
Buels et al. Genome Biology (2016) 17:66
DOI 10.1186/s13059-016-0924-1
SOFTWARE Open Access
JBrowse: a dynamic web platform for
genome visualization and analysis

Robert Buels1, Eric Yao1, Colin M. Diesh2, Richard D. Hayes3,6, Monica Munoz-Torres3, Gregg Helt3,4,
David M. Goodstein3,6, Christine G. Elsik2, Suzanna E. Lewis3, Lincoln Stein5,7 and Ian H. Holmes1,3*
Abstract

Background: JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily
embedded into websites or apps but can also be served as a standalone web page.

Results: Overall improvements to speed and scalability are accompanied by specific enhancements that support
complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework;
most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse
can also be used to browse local annotation files offline and to generate high-resolution figures for publication.

Conclusions: JBrowse is a mature web application suitable for genome visualization and analysis.

Keywords: Genome, Browser, Bioinformatics
Background
As the web becomes the standard platform for com-
putational genomics, there are clear advantages to per-
forming some analyses on the web client, rather than
delegating every task to a central server. Among these
advantages are a reduced need for server-hosted re-
sources (with corresponding cost savings) and a faster,
more responsive user experience as some latency due
to client–server interactions is eliminated.

Implementation
The JBrowse genome browser leverages these advan-
tages for the visualization of genome annotations. The
earliest version of JBrowse was a dynamic HTML appli-
cation with a JavaScript client, reliant on server-side
Bioperl components that were largely inherited from
GBrowse [1]. The software was subsequently extended
to display next-generation sequencing data [2, 3].

Results and Discussion
We here report progress in JBrowse robustness, gen-
erality, scalability, configurability, and ease of
* Correspondence: ihholmes@gmail.com
1Department of Bioengineering, University of California, Berkeley, California,
USA
3Lawrence Berkeley National Laboratory, Berkeley, California, USA
Full list of author information is available at the end of the article

© 2016 Buels et al. Open Access This article i
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
installation. Our goal is not to compare JBrowse
with other genome annotation browsers. Many such
exist, including JavaScript genome browsers such as
Biodalliance [4], pileup.js [5], and Galaxy’s Trackster
[6]; other (Common Gateway Interface (CGI)-based)
web-facing browsers such as the UCSC Genome
Browser [7], Ensembl’s browser [8], and GBrowse [9];
and desktop browsers such as IGV [10] and IGB [11].
A thorough comparison of all these browsers is
beyond the scope of the current paper (and should,
in any case, be carried out by independent parties for
maximal objectivity). Among JBrowse’s strengths
(relative to other browsers primarily using dynamic
HTML) are its maturity, extensibility (via confi-
guration and callbacks), and emerging ecosystem of
plugins and applications. Arguably, its dependencies
on older frameworks (dojo, Bioperl) may be consid-
ered weaknesses, though JBrowse is an example of
how these frameworks may be effectively leveraged.
The Bioperl-based indexing tools are, in fact, less
central to JBrowse operation than they used to be in
earlier versions: indexing is an elective optimization
for static site-generation and has been implemented
as a proof-of-concept in other languages.
In its current form, JBrowse can be used as a standa-

lone HTML5-based genome browser or embedded in
richer web application frameworks. It is highly cross-
s distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-016-0924-1&domain=pdf
http://orcid.org/0000-0001-7639-5369
mailto:ihholmes@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

sage patterns
unning JBrowse with the pre-indexing scripts
JBrowse is to be used as a broad-access viewing portal to a
enome annotation database, the greatest efficiency can be gained by
sing the pre-indexing scripts in the top-level bin/directory. These include
repare-refseqs (for indexing a FASTA file containing the reference
quences and breaking the sequences into manageably-sized chunks),
latfile-to-json (for importing a GFF, BED, or GenBank file as a track),
dd-bw-track (for importing a BigWig file as a track), and various other
tility scripts for adding and removing track configuration stanzas and
therwise managing the track list. Alternatively, the tracks can be
aded directly from a Bioperl-compatible database such as Chado
5] using the biodb-to-json loader script. The final step in this
orkflow is to build the index of feature and region names using
e generate-names script.

unning JBrowse without the pre-indexing scripts
hen standard-format data files are available on the local filesystem
r at a remote URL), a FASTA file can be loaded directly via the Genome
enu and annotation tracks can then be created by loading BAM, Wiggle/
igWig, GFF, or VCF files directly via the Track menu. These formats can
ow be directly consumed by JBrowse (from files or URLs) without the
eed for JSON indexing; BAM files must, however, be indexed with a BAM
dex (.bai) file and VCF files with a tabix index (.tbi) file, which may be
enerated using utilities such as SAMTools [40]. JBrowse uses these index
les and HTTP range-request headers to retrieve only the content that it
eeds to render the particular region in view, allowing very large data files
uch as BigWig, BAM, VCF + Tabix, GFF3 + Tabix, or FASTA + faidx) to be
rowsed quickly over the network in an efficient random-access way.

unning JBrowse as part of a larger web application
rowse can be embedded in a larger web application with its own data
ources. The encompassing framework can use the indexing scripts to load
ata or to directly generate the JSON index files which JBrowse consumes;
lternatively, data sources can be provided as a web service (there is a REST
PI for most features). JBrowse can be started in “embedded mode” (with
any user interface features disabled) for compactness. Numerous callbacks
re available to implement context-specific actions when the user interacts
ith the sequence and annotations. Embedding a genome browser in a
eb application framework has many advantages over a desktop system; for
xample, users can, in principle, share data and views instantly over the web
ther than resorting to sharing screenshots via a side-channel (email).

unning JBrowse on the UCSC genome database
he ucsc-to-json script can be used to import a UCSC genome database,
reating JBrowse index files directly from a UCSC database dump.
emonstration instances for the latest JBrowse release on several genome
ata sets can be found at http://jbrowse.org/demos.

unning JBrowse as a desktop application
rowse can also be run as a cross-platform desktop application, entirely
dependently of a web browser, using the Atom Electron framework (atom).
he data can be connected to desktop JBrowse in at least two ways: the
dex files that are generated by the indexing scripts (and
ormally hosted on the server) can be bundled with the JBrowse application
r JBrowse can be used to browse local data files.

