij - (TA)ij)2
subject to 0<T;<1Vis

Ag >0 Vs,j 2)
k .
Zs:l As]‘ =11V,

Here and in the following, |.||r denotes the Frobenius
norm of a matrix, defined as the square root of the sum of
squares of its entries. We may think of the above problem
as an instance of blind source separation, a task that has
been well studied in signal processing [57]. The attribute
blind expresses that the source signals, as represented by
the columns of the matrix 7, are unknown, as opposed
to when they are given in advance and only the mixture
coefficients in A need to be recovered.

The minimization problem in (2) is not jointly convex in
T and A. As a result, one cannot hope to converge always
to the global optimum; in fact, it has been shown that con-
strained matrix factorization problems of this form are
computationally hard in general [58].

Once T or A is given, the problem (2) leads to a con-
vex quadratic program. This property is the basis of
alternating  minimization, a common (heuristic)
approach for fitting matrix factorization models where
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one alternates minimization w.r.t. T for fixed A and
vice versa [59]. While lacking theoretical guarantees,
alternating minimization often works very well in
practice.

Note that independently of our work, Houseman et al.
[42] recently proposed RefFreeCellMix, an approach like
(2). A rather minor difference is that in RefFreeCellMix,
the equality constraint, Zle Ag = 1, is replaced
with an inequality constraint, Zle Ag < 1. Thus, the
components of A estimated by RefFreeCellMix cannot
be interpreted as the proportions of the correspond-
ing methylation profiles. Moreover, we will argue in the
following that the direct use of approach (2) ignores
valuable prior biological information about the problem,
which leads to suboptimal solutions. This, in turn, has
an adverse effect on the estimation of the proportions A
and the methylation profiles T, leading to considerably
worse solutions.

The main problem of (2) is ill-posedness. In general,
there are multiple optimal solutions to (2) (excluding
those generated by column and row permutations in 7,
respectively, A), as can easily be seen from geometric
considerations (see Fig. 1c). In geometric terms, prob-
lem (2) can be re-phrased as follows: find a set of k
points {¢1, ..., &} C [0, 1] corresponding to the columns
of T such that their convex hull 7 = {y € R™
y = Y5 Aty A = 0 Vs, YK A = 1} mini-
mizes the sum of squared Euclidean distances of the data
points {D.1,...,D.,} to that convex hull. As shown in
Fig. 1c, one can easily construct problem instances for
which it is possible to extend or shrink 7 while keep-
ing the least-squares objective (essentially) unchanged.
Note that a solution from RefFreeCellMix or one from
our model without the regularizer (A = 0) will be far
away from the ground truth and, thus, have gross errors
both in the estimation of the proportions A as well as the
profiles T.

To deal with this ambiguity, we suggest complement-
ing the least-squares objective with a biologically plau-
sible regularizing term pushing the points {¢1,..., %}
towards the vertex set of [0,1]", ie., the set of binary
vectors {0,1}". The rationale behind this is as fol-
lows. Recall that the columns of T take the role of
methylation profiles of prototypes, which in typical
cases represent a (near) homogeneous sub-population
of cells. Depending on the homogeneity of the sub-
population, the methylation profile of the correspond-
ing prototype may be close to binary since at the level
of a single cell, methylation profiles are exactly binary
(methylated vs unmethylated) when ignoring the com-
paratively rare case of half-methylation. Incorporating
this structure contributes significantly to the success in
finding biologically meaningful matrices T and A. Specif-
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ically, we consider the following regularized least-squares
criterion:

m k
min D — TA} + 1YY w(Ti), witho (%) = x(1 — x),
T.A i=1 s=1
subjectto 0 < Tj; <1 Vi,s
Ag >0 Vs,j

k
ZAS]» =1V
s=1
3)

where A > 0 is a hyperparameter. Note that w :[0,1] —
[0,1] is a quadratic function symmetric around its mode
0.5 (i.e., w(x) = w(1 — x)) and vanishes at the boundary
points 0 and 1. The additional regularization term in (3)
acts as a soft binary constraint depending on the parame-
ter A. For A s/l&fficiently large, any minimizer (T, A) of (3)
must satisfy Tjs € {0, 1} for all i, s. We stress that the pro-
posed form of regularization is much better suited to the
given problem than the popular lasso (£; regularization
with w(x) = |x|), which promotes zeroes but discourages
ones, which has little meaning for the given problem from
a biological perspective.

