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Abstract

Background: Epigenetic biomarkers of aging (the “epigenetic clock”) have the potential to address puzzling findings
surrounding mortality rates and incidence of cardio-metabolic disease such as: (1) women consistently exhibiting lower
mortality than men despite having higher levels of morbidity; (2) racial/ethnic groups having different mortality rates
even after adjusting for socioeconomic differences; (3) the black/white mortality cross-over effect in late adulthood;
and (4) Hispanics in the United States having a longer life expectancy than Caucasians despite having a higher burden
of traditional cardio-metabolic risk factors.

Results: We analyzed blood, saliva, and brain samples from seven different racial/ethnic groups. We assessed the
intrinsic epigenetic age acceleration of blood (independent of blood cell counts) and the extrinsic epigenetic
aging rates of blood (dependent on blood cell counts and tracks the age of the immune system). In blood,
Hispanics and Tsimane Amerindians have lower intrinsic but higher extrinsic epigenetic aging rates than
Caucasians. African-Americans have lower extrinsic epigenetic aging rates than Caucasians and Hispanics but no
differences were found for the intrinsic measure. Men have higher epigenetic aging rates than women in blood,
saliva, and brain tissue.

Conclusions: Epigenetic aging rates are significantly associated with sex, race/ethnicity, and to a lesser extent
with CHD risk factors, but not with incident CHD outcomes. These results may help elucidate lower than expected
mortality rates observed in Hispanics, older African-Americans, and women.

Keywords: DNA methylation, Epigenetic clock, Race, Gender, Aging, Coronary heart disease, Hispanic paradox,
Black/white mortality cross-over
Background
Many demographic and epidemiological studies explore
the effects of chronological age, race/ethnicity, and sex on
mortality rates and susceptibility to chronic disease [1–5],
but it remains an open research question whether race/
ethnicity and sex affect molecular markers of aging dir-
ectly. To what extent clinical biomarkers of inflammation,
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dyslipidemia, and immune senescence relate to cellular
markers of aging also remains an open question. One
major challenge is the lack of agreement on how to define
and measure biological aging rates [6]. Many biomarkers
of aging have been proposed ranging from clinical markers
(such as whole-body functional evaluations and gait speed)
to molecular markers such as telomere length [7, 8]. Avai-
lable biomarkers capture only particular aspects of aging.
For example, African Americans have been shown to
have longer telomere lengths than Caucasians [9], des-
pite significantly higher levels of inflammation, lower
average life expectancies, and higher disease incidence.
To date, no studies have employed epigenetic measures
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to estimate and compare molecular aging rates among
gender or racial/ethnic groups.
Measures incorporating DNA methylation levels have

recently given rise to a new class of biomarkers that
appear informative of aging given that age has a pro-
found effect on DNA methylation levels in most human
tissues and cell types [10–18]. Several recent studies
have measured the epigenetic age of tissue samples by
combining the DNA methylation levels of multiple
dinucleotide markers, known as Cytosine phosphate
Guanines or CpGs [19–21]. We recently developed the
epigenetic clock (based on 353 CpGs) to measure the
age, known as “DNA methylation age” or “epigenetic
age,” of assorted human cell types (CD4+ T cells or
neurons), tissues, and organs—including blood, brain,
breast, kidney, liver, lung [20], and even prenatal brain
samples [22]. The epigenetic clock is an attractive bio-
marker of aging because it applies to most human
tissues and its accurate measurement of chronological
age is unprecedented.
The following evidence shows that the epigenetic clock

captures aspects of biological age. First, the epigenetic
age of blood has been found to be predictive of all-cause
mortality even after adjusting for chronological age and
a variety of known risk factors [23–25]. Second, the
blood of the offspring of Italian semi-supercentenarians
(i.e. participants who reached an age of at least 105 years)
has a lower epigenetic age than that of age-matched
controls [26]. Third, the epigenetic age of blood relates
to frailty [27] and cognitive/physical fitness in the elderly
[28]. The utility of the epigenetic clock method has been
demonstrated in applications surrounding obesity [29],
Down’s syndrome [30], HIV infection [31], Parkinson’s dis-
ease [32], Alzheimer’s disease-related neuropathologies
[33], lung cancer [34], and lifetime stress [35]. Here, we
apply the epigenetic clock to explore relationships between
epigenetic age and race/ethnicity, sex, risk factors of coron-
ary heart disease (CHD), and the CHD outcome itself.

Results
Blood datasets and racial/ethnic groups
An overview of our DNA methylation datasets can be
found in Table 1. We analyze multiple sources of DNA:
mostly blood, saliva, and lymphoblastoid cell lines. In
addition, brain datasets were used to compare men and
women (Table 2). We considered the following racial/ethnic
groups (Table 1): 1387 African Ancestry (African Ameri-
cans and two groups from Central Africa), 2932 Caucasian
(non-Hispanic whites), 657 Hispanic, 127 East Asians
(mainly Han Chinese), and 59 Tsimane Amerindians.

Accuracy of the epigenetic clock
DNAm age, also referred to as epigenetic age, was calcu-
lated in human samples profiled with the Illumina Infinium
450 K platform using a previously described method [20].
As expected, we found DNAm age to have a strong linear
relationship with chronological age in blood and saliva (cor-
relations in the range of 0.65–0.93, Figs. 1, 2, 3, 4, and 5)
and in lymphoblastoid cell lines (r = 0.59; Additional file 1).
Based on a spline regression line, we defined a “universal”
measure of epigenetic age acceleration, denoted “Age
Accel.” in our figures, as the difference between the ob-
served DNAm age value and the value predicted by a spline
regression model in Caucasians. The term “universal” refers
to the fact that this measure can be defined in a vast majo-
rity of tissues and cell types with the notable exception of
sperm [20]. A positive value of the universal age acceler-
ation measure indicates that DNA methylation age is
higher than that predicted from the regression model for
Caucasian participants of the same age. Our intrinsic and
extrinsic age acceleration measures (see “Methods”) only
apply to blood data. A measure of intrinsic epigenetic age
acceleration (IEAA) measures cell-intrinsic epigenetic aging
effects that are not confounded by extra-cellular differences
in blood cell counts. The measure of IEAA is an incomplete
measure of the age-related functional decline of the im-
mune system because it does not track age-related changes
in blood cell composition, such as the decrease of naïve
CD8+ T cells and the increase in memory or exhausted
CD8+ T cells [36–38]. The measure of extrinsic epigenetic
age acceleration (EEAA) only applies to whole blood and
aims to measure epigenetic aging in immune-related com-
ponents. It keeps track of both intrinsic epigenetic changes
and age-related changes in blood cell composition (see
“Methods”). The estimated blood cell counts, which are
used in these measures, correlate strongly with correspond-
ing flow cytometric measurements from the MACS study
(Additional file 2): r = 0.63 for CD8 +T cells, r = 0.77 for
CD4+ T, r = 0.67 B cell, r = 0.68 naïve CD8+ T cell, r = 0.86
for naïve CD4+ T, and r = 0.49 for exhausted CD8+ Tcells.

Hispanics have a lower intrinsic aging rate than
Caucasians
We find that Hispanics have a consistently lower IEAA
compared to Caucasians (p = 7.1 × 10–10, Fig. 1m). An
important question is whether the observed differences
in blood can also be observed in other tissues. Using a
novel saliva dataset (dataset 4, saliva from PEG) we find
that Hispanics have a lower epigenetic aging rate than
Caucasians (p = 0.042, Fig. 1i). The fact that our findings
in blood can also be validated in saliva is consistent with
the strong correlation between epigenetic age acceleration
measures of the two sources of DNA (r = 0.70, p = 1.4 ×
10–12, Fig. 1n). The lower value of IEAA in Hispanics
unlikely reflects country of birth or of residence (at age
35 years) given the robust findings across samples and
our detailed analysis in the WHI, where we find that
Hispanics born outside US, but living in the US, have a



Table 1 Overview of the DNA methylation datasets. The rows correspond to the datasets used in this article. Columns report the tissue
source, DNA methylation platform, number of participants, access information, and citation and a reference to the use in this text

Tissue source Array Participants
(n)

Women
(n)

African Ancestry,
Caucasian, Hispanic,
Tsimane, East Asian (n)

Mean age
(years) (range)

Available Citation Figure

1. Women’s Health Initiative
(blood)

450 1462 1462 676, 353, 433, 0, 0 63 (50–80) dbGAP, NHLBI Current
article

1

2. Bogalusa (blood) 450 969 547 288, 681, 0, 0, 0 43 (29–51) dbGAP, NHLBI Current
article

1

3. PEG (blood) 450 335 138 0, 289, 46, 0, 0 70 (36–91) GSE72775 Current
article

1

4. Saliva from PEG 450 259 113 0, 166, 93, 0, 0 69 (36–88) GSE78874 Current
article

1

5. Older Tsimane and
others

450 310 150 0, 235, 38, 37, 0 66 (35–92) GSE72773 Current
article

3

6. Younger Tsimane
and Caucasians

450 46 31 0, 24, 0, 22, 0 15 (2–35) GSE72777 Current
article

3

7. East Asians vs.
Caucasians (PSP
samples removed)

450 312 132 0, 279, 0, 0, 33 68 (34–93) GSE53740 Li, 2014 [73] 3

8. African populations 450 256 50 256, 0, 0, 0, 0 40 (16–90) EGAS00001001066 Fagny, 2015
[42]

4

9. Cord blood 27 216 110 92, 70, 0, 0, 0 0 (0–0) GSE27317 Adkins,
2011 [44]

10. Male saliva 27 91 0 0, 59, 32, 0, 0 29 (21–55) GSE34035 Liu, 2010
[74]

11. Female saliva 27 42 42 0, 27, 15, 0, 0 27 (21–55) GSE34035 Liu, 2010
[74]

12. Lymphoblastoid
cell lines

450 237 154 75, 68, 0, 0, 94 34 (5–73) GSE36369 Heyn, 2013
[88]