Buels et al. Genome Biology (2016) 17:66 Page 2 of 12
platform; releases are tested on Mozilla-based browsers
(e.g., Firefox), WebKit browsers (e.g., Safari, Chrome)
and Microsoft Internet Explorer, and on desktop and mo-
bile platforms (with touchscreen support). JBrowse has,
further, been designed to be highly customizable; user
interface extensions are straightforward to implement, as
are alternative data back-ends. It is also possible to per-
form analysis tasks directly from within the client.
General improvements to speed and scalability since

the last published report include threefold on-disk
compression on the server, optimizations to scripts
for processing large files, filesystem-oriented optimiza-
tions allowing for highly fragmented data (such as
draft genomes), and compression of JSON data. The
installation process is also streamlined: for example,
the setup script installs all dependencies for the
(optional) server scripts, so there is no need to install
Bioperl separately (and in the desktop application,
these dependencies are not required at all; the desk-
top app is a standalone executable).
JBrowse collects aggregate data on usage statistics

by default (this behavior is clearly described in the
documentation and can be easily disabled for users
sensitive to privacy concerns). From November 2014
to November 2015, our analytics indicate 2671 hosts
running JBrowse, of which 705 logged 100 or more
access requests during that period. (This is likely an
underestimate, since—as noted—users can disable
analytics and anecdotal reports suggest that private-
sector users frequently do.) The average number of
annotation tracks served by these 705 active hosts
was 80, with a maximum of 7826. Cumulatively,
since analytics data collection began (July 2012), we
see 4743 hosts, of which 1168 served 100+ requests.
The full JBrowse software package has been down-
loaded over 100,000 times since July 2012 and
viewed by over 64,000 unique nontrivial client ad-
dresses, including over 42,000 in the 12 months
before November 2015 (we call a web client “non-
trivial” if it is running JavaScript, is not pointed at
the localhost, and visits the host five or more times).
A few examples of tools that use JBrowse include the

web version of Apollo [12], SeqWare [13], DNA subway
[14], GenSAS [15], Maker [16, 17], and Afra [18].
Sites that use JBrowse (or JBrowse-based tools) span
plant genomics [19–25], animal genomics [12, 26–29],
and disease-related databases [30–34].
The rest of this paper reviews various operational

aspects of JBrowse, starting with the user interface
(UI) and user experience and proceeding to describe
configuration: how to hook up different data
sources, the various types of track that can be dis-
played, and the extension of JBrowse via custom
code development.
U
R
If
g
u
p
se
f
a
u
o
lo
[3
w
th

R
W
(o
m
B
n
n
in
g
fi
n
(s
b

R
JB
s
d
a
A
m
a
w
w
e
ra

R
T
c
D
d

R
JB
in
T
in
n
o

User interface
The main view of the user interface is shown in Figs. 1 and
2. At the top is the menu bar, which contains the Genome
menu (allowing the user to select different datasets, each
with its own set of reference sequences and annotations),
the Track menu (where new tracks can be opened from re-
mote or local data sources, or Combination Tracks created
from existing tracks), the View menu (allowing the
highlighting or resizing of quantitative tracks), and the Help
menu. More detail on Combination Tracks is given below.

http://jbrowse.org/demos
http://electron.atom.io/

Fig. 1 JBrowse screenshot showing (for Volvox test dataset) the hierarchical track selector (left-hand pane) and (from top to bottom in the
right-hand pane) menu bar, location bar, navigation bar, CanvasFeatures track (with NeatCanvasFeatures plugin), HTMLFeatures track
(mRNAs; with NeatHTMLFeatures plugin), Reference Sequence track, Wiggle/XYPlot track, and Wiggle/Density track

Fig. 2 JBrowse screenshot captured with PhantomJS and showing (for Volvox test dataset) the hierarchical track selector (left-hand pane)
and (from top to bottom in the right-hand pane) Reference Sequence track, SNPCoverage track, Alignments2 track, and HTMLVariants
tracks (with NeatHTMLFeatures plugin)

Buels et al. Genome Biology (2016) 17:66 Page 3 of 12

Buels et al. Genome Biology (2016) 17:66 Page 4 of 12
Beneath the menu bar is the navigation bar, which
includes the panning and zooming buttons (and other
buttons such as the highlight button), the reference
sequence selector (a dropdown menu which may be con-
figured to sort reference sequences by ascending alpha-
betical order, descending alphabetical order, or length),
the text navigation box (enabling navigation to features
by name), and an overview bar showing the global loca-
tion of the zoomed-in region.
The tracks themselves are on display in the genome

view, beneath the navigation bar. Each track also has its
own track menu, available as a dropdown from the track
label. The track menu offers several operations: the user
can display track metadata (the “About this track”
option), pin the track to the top, edit the track configur-
ation directly, export the track data in BED, GFF3 or
Wiggle format, delete the track, or set track-specific op-
tions (such as changing to a log scale or modifying the
height of quantitative tracks or toggling forward/reverse
strand display for feature tracks).
Right-clicking on a feature in a track brings up a

context menu which, by default, has two options: “View
details” and “Highlight feature”. These context menus
may be customized to add further options. Left-clicking
on the feature goes directly to the “View details” pop-up
box, which lists attributes of the feature (and may be
further customized).
The full set of tracks available for potential display is

listed in the track selector pane, to the left of the genome
view. The track selector can be configured to be a simple
drag-and-drop list, a hierarchical tree (Figs. 1 and 2), or
a “faceted” navigation tool whereby large sets of tracks
can be dynamically queried, allowing the user to home
in on the track of choice by successively applying filters
to the track metadata (Fig. 3). The track selector pane
can be resized, or minimized, to allow more space for
the genome view.
The text navigation box allows the user to navigate

directly to particular coordinates or named features of
interest. The name index is configurable; multiple aliases
for features can be set up. The text navigation box
includes an auto-complete feature. In the event that the
name search matches multiple features in different loca-
tions or on different tracks, a pop-up window allows the
user to select the relevant feature.
The highlight button allows users to select a region of