We would like to stress again that the introduction of
this regularizer constitutes a key prerequisite for getting
biologically meaningful solutions for matrices 7" and A.
While (2) and RefFreeCellMix work reasonably well if the
methylation profiles of the pure cell types are present as
samples in the data matrix D, this approach can fail com-
pletely if the measured samples consist only of mixtures
of cell types, as shown in the artificial NeuN*t/~ mix-
ture experiment. The reason for the bad performance of
RefFreeCellMix is that it basically interprets the mixtures
(0.3,0.7) and (0.7,0.3) as columns of 7, whereas the reg-
ularizer proposed in the present paper pushes 7' towards
0 (respectively 1), and, thus, can estimate the correct
profiles and their proportions accurately.

From the computational standpoint, the extra term in
(3) poses an additional challenge compared to (2), as
the function w is non-convex (in fact, it is concave). As
a consequence, when using the alternatization scheme
mentioned above, one has to bear in mind that optimizing
T for fixed A is no longer a convex quadratic program, but
a so-called difference of convex program in virtue of the
concavity of w. The concave—convex procedure [60, 61]
can be employed to generate a sequence of iterates ensur-
ing the monotonic descent of the objective function before
reaching a stationary point. As detailed in Algorithm 1,
it is straightforward to integrate this approach into the
alternating optimization scheme.

The main computational efforts go into the successive
solution of the convex quadratic optimization problems
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Algorithm 1 Alternating minimization algorithm for
objective (3)
Denote C7 = (T € R™k . 0 < T, <
1,...,ms=1,...,k},
Ca = {A € RO,
L...kj=1,...,n)

g(T,A) = |[D-TA|3, h(T) =2 Y1, >3 @(Tis),and
f(T,A) = g(T,A) + h(T).

Asj > 0, Zf:lASj = l,S =

Initialize T° € C7 and A° € Cy; fix numerical tolerance
€ > 0.
t < 0,ff < f(T! A

repeat

Update T

t<—t+1,T « T
repeat
Linearize h(T) around T = T to obtain a function
W) = WY + X0 Y o (T )T —
T,
T « argmingce,g(T,A"Y) + h(T)
until (f(T, A1) — i1 71 < €
Tt « T.

Update A:
Al « argming ., g(T", A).

[t~ f(TH AY.
until (f* — f&=1) /171 < e,

(optT)

(optA)

optT and optA, which can be done by a variety of efficient
solvers. Updating T follows the concave—convex proce-
dure in which the concave part of the objective (here given
by 4(T)) is repeatedly linearized, yielding a sequence of
convex surrogate minimization problems.

MeDeCom element lll: parameter selection

The mixture model (1) and the fitting algorithm
(Algorithm 1) involve two free parameters to be provided
by the user. The inner dimension k of the matrix prod-
uct TA, k < min{m, n} in (1), equals the number of DNA
methylation prototypes used to model the given data. The
regularization parameter A determines how strongly the
entries of T are encouraged to take values in {0, 1}. The
choice of k can be guided by prior (biological) knowledge
about the possible composition of the underlying mix-
ture. However, to select the optimal values of k and A, we
developed a cross-validation procedure.

Cross-validation
Typical approaches to cross-validation in matrix factor-
ization are (a) leaving out columns, (b) leaving out rows,
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and (c) leaving out both rows and columns [62]. We
decided to use (a) since it leads to a straightforward
scheme as displayed in Algorithm 2. For each fold, a sub-
set of the samples is left out. Thereby, the column-reduced
data matrix D' is factorized as if one were given the full
matrix. The resulting left factor 7' is used to fit the left-
out columns in DU as DOUt ~ TinZout The squared
error of that approximation or CVE is saved and finally
combined with the errors from other folds.