Additional file 1

Table 2 Description of brain datasets for evaluating the effect
of gender. Additional details can be found in “Methods”

Data Participants
(n)

Men
(%)

Age mean ± SE
[min, max]

Brain
region

Brain tissue
samples (n)

Study 1 117 41 % 84.0 ± 9.8 [40, 105] CRBLM 112

EC 108

PFCTX 114

STG 117

Study 2 142 68 % 48.0 ± 23.2 [16, 96] CRBLM 112

FCTX 133

PONS 125

TCTX 127

Study 3 147 63 % 44.3 ± 9.6 [19, 68] CRLM 147

Study 4 37 62 % 64.4 ± 17.4 [25, 96] CRBLM 36

PFCTX 36

Study 5 209 66 % 52.3 ± 29.8 [1, 102] CRBLM 201

FCTX 201

Study 6 718 37 % 88.5 ± 6.6 [66, 108] DLPFC 718

CRBLM cerebellum, DLPFC dorsolateral prefrontal cortex, EC entorhinal cortex,
FCTX frontal cortex, PFCTX prefrontal cortex, PONS pons, STG superior temporal
gyrus, TCTX temporal cortex
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higher IEAA than Hispanics born and raised in the US
(p = 0.025, Additional file 3B).

CHD risk factors bear little or no relationship with IEAA
We related our measures of age acceleration to risk fac-
tors related to CHD since the latter are significant pre-
dictors of mortality. In postmenopausal women from the
Women’s Health Initiative (WHI), we found no evidence
that IEAA is associated with disparities in education,
high density lipoprotein (HDL) or low density lipopro-
tein (LDL) cholesterol, insulin, glucose, C-reactive pro-
tein (CRP), creatinine, alcohol consumption, smoking,
diabetes status, or hypertension (see Table 3).

Tsimane have a lower intrinsic aging rate than Caucasians
The Tsimane are an indigenous population (~15,000 in-
habitants) of forager-horticulturalists who reside in the
remote lowlands of Bolivia. They reside mostly in open-air
thatch huts, and actively fish, hunt, and cultivate plantains,
rice, and manioc through slash-and-burn horticulture
[39]. Tsimane provide a unique contribution to aging re-
searchers and epidemiologists because they experience
high rates of inflammation due to repeated bacterial, viral,
and parasitic infections, yet show minimal risk factors for
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Fig. 1 Intrinsic epigenetic age acceleration in Caucasians and Hispanics. a-d DNA methylation age (y-axis) versus chronological age (x-axis) in (a)
Women’s Health Initiative, (b) blood data from PEG, (c) dataset 5, (d) saliva data from PEG. Dots corresponds to participants and are colored by ethnic
group (gray = Caucasian, blue =Hispanic). The gray line depicts a spline regression line through Caucasians. We define two measures of age acceleration
based on DNAm age. e-g The bar plots relate the universal measure of epigenetic age acceleration to race/ethnicity, which is defined as residual to the
spline regression line through Caucasians, i.e. the vertical distance of a point from the line. By definition, the mean age acceleration in Caucasians is zero.
h, m Results after combining the three blood datasets using Stouffer’s meta-analysis method. i Age acceleration residual versus ethnicity in the saliva data
from PEG. j-m The y-axis reports the mean value of IEAA, which is defined as residual from a multivariate regression model that regresses DNAm age on
age and several measures of blood cell counts. Each bar plot reports 1 standard error and the p value from a group comparison test (ANOVA). n Age
acceleration in blood versus age acceleration in saliva for the subset of PEG participants for whom both data were available
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Fig. 2 Intrinsic epigenetic age acceleration in Tsimane, Hispanics, East Asians, and Caucasians. a-c DNA methylation age (y-axis) versus chronological
age (x-axis) in (a) dataset 5, (b) dataset 6, (c) dataset 7. Dots corresponds to participants and are colored by race/ethnicity (green= African American,
gray= Caucasian, blue= Hispanic, red = Tsimane, orange= East Asians). The gray line depicts a spline regression line through Caucasians. We define two
measures of age acceleration based on DNAm age. d-f The bar plots relate the universal measure of epigenetic age acceleration to race/ethnicity,
which is defined as residual to the spline regression line through Caucasians, i.e. the vertical distance of a point from the line. g-i The y-axis reports the
mean value of IEAA, which is defined as residual from a multivariate regression model that regresses DNAm age on age and several measures of
blood cell counts. Each bar plot reports 1 standard error and the p value from a group comparison test (ANOVA)
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Fig. 3 Intrinsic epigenetic age acceleration versus African or European Ancestry. a-c DNA methylation age (y-axis) versus chronological age (x-axis) in
(a) Women’s Health Initiative, (b) Bogalusa study. Dots corresponds to participants and are colored by race/ethnicity (green= African Ancestry, gray =
Caucasian). The gray line depicts a spline regression line through Caucasians. We define two measures of age acceleration based on DNAm age. c, d
The bar plots relate the universal measure of epigenetic age acceleration to race/ethnicity, which is defined as residual to the spline regression line
through Caucasians. e, h Results after combining the two blood datasets using Stouffer’s meta-analysis method. f, g The y-axis reports the mean value
of IEAA, which is defined as residual from a multivariate regression model that regresses DNAm age on age and several measures of blood cell counts.
Each bar plot reports 1 standard error and the p value from a group comparison test (ANOVA)
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heart disease or type 2 diabetes as they age; they have min-
imal hypertension and obesity, low LDL cholesterol and
no evidence of peripheral arterial disease [39–41]. Since
Hispanics share genetic ancestry with peoples indigenous
to the Americas, we hypothesized that a slower intrinsic
aging rate might also be observable by analyzing Tsimane
blood samples [39]. Among participants who are older than
35 years, Tsimane have the lowest intrinsic age acceleration
(Fig. 2d, g). While Tsimane have a significantly lower IEAA
than Caucasians after the age of 35 years (p = 0.0061), no
significant difference could be observed in younger partici-
pants (Fig. 2e, h). In this analysis, the threshold of 35 years
was chosen so that a sufficient number of young partici-
pants would be included in dataset 6. We found no signifi-
cant difference in IEAA between older Hispanics and
Tsimane, which might reflect the relatively low group sizes
of n = 37 Tsimane versus n = 38 Hispanics.

IEAA is not associated with CHD in the WHI
Based on our findings above showing little or no rela-
tionship between IEAA and CVD risk factors at baseline,
we hypothesized that IEAA would not predict future on-
set of CHD. A multivariate logistic regression model
shows that IEAA is not significantly associated with an
increased risk of incident CHD (Table 4). However, as
expected, current smoking, prior history of diabetes,
hypertension, high insulin and glucose levels, and lower
HDL predicted an increased risk of CHD (Table 4).

Hispanics and Tsimane have a higher EEAA than
Caucasians
According to our measure of EEAA, Hispanics have a sig-
nificantly older extrinsic epigenetic age than Caucasians
(meta-analysis p = 0.00012, Fig. 4a–d) and fewer naïve
CD4+ T cells, based on cytometric data from the WHI
LLS, the MACS study, and imputed blood cell counts
(Fig. 4f–j, Additional file 2H, I). This pattern of fewer
naïve CD4+ T cells is even more pronounced for Tsimane
(Fig. 4m, n), who experience repeated acute infections and
elevated, often chronic, inflammatory loads.

Epigenetic age analysis of East Asians
Because ancient Native American populations share
common ancestral lineages with East Asians, we exam-
ined whether East Asians also differ from Caucasians
in terms of epigenetic aging rates. We found no signifi-
cant difference between Caucasians and East Asians in
terms of IEAA (Fig. 2i), EEAA (Fig. 4o), or naïve CD4+
T cells (Fig. 4p). Similarly, we found no difference in
lymphoblastoid cell lines (Additional file 1). However,
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Fig. 5 Analysis of African rainforest hunter-gatherers and farmers. a DNAm age versus age using 256 blood samples from [42]. The points are colored
as follows: magenta = AGR (urban setting), turquoise = AGR (forest), brown= RHG (forest). Group status versus (b) universal age acceleration, (d) intrinsic
age acceleration, (f) extrinsic age acceleration. Habitat versus (c) universal age acceleration, (e) intrinsic age acceleration, (g) extrinsic age acceleration.
(h, i) are analogous to (a, b) but the y-axis is based on a DNAm age estimate that excluded CpG that were located near SNPs. In this robustness
analysis, we removed CpG probes containing genetic variants at a frequency higher than 1 % in the populations studied
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Fig. 4 Extrinsic epigenetic age acceleration and blood cell counts across groups. EEAA versus race/ethnicity in (a, q) Women’s Health Initiative,
(b) blood data from PEG, (c, k) dataset 5, (l) dataset 6, (o) dataset 7, (r) Bogalusa study. Flow cytometric, age adjusted estimates (e, t) naïve CD8+
T and (j, x) naïve CD4+ T cell counts in the WHI LLS. Age adjusted estimates of naïve CD4 + T cells based on DNA methylation data from (f, u)
Women’s Health Initiative, (g) blood data from PEG, (h, m) dataset 5, (n) dataset 6, (p) dataset 7, (v) Bogalusa study. (d, i, s, w) Meta-analysis
across the respective datasets based on Stouffer’s method
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Table 3 Multivariate model that regresses epigenetic age acceleration on participant characteristics in the WHI. Coefficients and
p values from regressing measures of intrinsic and extrinsic epigenetic age acceleration on participant characteristics from dataset 1