interest. An internal event is triggered whenever the user
highlights a region and this event can be latched onto by
plugin extensions; for example, to trigger a sequence
homology search of the highlighted region against a
database on the server.
The sequence search track, created via the Track

menu, is an example of a track created by the JBrowse
plugin RegexSequenceSearch, which is included with the
JBrowse installation by default. This plugin allows the
user to search the reference sequence for matches to a
query sequence or regular expression, showing the re-
sults as a new track.
Combination tracks, also created via the Track menu,

allow the user to dynamically perform set operations
(intersection, union, difference, or exclusive-or) on fea-
ture tracks, or arithmetic operations on quantitative
tracks. This offers a powerful way to query the track
database that parallels the faceted track selector in pro-
viding orthogonal filters (Fig. 4). For example, the user
could create a sequence search track to find putative
TATA boxes and intersect this with a ChIP-Seq track to
narrow the search to protein-bound sites.
In addition to the configuration file and the JavaScript

API (documented below and in [36]), JBrowse can be
controlled in a number of different ways via parameters
encoded in the URL string. The most common use of
URL parameters is to point JBrowse at a data directory
or at a specific feature or region when instantiating the
browser, but it also enables several additional features.
For example, the track selector, navigation bar, and over-
view bar can all be disabled in this way, at which point
the JBrowse display becomes extremely compact: this is
called embedded mode. Similarly, the currently visible
(and highlighted) regions, and the list of currently visible
tracks, can be encoded in the URL string. JBrowse uses
this mechanism to implement the Share button at the top
right of the screen, pressing which generates a “permalink”
bookmark for the currently visible location (the same
mechanism is also used by the similarly placed Full-screen
view link in embedded mode to open a new web-browser
tab including track selector pane, navigation bar, and over-
view bar, i.e., to break out of embedded mode). Other ex-
tensions available via URL parameters include the import
or inline declaration of new features, tracks, or data stores.
The URL-based configuration mechanism also offers an

indirect way to generate high-quality figures for publica-
tion from the command line using JBrowse. Permalink
URLs can be passed to PhantomJS (http://phantomjs.org),
a headless client for WebKit (the HTML5 engine
underpinning the Chrome and Safari browsers), which
can then be used to generate high-resolution PNG, JPEG,
or PDF outputs. Fig. 2 in this paper was generated using
PhantomJS.

JBrowse configuration system
When a web browser loads a page containing JBrowse
and creates a Browser object (the main controlling ob-
ject for a JBrowse instance), the first thing the Browser
does is to read the configuration information, which can
be split across several locations: (1) parameters encoded
in the query URL, (2) the configuration JSON object that
is passed to the Browser object by the code that creates

http://phantomjs.org

Fig. 3 JBrowse screenshot showing large track-set faceted track selector from modENCODE test dataset

Buels et al. Genome Biology (2016) 17:66 Page 5 of 12
it, (3) the top-level configuration file(s) in the JBrowse
directory, (4) the configuration file(s) in the data direc-
tory of the genome being viewed, (5) other configur-
ation files which may be recursively “included” by the
above. The JBrowse client merges all the information
contained in these configuration files and uses this to
decide on (a) the set of available reference sequences
providing the coordinate system and sequence data for
a given dataset (conceptually equivalent to a multiple-
sequence FASTA file) and (b) the set of available anno-
tation tracks which may be rendered alongside these
reference sequences (equivalent, at the data level, to a
set of GFF, BED, BAM, Wiggle, and other such annota-
tion files).
Two configuration formats are supported: the first is
JSON-based (with file suffix “.json”), the second is a textual
format (with file suffix “.conf”). The latter is closely based
on the GBrowse configuration format and is easier to edit
and maintain by hand than JSON, in particular when speci-
fying JavaScript callback functions in the configuration file.
Sites can use either format or a mixture of both. The
default shipped configuration of JBrowse uses both: one
jbrowse.conf file in the main JBrowse directory for global
settings and two files (trackList.json and tracks.conf) in
each data directory for dataset-specific configuration.
The capabilities exposed by the configuration file

are further discussed in the “JBrowse Configuration
Guide” [36].

Fig. 4 JBrowse “combination track” workflow. Combination tracks are created via the Track menu (a), presenting an empty track as a drop target
(b). Tracks can then be dragged onto the combination track (c). The second and subsequent tracks bring up a combination dialog (d), with
options for set union, intersection, and difference. The results of the set operation are shown in the combination track (e)

Buels et al. Genome Biology (2016) 17:66 Page 6 of 12
Data sources
As noted above (in the “Usage patterns” section), the
JBrowse client can obtain its genome annotations from a
variety of sources. Data can be loaded directly from
GFF3, BAM+ BAI, or VCF + TBI flatfiles, which can be
hosted on the local filesystem, the web server the client
originated from, or an entirely different server. Tracks
can also be loaded more efficiently from pre-processed
JSON index files (which are hosted on the server and
may be generated either on-the-fly or in advance) which
support efficient querying of name and coordinate space
by employing various data structures, including radix
trees and nested containment lists. Annotations can
also be loaded via a documented REST API, via
SPARQL queries to an RDF data store, or by develop-
ing a plugin to implement custom adapters to existing
web services.
Using the server-hosted JSON index files (or directly

loading server-hosted BAM, VCF, or GFF3 files) is a par-
ticularly fast and scalable approach for many applica-
tions, requiring very little server compute power beyond
the initial pre-processing step. There are several options