Algorithm 2 Column-based L-fold cross-validation
scheme for validation of model (1)
Choose an integer L € {1, ..., [n/2]}.
Let Z = {1,...,n}. Randomly partition Z into dis-
joint subsets Z; so that |n/L] < |Z;| < [n/L] and
YTl =n.
for? e{l,...,L}do
Form D" = D.7\7,, D" = D, 7,.

Solve the matrix factorization problem (3) with DI
in place of D and A = A,4. Denote the minimizing T
by T,

Obtain A°" as the minimizer of
k

min ID°" —T™A||? subject to Ay > 0Ys,j, > Ag=1Vj.

s=1

erry) < |[D— TmA|2
end for

L )
return erry < ) ,_; erry .

Selecting k

The choice of k is critical for the good performance of
our model. In some instances, such as for the synthetic
mixtures, the number of cell populations are known and
the optimal selection of k is straightforward. However,
for most biological samples, prior knowledge of cell-type
composition and other variables is not available or can
only be estimated. Moreover, a number of other variable
effects, such as age, gender, genetic background, allelic
variations etc., have to be included to obtain an inter-
pretable LMC separation. We observe that k should be
chosen such that the estimation error and the approxima-
tion error in model (1) are roughly balanced. The former
results from noise and is incurred when fitting the model
to the data, while the latter is a consequence of model mis-
specification, which, as discussed above, is inevitable for
limited k given the many possible sources and levels of
variance.
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Statistically the selection of k is related to the selection
of numbers of components in a principal component anal-
ysis (PCA). In fact, the matrix factorization model (1) can
be seen as a method of linear dimension reduction applied
to D. A common computational approach to PCA is sin-
gular value decomposition (SVD), which yields a matrix
factorization of rank k of D by discarding all singular vec-
tors not corresponding to the top k singular values. A
notable advantage of our scalable model (1) over the trun-
cated SVD/PCA is its direct interpretability at a biological
level, which is achieved by putting suitable constraints on
the two factors T and A.

For a fixed value of the parameter A, the data-fitting
term of the factorization problem (3) decreases as k
increases. The approximation error of the factorization
model decreases since with more columns in 7, one has
a better chance of capturing differences between the clus-
ter methylomes. At the same time, the estimation error
increases as the additional degrees of freedom favor over-
adaptation to noise. A suitable choice of k balances both
effects. The use of cross-validation is intended to achieve
this balance by tracing the CVE over a grid of values for
k and selecting the one corresponding to the minimum.
The final choice of k is made by combining visual inspec-
tion of the cross-validation results and available prior
information about the most likely number of underlying
methylation signatures.

Selecting A

In our example in Fig. 1b, the regularization parameter
A, which balances the trade-off between the data fidelity
term and the data-independent regularization term, has a
crucial influence on the solution of the factorization prob-
lem (1) delivered by Algorithm 1. Since there is, in general,
no objective criterion to assess the suitability of each solu-
tion at a biological level, we use CVE, as for the parameter
k. Determining a minimum CVE for A is difficult as that
parameter takes values in a continuous domain, namely
the non-negative real line. To approach this, we perform
a two-stage grid search, starting with a coarse grid and
then concentrating on a smaller range covered by a finer
grid. Details of the procedure are outlined in Algorithm 3.
At the beginning of each of the two rounds of the grid
search, Algorithm 3 is run for each grid point of A using
multiple (*250) random initializations. As the solutions
corresponding to nearby grid points can be expected to
be similar, we complement random initializations with a
smoothing scheme in which the solutions of the five pre-
ceding and the five subsequent grid points are used for
initialization.