Multivariate linear regression Intrinsic EAA Extrinsic EAA

Estimate (SE) p Estimate (SE) p

Race/ethnicity Hispanic vs. African American –0.94 (0.35) 0.007 3.363 (0.439) <10–15

White vs. African American 0.71 (0.295) 0.016 1.94 (0.37) 1.6 × 10–7

HDL-cholesterol 0.006 (0.01) 0.558 –0.003 (0.013) 0.799

Triglyceride 0.003 (0.002) 0.059 0.004 (0.002) 0.04

Insulin 0 (0.001) 0.664 0.001 (0.001) 0.337

Glucose 0.003 (0.004) 0.486 0.007 (0.005) 0.112

CRP 0.023 (0.018) 0.215 0.052 (0.023) 0.023

Creatinine 0.703 (0.594) 0.237 1.985 (0.745) 0.008

BMI 0.035 (0.021) 0.103 0.045 (0.027) 0.093

Education High school (HS) vs. no HS 0.357 (0.426) 0.403 –0.784 (0.534) 0.142

Some college vs. no HS 0.469 (0.381) 0.219 –1.171 (0.478) 0.014

College vs. no HS 0.486 (0.519) 0.349 –2.253 (0.65) 0.001

Grad school vs. no HS 0.36 (0.424) 0.396 –1.648 (0.531) 0.002

Alcohol Past drinker vs. Never 1.668 (1.1) 0.13 –0.598 (1.379) 0.665

Light drinker vs. Never –0.101 (0.536) 0.85 –0.751 (0.672) 0.264

Moderate vs. Never –0.416 (0.748) 0.578 –0.401 (0.937) 0.669

Heavy vs. Never –0.354 (0.88) 0.687 –0.833 (1.103) 0.45

Smoking Former vs. Current –0.573 (1.039) 0.581 –0.104 (1.302) 0.936

Never vs. Current –0.376 (1.039) 0.718 –0.122 (1.303) 0.925

Diabetes 0.216 (0.43) 0.616 –0.061 (0.539) 0.909

Hypertension 0.364 (0.241) 0.131 0.262 (0.302) 0.386

R-squared 0.029 0.069
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these comparative analyses are limited by the relatively
small number of samples and should be repeated in
larger datasets.

Which risk factors for cardiometabolic disease are
associated with EEAA?
Our multivariate model analysis in the WHI (Table 3)
shows that EEAA tracks better than IEAA with risk
factors for cardiometabolic disease; EEAA was positively
associated (higher) with: triglyceride levels (multivariate
model p = 0.04), CRP (p = 0.023), and creatinine (p = 0.008).
EEAA was negatively associated (lower) with higher levels
of education in all ethnic groups (p from 2.0 × 10–8 to 0.05,
Additional file 4I–L). For each racial/ethnic group, we
find that women who did not finish high school
exhibit the highest levels of EEAA (leftmost bar in
Additional file 4J–L).

Epigenetic aging rates of African Americans
In the following, we compare African Americans with
European Americans in terms of IEAA and EEAA. Com-
parisons of African Americans with Caucasians in terms
of IEAA yield contradictory findings across datasets that
differ in age range: African American women have
slightly lower IEAA than Caucasian women in the WHI
(p = 0.017 Fig. 3f ), but no significant difference can be
observed for the younger participants of the Bogalusa study
(Fig. 3g). Indeed, participants in the WHI (aged between
50 and 80 years) were older than those of the Bogalusa
study (aged between 29 and 51 years). This failure to detect
a significant racial/ethnic difference in IEAA in younger
participants is consistent with our results from the com-
parison of younger Tsimane and Caucasians (Fig. 2h). A
multivariate model analysis based on the Bogalusa study
(comprising African Americans and Caucasians) confirms
that IEAA does not differ between middle-aged African
Americans and Caucasians but IEAA is higher among men
(p = 0.025) and has a marginally significant association with
hypertension (p = 0.064, Table 5). When relating individual
variables to IEAA, we find significant associations for
hypertension (p = 0.00035, Additional file 5D–F) but not
for type II diabetes status or educational level.
Our findings for EEAA are highly consistent across the

two studies and age groups: African Americans have lower
EEAA than Caucasians in the WHI and in the Bogalusa
study (p = 7.2 × 10–7, Fig. 4q, r, s). Our flow cytometric



Table 4 Logistic model that regresses CHD status on epigenetic age acceleration and participant characteristics in the WHI. Coefficients,
Wald Z statistics, and corresponding p values resulting from regressing CHD status on measures of epigenetic age acceleration and
various participant characteristics. The results for the measure of IEAA and EEAA can be found in columns 2 and 3, respectively

Logistic model. Outcome CHD case status Intrinsic EAA Extrinsic EAA

Covariates Estimate (SE) Z p Estimate (SE) Z p

Epig. Age Accel –0.017 (0.01) –1.72 0.085 –0.006 (0.008) –0.74 0.458

Age 0.027 (0.008) 3.44 0.001 0.028 (0.008) 3.52 4.3 × 10-4

Race/ethnicity Hispanic vs. African American 0.083 (0.152) 0.55 0.584 0.118 (0.153) 0.77 0.443

White vs. African American 0.141 (0.135) 1.04 0.298 0.135 (0.135) 1.00 0.319

HDL-cholesterol –0.02 (0.005) –4.29 1.8 × 10–5 –0.02 (0.005) –4.33 1.5 × 10-5

Triglyceride 0.001 (0.001) 1.43 0.153 0.001 (0.001) 1.38 0.169

Insulin 0.002 (0.001) 2.26 0.024 0.002 (0.001) 2.25 0.024

Glucose 0.005 (0.002) 2.64 0.008 0.005 (0.002) 2.64 0.008

CRP 0.013 (0.008) 1.61 0.107 0.013 (0.008) 1.61 0.108

Creatinine 0.518 (0.281) 1.84 0.065 0.515 (0.281) 1.84 0.067

BMI –0.011 (0.01) –1.19 0.235 –0.012 (0.01) –1.22 0.223

Education High school (HS) vs. no HS –0.058 (0.183) -0.32 0.753 –0.067 (0.183) –0.37 0.715

Some College vs. no HS 0.008 (0.164) 0.05 0.96 –0.004 (0.165) –0.03 0.979

College vs. no HS –0.198 (0.223) –0.89 0.373 –0.219 (0.223) –0.98 0.327

Grad school vs. no HS –0.237 (0.183) –1.29 0.196 –0.251 (0.183) –1.37 0.171

Alcohol Past drinker vs. Never –0.6 (0.514) –1.17 0.243 –0.641 (0.513) –1.25 0.212

Light drinker vs. Never –0.34 (0.233) –1.46 0.145 –0.343 (0.233) –1.47 0.141

Moderate vs. Never –0.1 (0.32) –0.31 0.754 –0.096 (0.32) –0.30 0.764

Heavy vs. Never –0.34 (0.381) –0.89 0.373 –0.337 (0.381) –0.88 0.377

Smoking Former vs. Current –0.997 (0.467) –2.13 0.033 –0.989 (0.467) –2.12 0.034

Never vs. Current –1.321 (0.468) –2.82 0.005 –1.317 (0.468) –2.81 0.005

Diabetes 0.706 (0.196) 3.61 3.0 × 10-4 0.699 (0.196) 3.58 3.4 × 10-4

Hypertension 0.565 (0.103) 5.46 4.8 × 10-8 0.559 (0.103) 5.41 6.3 × 10-8

Table 5 Multivariate model that regresses epigenetic age acceleration on participant characteristics in the Bogalusa study. Coefficients
and p values from regressing measures of intrinsic and extrinsic epigenetic age acceleration on participant characteristics from dataset 2

Multivariate linear regression Intrinsic EAA Extrinsic EAA

Estimate (SE) Z p Estimate (SE) Z p

Race Caucasian vs. African American –0.013 (0.316) –0.04 0.97 0.843 (0.316) 2.67 0.0076

Gender Female vs. Male –0.622 (0.278) –2.24 0.025 –0.718 (0.277) –2.60 0.0093

Education Grade 8–9 vs. < Grade 8 1.583 (1.468) 1.08 0.28 2.177 (1.465) 1.49 0.14

Grade 10–12 vs. < Grade 8 1.285 (1.27) 1.01 0.31 2.267 (1.267) 1.79 0.074

Vocat/Tech vs. < Grade 8 0.307 (1.299) 0.24 0.81 1.921 (1.295) 1.48 0.14

College vs. < Grade 8 0.85 (1.281) 0.66 0.51 2.375 (1.277) 1.86 0.062

Graduate vs. < Grade 8 0.147 (1.336) 0.11 0.91 1.53 (1.332) 1.15 0.25

Diabetes (II) 0.173 (0.485) 0.36 0.72 0.012 (0.483) 0.03 0.98

Hypertension 0.539 (0.291) 1.86 0.064 1.247 (0.29) 4.30 1.7 × 10-5

R-squared 0.025 0.043
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data from the WHI LLS show that African American
women exhibit a higher abundance of naïve CD8+ T cells
than Caucasian women (p = 1.7 × 10–9, Fig. 4t).
In multivariate regression analyses of EEAA, we find that

African Americans have indications of a significantly youn-
ger immune system age than Caucasians (p= 0.0076) after
controlling for gender, educational level, diabetes status, and
hypertension. In the Bogalusa study, we find three significant
predictors of EEAA: race/ethnicity, hypertension, and gen-
der (p= 0.0093, Table 5). A marginal analysis in the Bogalusa
study identifies a significant association between EEAA and
hypertension (p = 8.0 × 10–5, Additional file 5G–I), type II
diabetes status in Caucasians (p = 0.0085, Additional file
6H), but not in African Americans (Additional file 6I).
Contrary to our findings in the WHI, no significant associ-
ation can be observed between EEAA and educational
level (Additional file 7).