Buels et al. Genome Biology (2016) 17:66 Page 7 of 12
for pre-generating these indices from data. A suite of
scripts is provided to create the JSON files directly from
several different sources (including GFF3/BED/Gen-
Bank/BAM/FASTA flatfiles, a Chado database, or the
UCSC genome database). These scripts are not CGI
scripts but pre-indexing tools; they only need to be run
once (or every time a new track is added). Used in this
way, the JBrowse software can be considered a “static
site generator”. As noted in the preceding paragraph, in
many cases (for example, BAM files) it is not necessary
to use JBrowse’s JSON indices; standard tools such as
SAMTools and Tabix can be used to generate index files.
Alternatively, developers can readily write code in other
languages to generate the indices dynamically at run-
time, using the documented REST API and the associ-
ated JSON schema.
The JSON-based file format (along with the other,

more standard file formats used by JBrowse, such as
GFF3, VCF, and BAM) is stable and consistent between
JBrowse sites, so that it is straightforward for other
JBrowse instances (or indeed third-party browsers) to ac-
cess the same data via the REST API. There are also
various options via which a JBrowse instance can com-
bine data from multiple sites, assuming that the site’s
Cross Origin Resource Sharing (CORS) policy is appro-
priately configured. These options can include fetching
BAM, VCF, or GFF3 files from other sites; accessing ex-
ternal REST APIs such as myvariant.info; or integration
with platforms like CoGe or Araport, as implemented by
iPlant [21].
To allow for large sets of annotation tracks which may

be subdivided according to multiple, quasi-orthogonal
classification schemes—for example, in genome projects
such as modENCODE [37, 38] or ENCODE [39] where
a large number of experiments have been performed by
various laboratories, on various cell lines, using various
protocols—JBrowse supports faceted navigation of track
lists, whereby the relevant tracks can be selected by
dynamically applying a series of intersecting filters
within the track selector. In order to support this, track
metadata (including the “facets”, i.e., searchable fields)
can be specified directly in the configuration file, in a
separate CSV-format file (comma-separated value)
whose location is specified in the main configuration file,
or in a custom metadata store.
The collection of a set of reference sequences, plus

all tracks using those reference sequences as a coord-
inate system, is referred to as a dataset. A dataset
must be initialized either by indexing the reference
sequences on the server (e.g., using the supplied
script prepare-refseqs, which breaks the refer-
ence sequences into chunks of manageable size) or by
loading a FASTA file directly into the browser client.
Multiple datasets can be specified in the configuration
file; they are then presented within a single JBrowse
instance via the Genome menu.
A particular challenge to scalability is presented by ge-

nomes in “draft” form, which may be fragmented into
thousands or tens of thousands of contigs, each of which
is a reference sequence. The drop-down menu of refer-
ence sequences can be sorted by length or by another
custom sort order, but in this scenario must typically be
augmented by other discovery mechanisms. It is recom-
mended that the administrator also configure the name
index (to which reference sequence names are in any
case automatically added) and potentially the category
mechanism for the faceted track browser. Since it is also
straightforward to craft URLs that link directly to fea-
tures, the administrator can additionally configure a
BLAST server or other such tool to allow users to dis-
cover features by sequence homology search.

Track types
The core visual elements of a JBrowse track are sequence
data, feature glyphs, and quantitative data. Although most
tracks predominantly feature one of these elements, the
elements are often also combined, composed, or staged
together to visually highlight aspects of the data. For
example, the SNPCoverage track, visualizing next-
generation sequence reads aligned to the reference se-
quence, condenses reads into a histogram of coverage
density and highlights potential single-nucleotide variants
as colored characters.

Sequence (FASTA) tracks
The Sequence track displays forward and reverse strands
of the reference sequences and six conceptual translation
frames (a non-standard codon translation table can be
specified at configuration). JBrowse can load sequence
data from FASTA files, indexed FASTA files, and pre-
processed sequence data converted into JSON files. It
can also display data from a file simply containing
chromosome names and sizes and with no sequence
data, in which case no actual sequence track is used.

Feature (GFF, BED, GenBank) tracks
The two types of tracks currently available for displaying
annotations from GFF or BED files are HTMLFeatures
and CanvasFeatures, each of which has relative ad-
vantages in various situations. (An experimental third
type of feature track, NeatCanvasFeatures, which
extends CanvasFeatures with specialized intron car-
toons, is described in the section "Writing plugins").
These tracks can display features with optional struc-
tured subfeatures (as, for example, in a GFF3 file) and so
are ideal for displaying gene models (with component
exons, introns, UTRs), transcript alignments, single-

Buels et al. Genome Biology (2016) 17:66 Page 8 of 12
nucleotide polymorphisms (SNPs), transposons, repeats,
and so on.
The HTMLFeatures track uses elements of the HTML

Domain Object Model (DOM), such as DIV elements, to
build up the displayed features. Configuration options
allow the customization of many aspects of the track, in-
cluding the layout parameters, density, height, text de-
scription, and Cascading Style Sheets (CSS) classes for
various components. Around 22 CSS feature glyphs are
included with JBrowse by default. The inbuilt documenta-
tion describes how to configure an HTMLFeatures track
to use these CSS glyphs with various types of feature, in-
cluding “two-level” features where a parent feature uses
one CSS glyph and the child features use a different glyph.
The CanvasFeatures track paints features directly

onto an HTML Canvas element. Early versions of JBrowse
were designed not to rely on this element, but the Canvas
element has been supported by all major web browsers
since 2009 and is now available to 97 % of web users
(according to https://www.w3counter.com/), 99 % of
jbrowse.org visitors, and 99.9 % of JBrowse users.
As with HTMLFeatures, CanvasFeatures comes

with a number of pre-built “glyphs” with which different
features can be associated, and these glyph–feature asso-
ciations can be specified (along with various other lay-
out, rendering, and general visualization options) in the
configuration file. Unlike HTMLFeatures, however, the
CanvasFeatures glyphs are not restricted to being
based on HTML elements and so a more expressive
visual language is available. It is also straightforward to
extend the glyphs by writing new glyph classes. Like
GBrowse glyphs [9], CanvasFeatures glyphs are
modular and can comprise subfeatures. To create an en-
tirely new glyph visualization requires only a small
amount of JavaScript.
As noted above, each track has relative advantages.