Computational performance
When m > n, the computational burden is dominated
by the optimization step over 7, which scales in the worst
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Algorithm 3 Choosing the parameter A by L-fold cross-
validation
Let A = {XA1,...,Ag} be a grid of values to be considered
for 1, where the spacings between the grid points is typically
linear on a log-scale, e.g. 1071°,1077,...,107!
Choose an integer L € {1,..., |n/2]}.
Let Z = {1,...,n}. Randomly partition Z into disjoint sub-
sets Z; so that [n/L] < |Z;| < [n/L] and Y5 |Z;| = n.

fort e{l,...,L}do
forge{l,...,G} do

1) Form D" = D, 1\7,, D°"* = D, 7,.

(2) Solve the matrix factorization problem (3) with
D™ in place of D and A = A4 using Nj; random
initializations. Denote the minimizing T by /72“
and the corresponding objective value by f;.

(3) Obtain A% as the minimizer of

k
rr}“inllDO“t—?i“Allf: subject to A > 0 ¥s,j Y Ag=1V,].

s=1
for g’ € {max(g —5,1),...,max(g —1,1)} do
Solve the matrix factorization problem (3) with Din
in place of D and A = A, using (T;‘,Az,“t) for ini-
tialization. Denote the solution by (T,A) and its
objective value by f.

if f < fq then
(T;,",Agut) «~ (T,A)andfy < f
end if

endlfor R

errfg ) || Dout — Tonut”%
end for
forg € {G,...,1} do

forg € {min(g+1,G),...,min(g +5,G)} do
Solve the matrix factorization problem (3) with Din
in place of D and 1 = Ag, using (T(é‘,‘,A“g’}“) for
initialization. Denote the solution by (T,A) and its
objective value by f.

if f < f, then
(T, A3™) « (T, A) and fy < f
end if

end for
() t _ 7ingout 2
errg” < [|[D° — TMAY|¢
end for
L
erry <= ) y_;er
end for
return 1* = Ag+ with g* defined by errgx = minj<,<g errg.

()
g .
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case as O(nmk3), where O(k%) is the worst-case perfor-
mance in solving a quadratic program of size k, which in
practice often behaves better. However, the optimization
of rows of T can be done independently and, thus, we have
parallelized this step, leading to an almost linear speed-up
on multi-core machines. Moreover, we have parallelized
all the independent runs done for cross-validation and
used to find a good regularization parameter. While still
computationally demanding, the method is in this way
scalable to large data sets, both for the number of CpG
sites m and number of samples . RefFreeCellMix is faster
than MeDeCom as it does not have to test for different
regularization parameters. However, a single factorization
for A = 0 is faster in MeDeCom.

LMC matching

As a first interpretation level, we propose matching
MeDeCom LMC results of unknown samples to reference
profiles, which can be either methylomes of purified cell
types or other LMCs. Given a matrix of k LMCs T esti-
mated from a data set D and a matrix of k* reference
profiles T, we first selected a set of rows R correspond-
ing to the overlap of CpGs present in both T and T*. We
then computed the matrix S = (S;;) of Pearson corre-
lation coefficients between all pairs of vectors /7:73,5 and
T;w. We consider LMC i as a match to reference profile
jif S;; = max; S;;. We considered the matching unam-
biguous when §;; = max;§;; = max;S;; for all such
matching pairs (i,7). In most of the cases, we observe
better matching when both T and T* are centered, i.e.,
(l/k)flk (respectively (1/k*)T*1j+) is subtracted from
each column. To compare sets of prototypes correspond-
ing to different parameter settings, we normalize the total
number of unambiguously matching prototypes by the
achievable maximum, which yields a score € €[ 0, 1] given
by € = 1/min(k, k*) |{(f,}) e {1,... .k} x {1,...,k*} :
S;; = max; §;; and S5 = max; Sij}l.

On the next alternative level, we propose a combined
clustering analysis of LMC prototypes and reference pro-
files. For that, we composed a matrix 7T =[ /1:73 T% 1. We
also computed a correlation matrix S™ analogously to S,
and used it as a similarity matrix for agglomerative hierar-
chical clustering with average linkage (procedure hclust
in the R package clust).