African rainforest hunter-gatherers and farmers
To evaluate the effect of subsistence ecology and environ-
ment on epigenetic aging rates, we analyzed 256 blood
samples from two different groups in Central Africa: rain-
forest hunter-gatherers (RHGs, traditionally known as “pyg-
mies,” sampled from Baka and Batwa populations) and
African populations that have adopted an agrarian lifestyle
(AGRs, traditionally known as “Bantus,” sampled from the
Nzebi, Fang, Bakiga, and Nzime populations) over the last
5000 years [42]. The ancestors of the RHGs and AGRs
diverged ~60,000 years ago. These groups have historically
occupied separate ecological habitats—the ancestors of
RHGs in the equatorial rainforest while those of AGRs in
drier, more open space savannahs and grasslands. Many
RHG groups still live in the rainforest as mobile bands,
whereas AGR populations now occupy primarily rural or
urban deforested areas, though some AGR groups have
settled in the rainforest over the last millennia.
We considered three groups: (1) RHG (n = 102); (2)

AGR living in the forest (n = 60); and (3) AGR living in an
urban setting (n = 94). The forest habitat was significantly
associated with an increase in AgeAccel (p = 2.4 × 10–8,
Fig. 5c) and EEAA (p = 5.9 × 10–11, Fig. 5g), but no differ-
ence was found for IEAA (p = 0.11, Fig. 5e). Further, no
significant difference could be observed between AGR
and RHG when focusing on participants living in the rain-
forest, suggesting greater importance of environment over
genetic differences. These results are not affected by dif-
ferences in genetic variants between RHG and AGR as
can be seen from a robustness analysis where we removed
CpG probes containing genetic variants at a frequency
higher than 1 % in the populations studied (Fig. 5h, i).

Sex effects in blood and saliva
We explored whether differences exist between men and
women in epigenetic aging rates. According to measures
of IEAA, men are older than women in two racial/ethnic
groups: African Americans (Additional file 8A, B) and
Caucasians (Additional file 9A, B, N, Z).
Overall, men have higher IEAA and EEAA than

women even when controlling for education, diabetes,
and hypertension (Table 5). Using saliva data from
PEG, we find that Hispanic men age faster than
Hispanic women (p = 0.021, Fig. 6j). According to
EEAA, Caucasian men are epigenetically older than
Caucasian women (Additional file 9C, O, ZA), but we
do not observe a significant difference in other
groups such as African Americans (Additional file
8C) or central African populations (Fig. 6p, q). The
results for EEAA are also consistent with significant
sex differences in blood cell counts suggesting more
rapid immunosenescence in men. Men have fewer
naïve CD4+ T cells than women in three racial/ethnic
groups: Caucasians (p = 0.0015 in the Bogalusa study,
p = 0.051 in PEG, p = 4.2 × 10–5 in dataset 5); Tsimane
(p = 0.0088 in older Tsimane); and African Americans
(p = 0.011 in the Bogalusa study).

Sex effects in brain tissue
We analyzed the effect of sex on the universal measure
of age acceleration (Age Accel.) in six independent brain
datasets (Table 2 and “Methods”). In total, we analyzed
2287 brain samples from 1370 participants. In our ana-
lysis, we distinguished the cerebellum from other brain
regions because it is known to age more slowly than
other brain regions according to the epigenetic clock
[43]. While sex did not have a significant effect on the
epigenetic age of the cerebellum (Fig. 7a), we found that
other brain regions from men exhibit a significantly higher
age acceleration than those from women (Fig. 7b, meta-
analysis p = 3.1 × 10–5).

Studies of young participants
So far, our results have largely pertained to partici-
pants who are middle-aged or older (Table 1, column
6) as we only had access to two datasets involving
newborns, infants, children, adolescents, and/or young
adults. In dataset 6 (which involved participants be-
tween the ages of 2 and 35 years), we did not observe
a significant difference epigenetic aging rates between
Caucasians and Tsimane. In cord blood samples [44],
we found no significant difference in the epigenetic
ages of cord blood samples between African American
and Caucasian newborns (p = 0.23).

Robustness analysis in the WHI
The epigenetic clock involves 47 CpGs whose broadly
defined neighborhood includes a single nucleotide
polymorphism (SNP) marker according to the probe
annotation file from the Illumina 450 K array. Thus, genetic
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Fig. 6 Sex effect on epigenetic age acceleration in blood and saliva. Panels of the first two rows (a-j) and last two rows (k-s) relate sex to intrinsic
and extrinsic epigenetic age acceleration, respectively. Results are reported for blood tissue in all but one panel (j). The combined results across
all blood studies can be found in panels (i) IEAA, (s) EEAA. Each bar plot reports 1 standard error and a Kruskal–Wallis test
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differences coupled with differences in hybridization effi-
ciency could give rise to spurious differences between dif-
ferent racial/ethnic groups.
We addressed this concern in multiple ways. First, we

re-analyzed the WHI data by removing the 47 CpGs
(out of 353 epigenetic clock CpGs) from the analysis.
The epigenetic clock software imputes the 47 missing
CpGs using a constant value (the mean value observed
in the original training set). Using the resulting modified
epigenetic clock, we validate our findings of racial/ethnic
differences in terms of IEAA and EEAA (Additional file
8A–C). However, this type of robustness analysis is limited
because the removal of a subset of DNA methylation
probes, potentially influenced by proximal genetic variation,
is not as good a control as directly having matched genetic
data. Second, we used a completely independent epigenetic
biomarker based on a published signature of age-related
CpGs from Teschendorff et al. [13]. Again, these results
corroborate our findings (Additional file 8D, E). Third, we
validated our findings using the original blood-based aging
measure by Hannum [19] (Additional file 8F, G). Fourth,
we highlight that both the Horvath and Hannum age
estimators were developed based on training data from
mixed populations. The training data underlying the
Horvath clock involved four racial/ethnic groups (mainly
Caucasians, Hispanics, African Americans, and to a lesser
extent East Asians). The Hannum clock was trained on
Caucasians and Hispanics. While race/ethnicity can lead to
a significant offset between DNAm age and chronological
age (which is interpreted as age acceleration), these two
variables are highly correlated in all racial/ethnic groups.

Discussion
Our main findings are that: (1) Hispanics and Tsimane
have a lower intrinsic but a higher extrinsic aging rate
than Caucasians; (2) African Americans have a lower
extrinsic epigenetic aging rate than Caucasians and
Hispanics; (3) levels of education are associated with a
decreased level of EEAA in each race/ethnic group
(Additional file 4); (4) neither intrinsic nor extrinsic aging
rates of blood tissue are predictive of incident CHD in the
WHI even though EEAA is weakly associated with several



Fig. 7 Effect of sex on the epigenetic age of brain tissue. Each panel depicts a forest plot resulting from the meta-analysis of sex effects. Each row
in a forest plot shows the mean difference in epigenetic age between men and women and a 95 % confidence interval. To combine the coefficient
estimates from the respective studies into a single estimate, we applied a fixed-effects model weighted by inverse variance, which is implemented in
the metafor R package [89]. a Gender did not have a significant effect on the epigenetic age of the cerebellum, which is known to age more slowly
than other brain regions according to the epigenetic clock [43]. b When excluding cerebellar samples from the analysis, we find that male brain regions
exhibit a significantly higher age acceleration than female brain regions (mean difference = 0.82, meta-analysis p = 3.1 × 10–5). The difference remains
significant even after adjusting for intra-subject correlations using a linear mixed effects model (mean difference = 0.77, p = 0.0034)
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cardiometabolic risk factors of CHD (such as hyper-
tension, triglycerides, and CRP); (5) men exhibit
higher epigenetic aging rates than women in blood,
saliva, and brain samples, and (6) the rain forest habi-
tat is significantly associated with extrinsic age
acceleration but not with intrinsic age acceleration in
African populations. Although precise understanding
of the significance of epigenetic aging measures awaits
further elaboration, our principal findings may provide
additional context towards resolving several controver-
sial, epidemiological paradoxes, including the Hispanic
paradox, black–white mortality cross-over, the Tsimane
inflammation paradox, and the sex morbidity–mortality
paradox.
Hispanic paradox
The lower level of IEAA in Hispanics echo the finding
that Hispanics in the US have a lower overall risk of
mortality than Caucasians despite having a disadvan-
taged risk profile [45–48]. Our findings stratified by
country of birth suggest that the lower intrinsic aging
rate of Hispanics does not reflect biases arising
through immigration such as a “healthy immigrant ef-
fect” (Additional file 3). Our finding regarding higher
levels of EEAA in Hispanics parallels the findings that
Hispanics have higher levels of metabolic/inflamma-
tory risk profiles [49] and that Hispanics have a lower
relative CD4+ T cell percentage than Caucasians [50].
Several articles have explored the question of why the



Horvath et al. Genome Biology  (2016) 17:171 Page 12 of 22
immune system of Hispanics might differ from that of
Caucasians [51–53].

Black–white mortality cross-over
In the US, the black–white mortality cross-over refers to
the reported pattern of lower mortality after the age of
85 years among black men and women, compared to
whites, despite their higher observed mortality rates at
younger ages [54–57]. Although we find no differences
in IEAA between African Americans and Caucasians at
younger ages, older African American adults from the
Bogalusa study had lower IEAA than their Caucasian
counterparts. This finding might reflect selective survival
of more robust individuals or other aspects of health and
systemic risk given its independence from common risk
factors for cardiovascular disease and type II diabetes mel-
litus. Our finding regarding the lower EEAA of African
Americans, compared to Caucasians, is consistent with the
longer leukocyte telomere lengths of African Americans
relative to those of Caucasians [3, 9]. Lastly, our flow cyto-
metric data show that African Americans have a larger
number of naïve CD8+ T cells than Caucasians (Fig. 4t).