CanvasFeatures tracks are generally easier to config-
ure and faster to render than HTMLFeatures tracks;
and, as described above, it is easier to develop custom
CanvasFeatures glyphs. On the other hand,
HTMLFeatures makes certain UI customizations and
extensions easier, since it provides a series of ready-made
DOM objects with callback hooks for events like “click”
and “drag” that the developer can latch onto. The Apollo
annotation plugin for JBrowse uses HTMLFeatures
tracks to enable drag-and-drop functionality. The
NeatHTMLFeatures and NeatCanvasFeatures
plugins, described in the “Customization” section, illus-
trates implementations of a custom intron rendering using
both types of track.

Quantitative (Wiggle, BigWig) tracks
Numerical data associated with intervals or individual
nucleotides, as stored in Wiggle and BigWig files, can be
plotted using histograms (the Wiggle/XYPlot track)
or heat maps (the Wiggle/Density track). Mousing
over either kind of track brings up a cursor and popup
text displaying (as a numeric value) the data point
currently under the mouse pointer.
JBrowse can load quantitative data directly from

BigWig files stored on the server, with no need for
preprocessing. Both kinds of Wiggle track can be exten-
sively configured to customize coloring, thresholding, scal-
ing, cutoff behavior, global error bars, and other styling.

Alignment (BAM) tracks
Three types of track are available for rendering the data
in BAM files (reference-aligned reads): Alignments
(a highly configurable track with customizable click
behavior which renders reads as individual HTML
elements), Alignments2 (a faster track, optimized for
deep-coverage datasets, which renders reads directly
onto an HTML Canvas element), and SNPCoverage
(a track which dynamically calculates and visually high-
lights SNPs from BAM data, including nucleotide
frequencies).
For deep-coverage BAM files, Alignments2 is recom-

mended for performance reasons (due to Alignments
having a longer rendering time and SNPCoverage per-
forming a large number of calculations in order to com-
pute SNPs on-the-fly). It is possible to convey the same
information as an SNPCoverage track by pre-computing
a BigWig file of the coverage and a VCF file of putative
SNPs, both of which can then be displayed with other
track types (e.g., Wiggle/XYPlot and VCF tracks,
respectively).
BAM files used with JBrowse must be compressed and

coordinate-sorted. A wide array of options are offered
for customizing details of BAM track operations, in-
cluding handling of duplicate, multiply mapped and
paired-end reads, calculation of coverage histograms,
visualization of mismatches and SNPs, and track size,
coloring, and styling.

Variant (VCF) tracks
The HTMLVariants and CanvasVariants track
classes are derivatives of HTMLFeatures and
CanvasFeatures that are optimized for displaying the
potential large amounts of detailed data that go along
with each variant. JBrowse can serve these tracks directly
from VCF files; however, the VCF files must be com-
pressed with bgzip and indexed with tabix, both of
which are available as part of the SAMtools package [40]
and/or the related HTSlib package.

Image tracks
JBrowse can load images directly from the server and dis-
play them aligned to the genome, using the FixedImage

https://www.w3counter.com/

Buels et al. Genome Biology (2016) 17:66 Page 9 of 12
track. Earlier versions of JBrowse used pre-rendered im-
ages to display features and histograms. This is no longer
the case (JBrowse now includes code to render these dir-
ectly from the client), but JBrowse has retained the image
track API to support track images rendered on the server.

Miscellaneous derived tracks
NeatCanvasFeatures is a specialized track which
extends CanvasFeatures with “hat” cartoons for in-
trons. It is described in the "Writing plugins" section.
The FeatureCoverage track is a special subclass of

Wiggle/XYPlot that dynamically computes and dis-
plays coverage for a feature file (e.g., a BAM file).
The base-pair track is an example FixedImage track

wherein base-pairing arcs (indicating secondary struc-
ture of the reference sequence) are pre-rendered, on the
server, using the GD library.

Customization
JBrowse is designed to be straightforward to embed,
customize, and extend. Relevant design features include
the event framework, the plugin mechanism, and many
callback hooks which can be overridden to change or
augment the default behavior of various UI elements.
The majority of JBrowse code is contained in the

JavaScript part of the software repository and is organized
according to the MVCS (Model-View-Controller-Store)
pattern [41]. The client-side framework used is Dojo [42]:
view components make use of Dojo’s Dijit widgets, while
modules are defined using Dojo’s AMD (Asynchronous
Module Definition) format. The code base can be
extended by placing new source files directly into the
directory tree, by adding plugin extensions, or by defining
new functions in the configuration files.
As a general code convention, the names of abstract clas-

ses, abstract mixins, private variables, and private methods
are preceded with a leading underscore.

Initialization milestones
The phases of startup are synchronized using named
promises called milestones (implemented as dojo/Deferred
events), which can be hooked onto by plugins and other
JavaScript code using the “afterMilestone” method.
Milestone events are shown in Table 1. Each milestone

may be attached to callback functions that will be exe-
cuted when the corresponding milestone completes.

Sequence feature models and stores
Classes modeling individual sequence features conform to
the Feature API (exemplified by and documented in the
source for the class JBrowse/Model/SimpleFeature)
by providing accessor methods for various feature attributes
(start and endpoint, ID field, tags, score, parent and child
relationships for modeling super- and sub-features), some
of which are mandatory for the various different types of
track.
By contrast, classes modeling sources of sequences and

sequence features generally inherit from JBrowse/
Store/SeqFeature and implement the Feature Store
API, including methods for retrieval of global and local
statistics, sequence, and feature data.
Typically, different Feature Stores will provide their own

custom implementations of the Feature API. More infor-
mation on the Feature API and Feature Store API, and
other useful classes, can be found in the “JBrowse Configur-
ation Guide” at GMOD [36].
Callback hooks
JBrowse feature tracks, and individual JBrowse features, can
be customized using JavaScript functions added by the de-
veloper. These functions are called every time a feature in a
track is drawn, allowing customization of virtually anything
about the feature's display. Since all of the feature's data
and attributes are accessible to the customization function,
an individual feature’s appearance can be customized based
on these data.
Custom creation and post-processing of features in
HTMLFeatures tracks
The HTMLFeatures track offers two callback functions
that can be overridden (via the config file) to control the
way that individual features are rendered:

� The 'hooks->create' callback can be used to
control what DOM object is created to represent an
individual feature. It is called with track and feature
objects as arguments. The default just creates a DIV
element.