Functional annotation of LMC-specific CpG positions

On a third level, we propose a functional annotation of the
recovered LMCs by selecting component-specific CpG
positions using a fixed methylation difference threshold 6.
We consider a CpG position / € {1,...,m} to be specific
to component i if |T;; — Zj#i Tyjl > 6. We investigate
each set £; of all such CpGs with respect to enrichment
of annotation categories using GREAT [51]. In general,



Lutsik et al. Genome Biology (2017) 18:55

we use the default definition for a functional domain of a
gene, with a maximal distance of 10 kb upstream or down-
stream of the transcriptional start site (the “two closest
genes” option in GREAT).

Reference-based estimation of cell-type proportions

If a matrix T of k prototype methylomes is available, e.g.,
experimentally obtained using cell separation methods,
one can estimate a corresponding matrix of mixture pro-
portions by solving sub-problem optA in Algorithm 1.
From here onwards, we refer to this method as regression,
and we apply it for reference-based estimation of mixture
proportions whenever the reference methylomes are avail-
able. This form of proportion estimation is like a method
called constrained projection proposed for the same pur-
pose in [33]. The important difference is, however, that the
analogue of the matrix T in that method is constructed
from the selection of a comparatively small set of cell-
type-specific marker CpGs. In the following, we compare
to its proportion estimates whenever appropriate.

Application of RefFreeCellMix

We performed reference-free deconvolution with the
method RefFreeCellMix by Houseman et al. [42] using the
R package RefFreeEWAS. In accordance with the orig-
inal publication of the method [42], we applied it to the
20,000 most variable CpG positions from the methyla-
tion matrix, unless the total number of rows was less, in
which case we used the full matrix. In the former case,
we used the available option to obtain the estimates of
the methylation components for all CpGs as the final step
of the deconvolution procedure (supplying the complete
data matrix as argument Yfinal).

Simulations

For the performance analysis, we generated simulated
DNA methylation data by mixing measured profiles of
isolated cell types in controlled proportions and adding
varying levels of Gaussian noise. An m x n matrix of DNA
methylation values Dy, was generated according to the
model in (1).

The underlying matrix of LMCs T &[0, 1]"*kim was
obtained by averaging methylation profiles for ks puri-
fied blood cell types from six donors in the Reinius et al.
study [44]. We tested four different constellations of blood
cell types:

® [sim = 2 with two distant cell types (neutrophils and
CD4+ T cells).

® [sim = 2 with two similar cell types (neutrophils and
monocytes).

® [im = 3 with two similar cell types and one distant
from the first two (neutrophils, monocytes and CD4+
T cells).
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® [sim = 5 with all major blood cell types, excluding
eosinophils and B cells.

The columns of the matrix of mixture proportions A were
sampled from a Dirichlet distribution commonly used to
model distributions over the probability simplex. The dis-
tribution had kg parameters vary, . . ., vag, . The simplex
base a1,...,a,., » ;& = 1, was chosen to model the
prior expectation for the mixing proportions in a typi-
cal individual. We tested two scenarios: on average equal
(uniform) proportions across individuals, i.e., o; = 1/kgim,
i = 1,...,kim, and a setting where some concentration
parameter values were much larger than others, which
comes closer to the situation one encounters for whole
blood. The scaling factor v was used to control the vari-
ability of the mixing proportions, with v = 1 yielding
highly variable, v = 10 moderately variable, and v = 100
marginally variable proportions across individuals. Finally,
the additive noise term E was generated by sampling mn
values from a Gaussian distribution with mean 0 and stan-
dard deviation 0.05, 0.1, and 0.2 to simulate low, moderate,
and high levels of noise, respectively.

To simulate true methylation effects of average size &
for m, < m CpGs in cell type [ under a simple case vs
control setting, the source cell-type-specific methylation
profiles of the affected samples (cases) were changed to
mimic DNA methylation differences. More specifically, a
set C, of affected CpGs randomly sampled from 1,.. ., m,
and a matrix 7¢ was obtained so that 7}, = T} +
N (8,0)In0,1)-0 where u € Ce. The simulated effect for
the proportion of cell type / was introduced by changing
parameter «; of the Dirichlet distribution for one sample
group only.