Tsimane inflammation paradox
Our results regarding the low intrinsic aging rate in
Tsimane may help address another paradox (which we
refer to as the Tsimane inflammation paradox), wherein
high levels of inflammation and infection, and low HDL
levels, are not associated with accelerated cardiovascular
aging [39]. The finding that Tsimane have decreased
levels of IEAA has parallels to the following clinical/epi-
demiological observations: even older Tsimane show little
evidence of chronic diseases common in high-income
countries, like diabetes, atherosclerosis, asthma, and other
autoimmune disorders [39]. High levels of physical activity
are maintained well into late adulthood [58].
The finding that Tsimane have increased levels of

EEAA has parallels to the following observation: a life-
time of diverse pathogen stresses, elevated inflammation
and extensive immune activation, seems to lead to more
rapid depletion of naïve CD4+ T cells and greater expres-
sion of exhausted T cells, i.e. more rapid immunosenes-
cence [39, 40, 59]. Infectious disease and high chronic
inflammatory load contribute to the low life expectancy of
Tsimane, 43.5 years at birth during the period 1950–1989,
and 54.1 years during 1990–2002 [40, 60].

Sex morbidity–mortality paradox
The sex morbidity–mortality paradox was first described
in the 1970s and refers to the observation that women pos-
sess a lower age-adjusted mortality rate compared to men
despite a higher suffering from a higher burden of co-
morbid conditions [61, 62]. Most explanations focus on
differences in lifestyle behaviors or healthcare utilization.
However, marked sex differences in health and disabil-
ity remain after controlling for differences in work-
related behavior, smoking, obesity, and other behaviors
[63]. Whereas other explanations attest to sex differ-
ences in a variety of biomarkers, our epigenetic aging
markers show robust and consistent male-biased vul-
nerability in multiple tissues (blood, brain, and saliva)
in all racial groups. Similar sex differences in blood-
based epigenetic aging rates have also been reported in
minors and teenagers [64].

Strengths and limitations
Our study has several strengths including the analysis
of 18 DNA methylation datasets (Tables 1 and 2), large
sample sizes (almost 6000 samples), multiple tissues
(blood, saliva, brain), access to unique populations
(Tsimane Amerindians; rainforest hunter-gatherers and
farmers), two flow cytometric studies, and robust
epigenetic biomarkers of aging. Our analysis of race/
ethnicity also spanned seven different racial/ethnic groups
(African American, Caucasian, Hispanic, Tsimane,
East Asian, RHGs, and AGRs from Central Africa).
Another strength is that our analysis of race/ethnicity
involved two sources of DNA: blood and saliva. Lim-
itations include the use of some datasets that are
cross-sectional as opposed to longitudinal datasets
and the fact that both IEAA and EEAA rely on im-
puted blood cell counts based on DNA methylation
levels. Fortunately, the imputed blood cell counts are
quite accurate (Additional file 2). Our results re-
ported here concerning ethnic/racial differences in
blood cell counts are supported both by our two
flow cytometric datasets and by the literature. How-
ever, these measured data are not fully reflective of
the breakdown of blood cell types, representing only
T and B cells.

Conclusion
Our exploratory study demonstrates that epigenetic
aging rates differ between different racial/ethnic groups
and between men and women. Further, intrinsic epigen-
etic aging rates tend to have insignificant associations
with well-studied risk factors of CHD whereas extrinsic
aging rates tend to have significant (but weak) associ-
ations with several pro-inflammatory risk factors.
While racial/ethnic differences have previously been
observed in DNA methylation levels [44], we are the
first to directly compare epigenetic aging rates across
different racial/ethnic groups. Our derived intrinsic
and extrinsic epigenetic aging rates in blood offer an
independent glimpse into biological aging that incor-
porates genetics and the environment and provides
potential insight into a number of epidemiological
paradoxes. The application of genome-wide DNAm-
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based epigenetic analysis to understand race/ethnic
and sex disparities in biological aging is novel and of-
fers an important perspective that complements exist-
ing approaches based on other biomarkers. Future studies
will need to confirm our findings with longitudinal designs
and to extend the epigenetic age analysis to other tissues
and organs.

Methods
We differentiate groups according to “race/ethnicity,”
mindful about existing controversies over rigid racial
definitions. Our use of these terms reflects self-
identified group membership based on macro-categories
commonly employed in censuses, human genetics,
demography, and epidemiology. The term race/ethnicity
thus combines elements of genetic ancestry, population
history, and culture.

DNA methylation age and epigenetic clock
All of the described epigenetic measures of aging and
age acceleration are implemented in our freely available
software. The epigenetic clock is defined as a prediction
method of age based on the DNAm levels of 353 CpGs.
Predicted age, referred to as DNAm age, correlates with
chronological age in sorted cell types (CD4+ T cells, mono-
cytes, B cells, glial cells, neurons), tissues, and organs, in-
cluding: whole blood, brain, breast, kidney, liver, lung, saliva
[20]. Mathematical details and software tutorials for the
epigenetic clock can be found in the Additional files of [20].
An online age calculator can be found at our webpage
(https://dnamage.genetics.ucla.edu).

Intrinsic versus extrinsic measures of epigenetic age
acceleration in blood
Empirical studies show that DNAm has a relatively weak
correlation with various measures of white blood cell
counts [31], which probably reflects the fact that dozens
of different tissue and blood cell types were used to de-
fine DNAm age. However, we find it useful to explicitly
define another measure of age acceleration that is com-
pletely independent of blood cell counts as described in
the following. We distinguish intrinsic from extrinsic
measures of epigenetic age acceleration in whole blood
according to their relationship with blood cell counts. A
measure of intrinsic epigenetic age acceleration (IEAA)
measures “pure” epigenetic aging effects that are not
confounded by differences in blood cell counts. Our
measure of IEAA is defined as the residual resulting
from a multivariate regression model of DNAm age on
chronological age and various blood immune cell counts
(naïve CD8+ T cells, exhausted CD8+ T cells, plasma B
cells, CD4+ T cells, natural killer cells, monocytes, and
granulocytes). The measure of IEAA is an incomplete
measure of the age-related functional decline of the
immune system because it does not track age-related
changes in blood cell composition, such as the decrease
of naïve CD8+ T cells and the increase in memory or
exhausted CD8+ T cells [36–38].
We defined a measure of EEAA that only applies to

whole blood and aims to measure epigenetic aging in
immune-related components in two steps. First, we
formed a weighted average of the epigenetic age measure
from Hannum et al. [19] and three estimated measures
of blood cells for cell types that are known to change
with age: naïve (CD45RA + CCR7+) cytotoxic T cells;
exhausted (CD28-CD45RA-) cytotoxic T cells; and
plasma B cells using the approach by Klemera Doubal
[65]. Second, we defined the measure of EEAA as the re-
sidual resulting from a univariate model that regressed
the weighted average on chronological age. By definition,
our measure of EEAA has a positive correlation with the
amount of exhausted CD8+ T cells and plasmablast cells
and a negative correlation with the amount of naïve
CD8+ T cells. Blood cell counts were estimated based on
DNA methylation data. EEAA tracks both age-related
changes in blood cell composition and intrinsic epige-
netic changes. In most blood datasets, EEAA has a mo-
derate correlation (r = 0.5) with IEAA. We note that, by
definition, none of our three measures of epigenetic age
acceleration are associated with the chronological age of
the participant at the time of blood draw.

Relationship to mortality prediction
Although the epigenetic clock method was only pub-
lished in 2013, there is already a rich body of literature
that shows that it relates to biological age. Using four
human cohort studies, we previously demonstrated that
both the Horvath and Hannum epigenetic clocks are
predictive of all-cause mortality [23]. Published results
in Marioni et al. [23] show that DNAm age adjusted for
blood cell counts (i.e. IEAA) is prognostic of mortality in
four cohort studies. We recently expanded our original
analysis by analyzing 13 different cohorts (including three
racial/ethnic groups) and by evaluating the prognostic
utility of both IEAA and EEAA. All considered measures
of epigenetic age acceleration were predictive of age at
death in univariate Cox models (pAgeAccel = 1.9 × 10–11,
pIEAA = 8.2 × 10–9, pEEAA = 7.5 × 10–43) and multivariate
Cox models adjusting for risk factors and pre-existing
disease status (pAgeAccel = 5.4 × 10–5, pIEAA = 5.0 × 10–4,
pEEAA = 3.4 × 10–19) where the latter adjusted for chrono-
logical age, body mass index, education, alcohol, smoking
pack years, recreational physical activity, and prior history
of disease (diabetes, cancer, hypertension). These re-
sults will be published elsewhere. Further, the offspring
of centenarians age more slowly than age matched con-
trols according to Age Accel and IEAA [26] which
strongly suggests that these measures relate to heritable

https://dnamage.genetics.ucla.edu
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components of biological age. Two independent re-
search groups have shown that epigenetic age acceler-
ation predicts mortality [24, 25].

Description of the blood datasets listed in Table 1
All data presented in this article have been made publicly
available as indicated in the column “Available” of Table 1.