� The 'hooks->modify' callback can be used to
modify the DOM object for a feature, after it is created.
The function is called with track, feature, and DOM
element objects as arguments.
Custom rendering and styling of glyphs in CanvasFeatures
Unlike HTMLFeatures tracks, canvas-based feature
tracks don't use modify and create hooks. Instead,
any of the style attributes (controlling color, labels,
dimensions, and other aspects of the appearance and
behavior of the glyph) can be specified as dynamic func-
tions in the configuration file rather than static values.
As an example of how this can be applied, the “JBrowse
Configuration Guide” gives a config file snippet that can
be used to color homozygous and heterozygous variants
differently in a CanvasVariants track (which inherits
from CanvasFeatures; see the “Variant (VCF) tracks”
section).

Table 1 JBrowse initialization milestones

Milestone name Milestone is reached when…

initPlugins …all plugins (but not feature tracks and stores) have been initialized

loadRefSeqs …all reference sequences have been loaded

loadUserCSS …the user-defined style sheet has been loaded

loadNames …the feature search names, used by the text navigation box and autocomplete, have been loaded

initView …the GenomeView object and menus have been created

initTrackMetadata …the track metadata has been loaded

loadConfig …the configuration file(s) have been successfully parsed

createTrack …the track selector has been initialized

completely initialized (note the space) …all major services have completed initialization

Buels et al. Genome Biology (2016) 17:66 Page 10 of 12
Custom “View details” pop-ups
By default, the “View details” pop-up box (which can be
selected by either left-clicking on a feature or right-
clicking then selecting “View details” from the context
menu that appears) displays a simple report about the
genome feature that was clicked, including primary data
(name, location, reference sequence), sub-feature struc-
ture, and additional miscellaneous attributes from the
source annotation file in a tabular name-value format.
Callbacks can be added to dynamically change the
names, values, and mouseover behavior of these extra
miscellaneous attributes or to remove them from the
“View details” pop-up altogether.
Custom mouseover and click behavior, context menu
options, and “About this track” pop-ups
Most of the interactive behavior of a feature track can
be customized by attaching functions to various callback
hooks. This process is described in detail in the config-
uration guide, illustrated by numerous code snippets.
The customizations can include the behavior when a
feature is moused-over or left-clicked, the options in the
context menu that appear when it is right-clicked, or the
“About this track” popup (which displays track metadata
analogously to the “View details” popup’s display of fea-
ture attributes and can be customized in similar ways).
Publishing and subscribing to client events
JBrowse client events are implemented using the dojo/
topic message bus from the Dojo library. Extensions
can subscribe to particular events in order to be notified
when certain UI changes happen (for example, highlight-
ing a region generates an event, which can be latched
onto with a callback that triggers a request for the server
to BLAST that region against a database). In select
cases, extensions can also publish events as a way of
forcing the UI into certain states or transitions (for
example, events can be used in this way to force the
browser to load a new track in response to some other
circumstance or notification).
Events are documented in the “JBrowse Configuration

Guide”. The DebugEvents plugin logs events to the
console, and can be used to monitor events as they are
triggered by user interactions with the browser.
Writing plugins
An extension to JBrowse is typically composed of several
parts: JavaScript classes for initialization, View and Store
code, CSS files for styling UI components, image files
for buttons, and other visual components. The JBrowse
plugin mechanism allows these files to be collected in
one central place and to be automatically loaded when
JBrowse is launched. Each plugin is given its own
namespace so that any track types, feature glyphs, track
selector, or parser/store classes can be easily specified in
config files by just referencing their path (for example,
MyPlugin/View/Track/CustomTrack can be specified in
the track configuration file to refer to a new custom
track type).
Each plugin is placed in its own subdirectory of the

top-level ‘plugins’ directory of the JBrowse installation
(for example, plugins/MyPlugin) and should have subdir-
ectories named ‘js’, ‘img’, and ‘css’ for, respectively, code,
images, and stylesheets. The plugin must also be de-
clared in the configuration (typically in the top-level
JBrowse configuration file). JBrowse loads the plugin
using the Dojo AMD mechanism: an AMD module
definition file is required (‘plugins/MyPlugin/js/main.js’).
A stylesheet will also be automatically loaded if it is
present (‘plugins/MyPlugin/css/main.css’). A script is
provided with JBrowse to create this skeletal file and dir-
ectory structure, automating the first step of developing
a new plugin.
Several plugins are provided with JBrowse and are

listed in Table 2. The source code for these plugins
has been commented to assist developers of new
plugins.

Table 2 JBrowse plugins

Plugin name Plugin description

RegexSequenceSearch Allows the user to enter a simple sequence motif of regular expression, then creates a new feature track showing matches to
this motif. Illustrates implementation of JBrowse menu extensions and popups (with CSS), creation of a new track, access of
the reference sequence, and dynamic creation of features based on client-side computation

NeatHTMLFeatures Extends HTMLFeatures tracks to render introns using the standard cartoon representation of a “hat”-shaped elbow line and
features with gradient “tube” effect. Illustrates the implementation of custom glyphs. Draws the intron using Scalable Vector
Graphics (SVG)

NeatCanvasFeatures The analog of NeatHTMLFeatures for CanvasFeatures tracks

HideTrackLabels Extends the toolbar to implement a new button that hides track labels. Illustrates the implementation of toolbar buttons

DebugEvents Logs all milestone and globally published events to the browser’s JavaScript console. Illustrates the use of plugins for
debugging and subscription to dojo/topic events

CategoryUrl Adds a new ‘category’ URL parameter that displays all tracks in a particular category. Illustrates the implementation of new
URL parameters

PubAnnotation Allows JBrowse to display text annotations from PubAnnotation. Illustrates the creation of a new feature store that queries an
external repository

The plugins in this table are included in the JBrowse source distribution, in many cases for expository purposes. Other plugins may readily be developed and
added to any given JBrowse installation