Infinium 450k data

Public Infinium 450k data sets

The publicly available data sets used to validate the fac-
torization approach are summarized in Table 1. To test
MeDeCom for blood-based data, we used one reference
data set and data from two large whole-blood-based stud-
ies. The data set from Reinius et al. contains profiles of
purified blood cell types, as well as mixed samples with
known cell counts [44]. In addition, we used data from a
large rheumatoid arthritis EWAS with 354 cases and 337
controls [35]. Finally, we validated the whole-blood results
in the data from the EPIC Italy prospective cohort, which
provided 845 Infinium 450k measurements [45]. Neuronal
data sets were obtained from one reference study and one
large AD cohort. As a reference, we used data from the
CETS study [37], which contained in total 145 Infinium
450k profiles of various neuronal samples from major
depression disorder patients and healthy controls, such as
cortical NeuN™- and NeuN~-enriched cell populations,
nine artificial NeuN™'/~ titration mixtures, as well as 20
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intact frontal cortex samples. For validation, we used data
from a recent AD study [19].

Processing and preparation of the Infinium 450k data

The raw Infinium 450k data were collected as IDAT files
or, if the latter were not available, from probe-wise inten-
sity matrices (Illumina Genome Studio reports). Loading
and primary processing, such as intensity summarization
and methylation ratio (8 value) calling, was performed
with the RnBeads package [55]. We used dasen as the
primary normalization method [63]. We used several lay-
ers of filtering criteria to eliminate low-quality probes.
We required each methylation call to be supported by
at least five Infinium beads. Since too low and too high
probe intensity may indicate measurement problems, we
discarded CpGs where the raw intensity for either methy-
lated or unmethylated probes was below 0.1 or above
0.9 quantiles of the total intensity distribution in the
respective channel. To diminish the effects of genetic
variation, we also discarded CpGs with probes that over-
lapped with annotated single-nucleotide polymorphism
positions (AbSNP132 entries with MAF > 0.05, as defined
in the RnBeads.hgl9 annotation) along the whole probe
sequence.

Adjustment of the phenotype association analysis

For consistency with the published results, we performed
the association analysis using the code that we obtained
from the authors of the ReFACTor paper [41]. For the
unadjusted analysis, a logistic linear model was fitted for
each CpG site, with the phenotype (rheumatoid arthritis
status) as a response variable and methylation level as the
only predictor. The T test of the predictor variable coeffi-
cient being different from zero was used as the test of the
association. For the adjusted analysis, first, the ordinary
linear model was fitted to the methylation data for each
CpG using the common covariates, such as age, gender,
smoking status, and the experimental bath, as predictors.
The residuals of this model were then used to fit the phe-
notype model instead of the actual methylation values.
The adjustment for cell composition was performed either
via a specialized statistical procedure (RefFreeEWAS [39]
and Fast-LMM-EWA Sher [40]) or by including additional
covariate variables reflecting the compositional variation.
In the reference-based adjustment, unconstrained cell-
type contribution estimates obtained with the Houseman
et al. method [33] were added to the covariate list. For
RefFreeEWAS and Fast-LMM-EWASher, no custom mod-
eling was performed, but the data and common covariates
were supplied directly to the published implementations
and the output P values were used for the comparison.
When adjusting using ReFACTor and RefFreeCellMix,
columns of the recovered matrices R and 2 were included,
respectively. For MeDeCom, the LMC proportions were
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used as covariates. To decrease the complexity for large
k, we considered including only k¥’ LMCs with, on aver-
age, the largest proportions across all samples. The effi-
ciency of the adjustment was assessed by comparing
the observed distribution of P values to the expected
one under the assumption that none of the tested null
hypotheses are false (which corresponds to a uniform
distribution).
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