Dataset 1: Women’s Health Initiative (WHI)
Participants included a subsample of participants of the
WHI study, a national study that began in 1993 which
enrolled postmenopausal women between the ages of 50
and 79 years into either one of two three randomized
clinical trials [66]. None of these women had CHD at
baseline but about half of these women had developed
CHD by 2010. Women were selected from one of two
WHI large subcohorts that had previously undergone
genome-wide genotyping as well as profiling for seven
cardiovascular disease related biomarkers including total
cholesterol, HDL, LDL, triglycerides, CRP, creatinine,
insulin, and glucose through two core WHI ancillary
studies [67]. The first cohort is the WHI SNP Health
Association Resource (SHARe) cohort of minorities that
includes >8000 African American women and >3500
Hispanic women. These women were genotyped through
WHI core study M5-SHARe (www.whi.org/researchers/
data/WHIStudies/StudySites/M5) and underwent bio-
marker profile through WHI Core study W54-SHARe
(…data/WHIStudies/StudySites/W54). The second cohort
consists of a combination of European Americans from
the two Hormonal Therapy trials selected for GWAS and
biomarkers in core studies W58 (…/data /WHIStudies/
StudySites/W58) and W63 (…/data/WHIStudies/Study-
Sites/W63). From these two cohorts, two sample sets were
formed. The first (sample set 1) is a sample set of 637
CHD cases and 631 non-CHD cases as of 30 September
2010. The second sample set (sample set 2) is a non-
overlapping sample of 432 cases of CHD and 472 non-
cases as of 17 September 2012. The ethnic groups differed
in terms of the age distribution in the sense that Caucasian
women tended to be older. Therefore, we randomly
removed 80 % of the Caucasian women who were older
than 65 years when it came to the direct comparisons
reported in our figures. This resulted in a total sample size
of 1462 women, comprising 673 African Americans, 353
Caucasians, and 433 Hispanics. There was no significant
difference in age between the three ethnic groups. How-
ever, we kept all of the samples in our analysis of clinical
characteristics, such as future CHD status and baseline
characteristics such as education, hypertension, diabetes,
and smoking, in order to ensure that sufficient sample sizes
were available for these analyses. Our results are highly
robust with respect to using the smaller or larger versions
of the datasets. All results are qualitatively the same for the
two versions of the datasets. We acknowledge a potential
for selection bias using the above-described sampling
scheme in WHI but suspect if such bias is present it is
minimal. First, some selection bias is introduced by
restricting our methylation profiling at baseline to women
with GWAS and biomarker data from baseline as well,
given the requirement that these participants must have
signed the WHI supplemental consent for broad sharing of
genetic data in 2005. However, we believe that selection
bias at this stage is minimized by the inclusion of partici-
pants who died between the time of the start of the WHI
study and the time of supplemental consent in 2005, which
resulted in the exclusion of only ~6–8 % of all WHI
participants. Nevertheless, participants unable or un-
willing to sign consent in 2005 may not represent a
random subset of all participants who survived to 2005.
Second, some selection bias may also occur if similar
gross differences exist in the characteristics of partici-
pants who consented to be followed in the two WHI
extension studies beginning in 2005 and 2010 com-
pared to non-participants at each stage. We believe
these selection biases if present have minimal effects on
our effect estimates. Data are available from the page
https://www.whi.org/researchers/Stories/June%202015%
20WHI%20Investigators'%20Datasets%20Released.aspx,
see the link https://www.whi.org/researchers/data/Do
cuments/WHI%20Data%20Preparation%20and%20Use.pdf.

Dataset 2: Bogalusa
We analyzed the blood DNA methylation levels of 968
participants (680 Caucasians, 288 African Americans;
age range = 28–51.3 years) from the Bogalusa Heart
study [68] who were examined in Bogalusa, Louisiana
during 2006–2010 for cardiovascular risk factors. All
participants in this study gave informed consent at each
examination. Study protocols were approved by the In-
stitutional Review Board (IRB reference no. 12-395283)
of the Tulane University Health Sciences Center. DNA
was extracted from 1106 whole blood samples using the
PureLink Pro 96 Genomic DNA Kit (LifeTechnology, CA,
USA) following the manufacturer’s instructions. The Infi-
nium HumanMethylation450 BeadChip (Methy450K) was
used for whole genome DNA methylation analysis.
All the samples were processed at the Microarray Core

Facility, University of Texas Southwestern Medical Center
at Dallas, Texas. For DNA methylation analysis, 750 ng
genomic DNA from each participant was bisulphite
converted using the EZ-96 DNA Methylation Kit (Zymo
Research, CA, USA) and the efficiency of the bisulphite
conversion was confirmed by built-in controls on the
Methy450K array. The methylation profile of each individ-
ual was measured by processing 4 μL of bisulphite-
converted DNA, at a concentration of 50 ng/μL, on a
Methy450K array. The bisulphite-converted DNA was

http://www.whi.org/researchers/data/WHIStudies/StudySites/M5
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amplified, fragmented, and hybridized to the array. The
arrays were scanned on an Illumina HiScan scanner and
the raw methylation data were extracted using Illumina’s
Genome Studio methylation module. Data cleaning proce-
dures were undertaken using R package “minfi” [69],
generating quality control report, finding sample outliers,
cell counts estimation, and annotation accessing. The
R package wateRmelon [70] was used for β-value
normalization and quality control. For correction of
systematic technical biases in the 450 K assay, β-value
normalization was performed by the “dasen” function,
in which type I and type II intensities and methylated
and unmethylated intensities will be quantile normal-
ized separately after backgrounds equalization of type I
and type II. The R package ChAMP [71] was used for
batch effect analysis and correction with “champ.SVD”
and “champ.runCombat” functions. The clinical variables
and participant characteristics are defined in the captions
of the respective Additional files.
The are available from https://biolincc.nhlbi.nih.gov/

studies/bhs/.

Dataset 3: blood from Hispanics and Caucasians of PEG
The Parkinson’s disease, Environment, and Genes (PEG)
case-control study aims to identify environmental risk fac-
tors (e.g. neurotoxic pesticide exposures) for Parkinson’s
disease.
The PEG study is a large population-based study of

Parkinson’s disease of mostly rural and township residents
of California’s central valley [72]. Here we only used dis-
eased participants from wave 1 (PEG1). Since all partici-
pants of dataset 3 had Parkinson’s disease, disease status
could not confound associations with epigenetic aging.
Medication status was not associated with epigenetic age
acceleration. The data are available from Gene Expression
Omnibus.

Dataset 4: saliva samples from PEG
This novel dataset comes from the PEG study (described
above). Since PD disease status did not relate to epigen-
etic age acceleration in these data, we ignored it in the
analysis. However, our findings are unchanged after in-
corporating PD status in a multivariate model. About
half of the samples overlapped with those of dataset 3,
which is why we could correlate epigenetic age acceler-
ation between blood and saliva.

Datasets 5 and 6: blood from Tsimane, Hispanics, and
Caucasians
Datasets 5 and 6, which were collected and generated in
the same way, only differ in terms of the chronological
ages. All participants in dataset 5 are older than 35 years
while those in dataset 6 are younger or equal to 35 years.
The dataset involved three different ethnic groups:
Tsimane Amerindians, Hispanics living in the US, and
Caucasians living in the US. Fasting whole-blood sam-
ples were collected from Tsimane via venipuncture in
field villages in the vicinity of San Borja, Bolivia as a part
of the annual biomedical data collection for a longitu-
dinal project on aging during 2004–2009 (Tsimane
Health and Life History Project). Manual complete blood
counts were conducted using a hemocytometer, erythro-
cyte sedimentation rate was calculated following the
Westergren method, and hemoglobin was analyzed with
a QBC Autoread Plus Dry Hematology System (Drucker
Diagnostics, Port Matilda, PA, USA). Specimens were
stored in liquid nitrogen until transfer to the US on dry
ice, where they were stored at –80 °C. All participants
provided written and informed consent; study protocols
and procedures were approved at the individual, village,
and Tsimane government level, as well as by the Univer-
sity of California, Santa Barbara and University of New
Mexico Institutional Review Boards (IRB Reference num-
bers 14-0604 and 07-157, respectively). Specimens were
shipped on dry ice to the University of Southern California
for extraction. The same core facility provided blood sam-
ples that were collected at the same time and stored in the
same condition as Hispanic participants living in the US.
The DNA samples from all participants (Caucasians,
Hispanics, Tsimane) were randomized across the Illumina
chips to avoid confounding due to chip effects. For our
age prediction analysis, we used background corrected
beta values resulting from Genome Studio.
Hispanics for datasets 5 + 6: Participant recruitment:

Participation in the BetaGene study was restricted to
Mexican Americans from families of a proband with ges-
tational diabetes mellitus (GDM) diagnosed within the
previous 5 years. Probands were identified from the patient
populations at Los Angeles County/USC Medical Center,
OB/GYN clinics at local hospitals, and the Kaiser Perma-
nente health plan membership in Southern California.
Probands qualified for participation if they: (1) were of
Mexican ancestry (defined as both parents and ≥3/4 of
grandparents Mexican or of Mexican descent); (2) had a
confirmed diagnosis of GDM within the previous 5 years;
(3) had glucose levels associated with poor pancreatic β-
cell function and a high risk of diabetes when not pregnant;
and (4) had no evidence of β-cell autoimmunity by GAD-
65 antibody testing. Recruitment targeted two general
family structures using siblings and/or first cousins of
GDM probands, all with fasting glucose levels <126 mg/dl
(7 mM): (1) at least two siblings and three first cousins
from a single nuclear family; or (2) at least five siblings
available for study. Using information from the proband to
determine preliminary eligibility, siblings and first cousins
were invited to participate in screening and, if eligible, de-
tailed phenotyping (below) and collection of DNA. Avai-
lable parents and connecting uncles and aunts were asked
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to provide DNA and had a fasting glucose determination.
In addition, women of Mexican ancestry who have gone
through pregnancy without GDM, as evidenced by a
plasma or serum glucose level <120 mg/dl after a 50 g oral
glucose screen for GDM, were also collected. Recruitment
criteria for control probands were similar to that of the
GDM probands, but were also selected to be age, BMI, and
parity-matched to the GDM probands. Unrelated samples
for the present methylation analysis were selected ran-
domly from all BetaGene participants. The BetaGene
protocol (HS-06-00045) has been approved by the Institu-
tional Review Boards of the USC Keck School of Medicine.