Buels et al. Genome Biology (2016) 17:66 Page 11 of 12
Writing new back-end data services: REST and JSON APIs
The current version of JBrowse does not require a
dynamic server back-end (only run-once scripts that op-
tionally can be used to generate the JSON index files)
but it is designed to be easy to integrate with other
server-based services. In particular, the JBrowse data
interface includes REST adaptors that can readily con-
nect to web-facing stores of features (GFF-, BED-, or
BAM-style) and quantitative scores (Wiggle-style). The
back-end store needs to implement a simple RESTful
API that serves statistics on the number and density of
features (and/or the range of scores) on a reference se-
quence and, optionally, on a sub-interval of that se-
quence or a sub-division into bins. The store also needs
to implement a local query method. The text search
database (searching and autocompleting feature names)
and the reference sequence store can also be connected
via RESTful interfaces. Finally, the JSON and text for-
mats for configuration, track lists, track metadata, and
the tracks themselves can be dynamically generated by
server code (as opposed to being pre-generated by the
indexing scripts).
Future plans
We are currently developing a registry of JBrowse
plugins (including third-party extensions) and another
registry of publicly accessible data instances, both of
which will be hosted on http://jbrowse.org. An-
nouncements and discussion of planned developments
for JBrowse will be available on the project blog on
http://jbrowse.org. The project mailing lists, which
often include announcements, are also linked from
http://jbrowse.org.
Conclusions
JBrowse is a fully-featured genome browser that is cap-
able of visualizing diverse types of genome-located data,
located in a variety of different data stores, and of inter-
facing to other client and server applications.

Availability of data and materials
All source code is available from the git repository, linked
to from http://jbrowse.org, under a choice of Open Source
Initiative-compatible licenses, including the GNU Lesser
General Public License and the Artistic License. A Docker
image that can be used to launch JBrowse containers is
also available from http://jbrowse.org.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RB was lead developer of the JBrowse project for most of the work reported
here and wrote the documentation from which the first draft of this
manuscript was derived. EY and CD also led JBrowse development and were
major code contributors. RH and GH contributed code. MMT, DG, CE, and SL
supervised software development and suggested new directions. MMT and
SL further developed and led JBrowse training workshops and hackathons.
LS co-supervised the project, managed interns, and wrote a significant part
of the Perl code base on which JBrowse initially relied. IH conceived of and
led the JBrowse project, contributed code, and drafted and supervised the
writing of this paper. All authors contributed to the writing of this paper. All
authors read and approved the final manuscript.

Acknowledgements
The project includes open-source code from Thomas Down, Justin Reese, other
GitHub contributors too numerous to name individually, and students from the
University of Waterloo Co-Operative Program, including Natalie Fox, Adam Wright,
Juan Aguilar, Daniel Kasenberg, Kevin Mohammed, Erik Derohanian, Julie Moon,
Adrian Duong, and Julien Smith-Roberge. We thank in particular Eric Rasche for
developing a JBrowse Docker image and for other contributions.

Funding
RB, EY, LS, and IH were supported by NIH grant HG004483 (JBrowse). CD,
MMT, GH, CE, and SL were supported by NIH grant GM080203 (WebApollo).

http://jbrowse.org
http://jbrowse.org
http://jbrowse.org
http://jbrowse.org/
http://jbrowse.org

Buels et al. Genome Biology (2016) 17:66 Page 12 of 12
Author details
1Department of Bioengineering, University of California, Berkeley, California,
USA. 2Division of Animal Sciences, University of Missouri, Columbia, Missouri,
USA. 3Lawrence Berkeley National Laboratory, Berkeley, California, USA.
4Current affiliation: Genomancer Consulting, Healdsburg, California, USA.
5Ontario Institute of Cancer Research, Toronto, Ontario, Canada. 6US
Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA.
7Department of Molecular Genetics, University of Toronto, Toronto, Ontario,
Canada.

Received: 4 January 2016 Accepted: 15 March 2016
References
1. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH. JBrowse: a next-

generation genome browser. Genome Res. 2009;19:1630–8.
2. Skinner ME, Holmes IH. Setting up the JBrowse genome browser. Curr Protoc

Bioinformatics. 2010;Chapter 9:Unit 9.13.
3. Westesson O, Skinner M, Holmes I. Visualizing next-generation sequencing

data with JBrowse. Brief Bioinform. 2013;14:172–7.
4. Down TA, Piipari M, Hubbard TJP. Dalliance: interactive genome viewing on

the web. Bioinformatics. 2011;27:889–90.
5. Hammerbacher lab, Pileup.js. https://github.com/hammerlab/pileup.js.

Accessed 28 Mar 2016.
6. Goecks J, Eberhard C, Too T, the Galaxy Team, Nekrutenko A, and Taylor J. Web-

based visual analysis for high-throughput genomics. BMC Genomics. 2013;14:397.
7. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The

Human Genome Browser at UCSC. Genome Res. 2002;12:996–1006.
8. Stalker J. The ensembl web site: mechanics of a genome browser. Genome

Res. 2004;14:951–5.
9. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, et al. The generic

genome browser: a building block for a model organism system database.
Genome Res. 2002;12:1599–610.

10. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G,
et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

11. Nicol JW, Helt GA, Blanchard SG, Raja A, Loraine AE. The Integrated Genome
Browser: free software for distribution and exploration of genome-scale
datasets. Bioinformatics. 2009;25:2730–1.

12. Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, et al.
Web Apollo: a web-based genomic annotation editing platform. Genome
Biol. 2013;14:R93.

13. O’Connor BD, Merriman B, Nelson SF. SeqWare Query Engine: storing and
searching sequence data in the cloud. BMC Bioinformatics. 2010;11 Suppl 12:S2.

14. Hilgert U, Uwe H, Sheldon M, Mohammed K, Jason W, Cornel G, et al. DNA
Subway: making genome analysis egalitarian, Article No. 70. New York, NY,
USA: ACM; 2014.

15. GenSAS. http://gensas2.bioinfo.wsu.edu/. Accessed 28 Mar 2016.
16. Campbell MS, Holt C, Moore B, Yandell M. Genome annotation and curation

using MAKER and MAKER-P. Curr Protoc Bioinformatics. 2014;48:4–11.
17. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database

management tool for second-generation genome projects. BMC
Bioinformatics. 2011;12:491.