Dataset 7: blood from East Asians and Caucasians
Here we downloaded the publicly available DNA methy-
lation data from GSE53740 [73]. Since we found that
progressive supranuclear palsy (PSP) had a significant
effect on epigenetic age acceleration, we removed PSP
samples from the analysis. Further, we focused on com-
paring East Asians to Caucasians since other racial/eth-
nic groups were represented by fewer than 10 samples.

Dataset 8: blood from African populations
We used blood methylation data from [42]. We studied
peripheral whole-blood DNA from a total of 256 sam-
ples (for which the chronological age at the time of
blood draw was available).
As detailed in Fagny et al. [42], the samples come from

seven populations located across the Central African
belt. These populations can be divided into two main
groups: RHG populations, historically known as “pyg-
mies,” who have traditionally relied on the equatorial
forest for subsistence and who live close to, or within,
the forest; and AGR populations, living either in rural/
urban deforested regions or in forested habitats in which
they practice slash-and-burn agriculture. Informed con-
sent was obtained from all participants and from both
parents of any participants under the age of 18 years.
Ethical approval for this study was obtained from the
institutional review boards of Institut Pasteur, France
(RBM 2008-06 and 2011-54/IRB/3).

Dataset 9: cord blood samples from African Americans and
Caucasians
These 216 cord blood samples from 92 African American
and 70 Caucasian participants come from a study that de-
scribed racial differences in DNA methylation levels [44].

Datasets 10 and 11
Saliva samples from Caucasians and Hispanics. The data
were generated by splitting the data from [74] by sex,
which reflected the use of these data in the development
of the epigenetic clock software [20]. Note that these
data were generated on the older Illumina platform
(27 K array). Some of the data were used as training data
in the development of the epigenetic clock, which might
bias the results. By contrast, the novel saliva data from
PEG (dataset 4) provide an unbiased analysis.

Dataset 12: lymphoblastoid cell lines from Han Chinese,
African Americans, and Caucasians
We clustered the samples based on the interarray correl-
ation. Since 51 samples were very distinct from the
remaining samples, they were removed as potential out-
liers. Disease status did not affect the estimates of DNAm
age, which is why we ignored it.

Description of brain datasets
We collected brain datasets from six independent stu-
dies to assess gender effect on epigenetic age acceler-
ation. We focused on Caucasian samples since there
were insufficient numbers of other racial/ethnic groups.

Study 1: brain DNA methylation data from a study of
Alzheimer’s disease study from [75], GEO accession
GSE59685. DNA methylation profiles of the cerebellum,
entorhinal cortex, prefrontal cortex, and superior
temporal gyrus were available from 117 individuals.
We ignored disease status since it was not associated
with age acceleration.

Study 2: brain DNA methylation data from neurologically
normal participants from [76], GEO accession GSE15745.
DNA methylation data of the cerebellum, frontal cortex,
pons, and temporal cortex regions from up to 148
neurologically normal participants of European
ancestry [76].

Study 3: cerebellar DNA methylation data from [77],
GEO GSE38873. DNA methylation data from the
cerebellum of 147 participants from a case-control
study (121 cases/32 controls) of psychiatric disorders.
Since disease status did not affect DNAm age, we
ignored it.

Study 4: prefrontal cortex samples from [78], GEO
GSE61431. We analyzed 37 Caucasian participants
(European ancestry).

Study 5: frontal cortex and cerebellum from neurologically
normal Caucasian participants from [79]. The DNA
methylation data and corresponding SNP data can be
found in dbGAP, http://www.ncbi.nlm.nih.gov/gap
(accession: phs000249.v2.p1). We only analyzed 209
Caucasian participants who met our stringent quality
control criteria. We excluded several putative outliers
from the original dataset including three individuals who
were genotyped on a different platform, six participants
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who were outliers according to a genetic analysis
(PC plot), and 13 participants who had the wrong
gender according to the gender prediction algorithm
of the epigenetic clock software.

Study 6: dorsolateral prefrontal cortex samples from 718
Caucasian participants from the Religious Order Study
(ROS) and the Memory and Aging Project (MAP). The
DNA methylation data are available at the following
webpage https://www.synapse.org/#!Synapse:syn3168763.
We focused on brain samples of Caucasian participants
from these two prospective cohort studies of aging
that include brain donation at the time of death [80].
Additional details on the DNA methylation data can
be found in [81]. We were not able to evaluate the
effect of race/ethnicity on epigenetic age acceleration
since the dataset contained only 12 Hispanic samples
(which did not differ significantly from Caucasians in
terms of epigenetic age). Further, we found no association
between disease status and epigenetic age acceleration,
which is why we ignored disease status in our analysis.

Preprocessing of Illumina Infinium 450 K arrays
In brief, bisulfite conversion using the Zymo EZ DNA
Methylation Kit (ZymoResearch, Orange, CA, USA) as
well as subsequent hybridization of the HumanMethyla-
tion450k Bead Chip (Illumina, San Diego, CA, USA), and
scanning (iScan, Illumina) were performed according to
the manufacturers’ protocols by applying standard set-
tings. DNA methylation levels (β values) were determined
by calculating the ratio of intensities between methylated
(signal A) and unmethylated (signal B) sites. Specifically,
the β value was calculated from the intensity of the meth-
ylated (M corresponding to signal A) and unmethylated
(U corresponding to signal B) sites, as the ratio of fluores-
cent signals β =Max(M,0)/[Max(M,0) +Max(U,0) + 100].
Thus, β values range from 0 (completely unmethylated) to
1 (completely methylated) [82]. The epigenetic clock
software implements a data normalization step that
repurposes the BMIQ normalization method from
Teschendorff [83] so that it automatically references
each sample to a gold standard based on type II probes
as detailed in [20].

Estimating blood cell counts based on DNA methylation
levels
We estimate blood cell proportions using two different
software tools. Houseman’s estimation method [84], which
is based on DNA methylation signatures from purified
leukocyte samples, was used to estimate the proportions of
cytotoxic (CD8+) T cells, helper (CD4+) T, natural killer, B
cells, and granulocytes. The software does not allow us to
identify the type of granulocytes in blood (neutrophil, eo-
sinophil, or basophil) but we note that neutrophils tend to
be the most abundant granulocyte (~60 % of all blood cells
compared with 0.5–2.5 % for eosinophils and basophils).
The advanced analysis option of the epigenetic clock soft-
ware [20] was used to estimate the percentage of exhausted
CD8+ Tcells (defined as CD28-CD45RA-) and the number
(count) of naïve CD8+ T cells (defined as (CD45RA +
CCR7+) as described in [31].
Flow cytometric data from the Long Life Study of the WHI
While our DNA methylation data from the WHI were
assessed at baseline, the flow cytometric data were mea-
sured 14.6 years after baseline. Between March 2012 and
May 2013, a subset of WHI participants were enrolled in
the Long Life Study (LLS) and additional biospecimens,
physiometric, and questionnaire data were collected. All
surviving Hormone Trial participants followed through
2010 and all African American and Hispanic/Latino
participants from the SNP Health Association Resource
(WHI-SHARe) sub-cohort were included if CVD bio-
marker from WHI baseline exam and genome-wide
genotyping (GWAS) data were available and if they
were at least 63 years old by 1 January 2012. Women
who were either unable to provide informed consent
(e.g. dementia) or those residing in an institution (e.g.
skilled nursing facility) were excluded. Of a total of 14,081
eligible WHI participants, 9242 women consented to par-
ticipate, 7875 were enrolled, and 7481 underwent success-
ful blood draws. Blood was collected at locations across
the US using a standardized protocol between March
2012 and May 2013 (Examination Management Services,
Inc.) Fresh peripheral blood samples were packaged in
Styrofoam with cold packs and were sent overnight to a
central testing facility in Seattle.
A random sample of 600 residual fresh peripheral blood

specimens (single tube, following CBC analysis) was trans-
ported to the University of Washington Medical Center’s
(UWMC’s) flow cytometry laboratory and high-sensitivity,
multi-parameter flow cytometry was performed utilizing a
modified four-laser, multi-color Becton-Dickinson (BD;
San Jose, CA, USA) LSRII flow cytometer. All of the flow
cytometry studies were performed within 72 h of sample
collection between June 2012 and February 2013. A single
tube was used to evaluate T lymphocyte subsets: CD45
(KO), CD8 (BV), CD45RA (F), CCR7 (PE), CD5 (ECD),
CD56 (PC5), CD3 (APC-H7), CD4 (A594), CD28 (APC),
CD27 (PC7). A second tube evaluated B lymphocyte sub-
sets: CD45 (APC-H7), CD20 (V450), kappa (F), lambda
(PE), CD23 (ECD), CD5 (PC5.5), CD19 (BV650), CD38
(A594), CD10 (APC), CD27 (PC7), CD3 (APC-A700).
Categories of circulating cells were quantified using a
predefined population-based gating strategy based on
established gating strategies for both T lymphocyte [85]
and B lymphocyte [86] subsets.
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Flow cytometric data from the MACS cohort
As part of Additional file 2, we validated imputed blood
cell counts using flow cytometric data and DNA methy-
lation data collected from men of the Multi-Center
AIDS Cohort Study (MACS). The data were generated
as described in [87]. Briefly, human peripheral blood
mononuclear cell (PBMC) samples were isolated from
fresh blood samples and either stained for flow cytome-
try analysis or used for genomic DNA isolation. DNA
was isolated from 1 × 106 PBMC using Qiagen DNeasy
blood and tissue mini spin columns. Quality of DNA
samples was assessed using Nanodrop measurements
and accurate DNA concentrations were measured using a
Qubit assay kit (Life Technology). Cryopreserved PBMC
obtained from the repository were thawed and assayed for
viability using trypan blue. The mean viability of the sam-
ples was 88 %. Samples were stained for 30 min at 4 °C
with the following antibody combinations of fluorescently
conjugated monoclonal antibodies using the manufacturers
recommended amounts for 1 million cells: tube 1: CD57
FITC (clone HNK-1), CD28 phycoerythrin (PE, L293),
CD3 peridinin chlorophyll protein (PerCP,SK7), CD45RA
phycoerythrin cyanine dye Cy7 tandem (PE-Cy7, L48),
CCR7 Alexa Fluor 647 (AF647, 150503), CD8 allophyco-
cyanin H7- tandem (APC-H7, SK1) and CD4 horizon
V450 (V450, RPA-T4); tube 2: HLA-DR FITC (L243),
CD38 PE (HB7), CD3 PercP, CD45RO PE-Cy7 (UCHL-1),
CD95-APC(DXZ), CD8 APC-H7, and CD4 V450); tube 3:
CD38 FITC (HB7), IgD PE (1A6–2), CD3 PerCP, CD10
PE-Cy7 (HI10a), CD27 APC (eBioscience, clone 0323, San
Diego, CA), CD19 APC-H7 (SJ25C1) and CD20 V450
(L27). Antibodies were purchased from BD Biosciences,
San Jose, CA (BD) except as noted. Stained samples were
washed twice with staining buffer and run immediately on
an LSR2 cytometer equipped with a UV laser (BD, San
Jose, CA, USA) for the detection of 4′,6-diamidino-2-phe-
nylindole dihydrochloride (DAPI) which was used as a
viability marker at a final concentration of 0.1 ug/mL.
Lineage gated isotype controls to measure non-specific
binding were run and used CD3, CD4, and CD8 for T-cells
or CD19 for B-cells. Fluorescence minus one controls
(FMO) were also utilized to assist gating and cursor setting.
A range of 20,000–100,000 lymphocytes were acquired and
analyzed per sample using the FACSDiva software package
(BD, San Jose, CA, USA).
Additional files

Additional file 1: Lymphoblastoid cell lines from Han Chinese, Caucasians,
and African Americans. A Gray line corresponds to a natural spline regression
through Caucasian samples. Age acceleration was defined as residual with
respect to this line. B Marginally significant evidence that African American’s
are younger than other ethnic groups. (PDF 33 kb)
Additional file 2: Accuracy of imputed blood cell counts. Here we used an
independent dataset, which was not used to develop estimators of blood cell
counts based on DNA methylation data, to evaluate the accuracy of the
imputed blood cell counts. For each participant, both flow cytometric
measures and Illumina Inf450 data were available from 96 participants as
described in [88]. A-G The scatter plots depict the predicted abundance of
blood cell count (based on DNA methylation levels) versus the corresponding
observed flow cytometric measurement (y-axis). Each panel reports a robust
correlation coefficient (biweight midcorrelation) and a corresponding p value.
The Houseman method was used to impute (A) CD8+ T cells, (B) CD4+ T, (C)
B cells. The epigenetic clock software was used for imputing (D) naïve CD8+ T
cells, (E) naïve CD4 + T cells, (F) plasma blasts, and (G) exhausted CD8+ T cells.
H, I Another flow cytometric dataset was used to test for ethnic differences in
naïve CD4+ T cells. The y-axis shows the log transformed flow cytometric
measurement of naïve CD4+ T cells (adjusted for age). Specifically, the y-axis
reports the residual resulting from regressing log(naïve CD4+ T cell
abundance) on chronological age. H Findings for HIV– participants (198
Caucasians versus 34 Hispanics). I Findings for HIV+ participants (101
Caucasians, 58 Hispanics). Stouffer’s meta-analysis across the two strata
(HIV+ and HIV– strata) shows that Hispanics have significantly fewer
naïve CD4+ T cells (Stouffer’s p = 0.030, Stouffer’s Z = (1.75 + 1.31)/sqrt(2)).
(PDF 130 kb)

Additional file 3: Epigenetic age acceleration in Hispanics versus country
of residence in the WHI. Each column corresponds to different measure of
age acceleration: (A, D) age acceleration residual, (B, E) IEAA (C, F) EEAA.
(A-C, first row) results for “country of birth” (x-axis). (D-F, second row) results
for “country of residence” at age 35 years, which was defined by combining
two variables country of birth and “living in the US at age 35.” The left-most
bar corresponds to Hispanic women who were born outside the US and
lived outside the US at age 35 years, the middle bar corresponds to Hispanic
women who were born outside the US but lived already in the US at the
age of 35 years; the right-most bar reports results for women who were
born in the US and lived in the US at age 35 years. Incidentally, all of these
postmenopausal Hispanic women lived in the US at the age of the blood
draw. As a caveat, we mention the relatively small group sizes (small gray
numbers underneath the bars). (PDF 3 kb)

Additional file 4: Educational level versus age acceleration in the WHI.
Each row relates educational level (x-axis) to three respective measures of
epigenetic age acceleration: (A-D) Age Accel., (E-H) IEAA, and (I-L) EEAA.
The columns correspond to different groups of women from the WHI.
The first, second, third, and fourth columns report findings for (A, E, I) all
women, (B, F, J) Caucasians, (C, G, K) African Americans, and (D, H, L)
Hispanics, respectively. Each bar plot reports the mean values, 1 standard
error, and the p value from a non-parametric group comparison test (Kruskal–
Wallis). Education was assessed using the form “Demographics and Study
Membership.” We find that education predicts future EEAA. (PDF 6 kb)

Additional file 5: Hypertension status versus age acceleration in the
Bogalusa study. Each row relates hypertension status (x-axis) to three
respective measures of epigenetic age acceleration: (A-C) Age Accel.,
(D-F) IEAA, and (G-I) EEAA. The columns correspond to different groups. The
first, second, and third columns report findings for (A, D, G) all participants, (B,
E, H) Caucasians, (C, F, I) African Americans, respectively. Each bar plot reports
the mean values, 1 standard error, and the p value from a non-parametric
group comparison test (Kruskal–Wallis). Hypertension status was defined as
meeting any of the three conditions: (1) blood pressure > =140/90; (2) taking
medication; or (3) having been diagnosed as having hypertension. (PDF 4 kb)

Additional file 6: Type II diabetes status versus age acceleration in the
Bogalusa study. Each row relates type II diabetes status (x-axis) to three
respective measures of epigenetic age acceleration: (A-C) Age Accel.,
(D-F) IEAA, and (G-I) EEAA. The columns correspond to different groups.
The first, second, and third columns report findings for (A, D, G) all
participants, (B, E, H) Caucasians, (C, F, I) African Americans, respectively.
Each bar plot reports the mean values, 1 standard error, and the p value
from a non-parametric group comparison test (Kruskal–Wallis). Type 2
diabetes status was defined as fasting glucose > =126 mg/dl or taking
diabetes medication. (PDF 3 kb)

Additional file 7: Educational level versus age acceleration in the
Bogalusa study. Each row relates educational level (x-axis) to three
respective measures of epigenetic age acceleration: (A-C) Age Accel.,
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(D-F) IEAA, and (G-I) EEAA. The columns correspond to different groups.
The first, second, and third columns report findings for (A, D, G) all
participants, (B, E, H) Caucasians, (C, F, I) African Americans, respectively.
Each bar plot reports the mean values, 1 standard error, and the p value
from a non-parametric group comparison test (Kruskal–Wallis). Education
was grouped as follows: group 1 = grades 1–7; group 2 = grades 8–9; group
3 = grades 10–12; group 4 = vocational/tech training; group 5 = college;
group 6 = postgraduate. (PDF 5 kb)

Additional file 8: Robustness analysis with respect to other epigenetic
biomarkers of aging in the WHI. A-C Results for the Horvath method when 47
out of 353 CpGs were removed from the epigenetic clock (because they are
in the vicinity of a SNP). Since none of the remaining clock CpGs are near a
SNP, the resulting age acceleration is not trivially related to race/ethnicity. A
DNA methylation age versus chronological age. B Ethnicity versus age
acceleration (defined as residual resulting from regressing DNAm age on
chronological age). C Intrinsic epigenetic age acceleration versus ethnicity. D,
E Alternative epigenetic biomarker of aging based on 589 age-related CpGs
from Teschendorff [13]. The biomarker was defined using the following steps.
First, the DNA methylation levels of each CpGs were standardized (to mean
zero and variance 1). Second, a weighted average was formed by multiplying
each CpG by the T test statistic from the chronological age relationship based
on the table from the original reference. Third, the weighted average was
regressed on chronological age to arrive at a residual. The resulting residual is
referred to as extrinsic measure of age acceleration since it was not adjusted
for blood cell counts. Fourth, the resulting measure was regressed on
estimated blood cell counts (analogous to those used for IEAA) in order
to arrive an intrinsic measure of age acceleration. F, G Epigenetic
measures of age acceleration using the Hannum method 71 CpGs [19].
D, F Results for intrinsic measures, i.e. measures of age acceleration that
adjust both for blood cell counts and chronological age. E, G reports
extrinsic measures, i.e. no adjustment for imputed blood cell counts.
Each bar plot depicts 1 standard error and reports the results from a
Kruskal–Wallis test. (PDF 55 kb)

Additional file 9: Demographic and physiologic characteristics of
women from the WHI. Case-control status refers to CHD. Two designs
were used to select samples: case/control and case-cohort. (DOC 48 kb)
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