18. Wurm lab, Afra. https://github.com/wurmlab/afra. Accessed 28 Mar 2016.
19. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al.

Phytozome: a comparative platform for green plant genomics. Nucleic
Acids Res. 2012;40(Database issue):D1178–86.

20. Krishnakumar V, Hanlon MR, Contrino S, Ferlanti ES, Karamycheva S, Kim M,
et al. Araport: the Arabidopsis information portal. Nucleic Acids Res.
2015;43(Database issue):D1003–9.

21. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, et al. The
iPlant Collaborative: cyberinfrastructure for plant biology. Front Plant Sci.
2011;2:34.

22. Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, et al.
The Sol Genomics Network (SGN)–from genotype to phenotype to
breeding. Nucleic Acids Res. 2015;43(Database issue):D1036–41.

23. Jung S, Ficklin SP, Lee T, Cheng C-H, Blenda A, Zheng P, et al. The Genome
Database for Rosaceae (GDR): year 10 update. Nucleic Acids Res. 2014;
42(Database issue):D1237–44.

24. The Triticeae Toolbox. https://triticeaetoolbox.org/. Accessed 28 Mar 2016.
25. Alexandrov N, Tai S, Wang W, Mansueto L, Palis K, Fuentes RR, et al. SNP-Seek
database of SNPs derived from 3000 rice genomes. Nucleic Acids Res.
2015;43(Database issue):D1023–7.

26. Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, Chen WJ, et al.
WormBase 2014: new views of curated biology. Nucleic Acids Res.
2014;42(Database issue):D789–93.

27. Shimoyama M, De Pons J, Hayman GT, Laulederkind SJF, Liu W, Nigam R,
et al. The Rat Genome Database 2015: genomic, phenotypic and
environmental variations and disease. Nucleic Acids Res. 2014;43:D743–50.

28. Hammond S, Kaplarevic M, Borth N, Betenbaugh MJ, Lee KH. Chinese
hamster genome database: an online resource for the CHO community at
www.CHOgenome.org. Biotechnol Bioeng. 2012;109:1353–6.

29. Poelchau M, Childers C, Moore G, Tsavatapalli V, Evans J, Lee C-Y, et al. The i5k
Workspace@NAL–enabling genomic data access, visualization and curation of
arthropod genomes. Nucleic Acids Res. 2015;43(Database issue):D714–9.

30. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al.
COSMIC: exploring the world’s knowledge of somatic mutations in human
cancer. Nucleic Acids Res. 2015;43(Database issue):D805–11.

31. Wang L-S, Li-San W, Li-San W, Otto V, Childress DM, Amanda P, et al. NIA
Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS): 2014 update.
Alzheimers Dement. 2014;10:P634–5.

32. Foley BT, Leitner TK, Cristian A, Beatrice H, Ilene M, James M, Andrew R,
Steven W, Korber BTM. HIV Sequence Compendium 2015. 2015.
http://www.hiv.lanl.gov/content/sequence/HIV/COMPENDIUM/2015/
sequence2015.pdf. Accessed 28 Mar 2016.

33. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al.
PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic
Acids Res. 2014;42(Database issue):D581–91.

34. PaVE: Papilloma virus genome database. http://pave.niaid.nih.gov/.
Accessed 28 Mar 2016.

35. Mungall CJ, Emmert DB, FlyBase Consortium. A Chado case study: an
ontology-based modular schema for representing genome-associated
biological information. Bioinformatics. 2007;23:i337–46.

36. GMOD: JBrowse Configuration Guide. http://gmod.org/wiki/JBrowse_
Configuration_Guide. Accessed 28 Mar 2016.

37. modENCODE Consortium, Roy S, Ernst J, Kharchenko PV, Kheradpour P,
Negre N, et al. Identification of functional elements and regulatory circuits
by Drosophila modENCODE. Science. 2010;330:1787–97.

38. Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, et al.
Integrative analysis of the Caenorhabditis elegans genome by the
modENCODE project. Science. 2010;330:1775–87.

39. The ENCODE Project Consortium. A user’s guide to the Encyclopedia of
DNA Elements (ENCODE). PLoS Biol. 2011;9:e1001046.

40. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

41. Williams G. JavaScript: models, views, and controllers. In: Williams G, editor.
Learn HTML5 and JavaScript for Android. 2012. p. 219–316.

42. Dojo Toolkit Reference Guide. https://dojotoolkit.org/reference-guide/1.10/.
Accessed 28 Mar 2016.
• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://github.com/hammerlab/pileup.js
http://gensas2.bioinfo.wsu.edu/
https://github.com/wurmlab/afra
https://triticeaetoolbox.org/
http://www.chogenome.org
http://www.hiv.lanl.gov/content/sequence/HIV/COMPENDIUM/2015/sequence2015.pdf
http://www.hiv.lanl.gov/content/sequence/HIV/COMPENDIUM/2015/sequence2015.pdf
http://pave.niaid.nih.gov/
http://gmod.org/wiki/JBrowse_Configuration_Guide
http://gmod.org/wiki/JBrowse_Configuration_Guide
https://dojotoolkit.org/reference-guide/1.10/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results and Discussion
	User interface
	JBrowse configuration system
	Data sources
	Track types
	Sequence (FASTA) tracks
	Feature (GFF, BED, GenBank) tracks
	Quantitative (Wiggle, BigWig) tracks
	Alignment (BAM) tracks
	Variant (VCF) tracks
	Image tracks
	Miscellaneous derived tracks

	Customization
	Initialization milestones
	Sequence feature models and stores
	Callback hooks
	Custom creation and post-processing of features in HTMLFeatures tracks
	Custom rendering and styling of glyphs in CanvasFeatures
	Custom “View details” pop-ups
	Custom mouseover and click behavior, context menu options, and “About this track” pop-ups

	Publishing and subscribing to client events
	Writing plugins
	Writing new back-end data services: REST and JSON APIs
	Future plans

	Conclusions
	Availability of data and materials

	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding
	Author details
	References

