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Abstract

features.

Background: RNA levels detected at steady state are the consequence of multiple dynamic processes within the
cell. In addition to synthesis and decay, transcripts undergo processing. Metabolic tagging with a nucleotide analog
is one way of determining the relative contributions of synthesis, decay and conversion processes globally.

Results: By improving 4-thiouracil labeling of RNA in Saccharomyces cerevisiae we were able to isolate RNA
produced during as little as 1 minute, allowing the detection of nascent pervasive transcription. Nascent RNA
labeled for 1.5, 2.5 or 5 minutes was isolated and analyzed by reverse transcriptase-quantitative polymerase chain
reaction and RNA sequencing. High kinetic resolution enabled detection and analysis of short-lived non-coding
RNAs as well as intron-containing pre-mRNAs in wild-type yeast. From these data we measured the relative stability
of pre-mRNA species with different high turnover rates and investigated potential correlations with sequence

Conclusions: Our analysis of non-coding RNAs reveals a highly significant association between non-coding RNA
stability, transcript length and predicted secondary structure. Our quantitative analysis of the kinetics of pre-mRNA
splicing in yeast reveals that ribosomal protein transcripts are more efficiently spliced if they contain intron
secondary structures that are predicted to be less stable. These data, in combination with previous results, indicate
that there is an optimal range of stability of intron secondary structures that allows for rapid splicing.
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Background

The RNA levels detected in cells at steady state are the
consequence of multiple dynamic processes within the
cell. Eukaryotic genomes are pervasively transcribed, but
the accumulation of many transcripts is limited by pro-
cesses that regulate their synthesis and decay [1]. In
addition, most primary transcripts undergo processing
events. For example, small nuclear RNAs (snRNAs),
small nucleolar RNAs (snoRNAs), transfer RNAs
(tRNAs), microRNAs (miRNAs), small interfering RNAs
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(siRNAs) and some long non-coding RNAs (IncRNAs)
are often produced by the post-transcriptional process-
ing of short-lived longer transcripts that are more readily
detected in the absence of degradation or processing fac-
tors [2]. A number of different classes of IncRNAs have
been described in eukaryotes [3, 4]. The best character-
ized examples in yeast are the stable unannotated tran-
scripts (SUTs), cryptic unstable transcripts (CUTs) and
Xrnl-sensitive unstable transcripts (XUTs), three types
of IncRNAs thought to have different stabilities [4].
SUTs are readily detectable in wild-type cells and share
many similarities with messenger RNAs (mRNAs),
whereas CUTs are generally more unstable and fre-
quently only detectable in cells lacking the nuclear exo-
some components. XUTs are likely (primarily) degraded
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in the cytoplasm because they accumulate in the absence
of the cytoplasmic exoribonuclease Xrnl [5].

In the case of intron-containing genes, the level of ma-
ture transcripts is influenced by splicing, as well as by
synthesis and decay. Splicing of pre-mRNAs (precursors
of messenger RNAs) [6] occurs in the nucleus, often co-
transcriptionally [7]. The spliced mRNA is exported to
the cytoplasm where it can be translated, whereas the
excised intron, which has a branched, lariat structure, is
rapidly debranched and degraded. Measurements of in
vivo RNA processing rates and efficiencies depend on
the ability to estimate the levels of the unprocessed pre-
cursors and processing intermediates in cell extracts;
however, this is challenging because they are highly tran-
sient and present in low abundance in wild-type cells at
steady state.

A diverse range of methods has been used to measure
the kinetics of RNA processing. One approach involves
inhibiting RNA polymerase II (Pol II) activity with a
transcription inhibitor such as 5,6-dichloro-1-B-D-ribo-
benzimidazole, then removing this inhibition to promote
synchronized transcription. For example, measuring the
delay after Pol II reaches the 3" ends of introns before
the spliced flanking exons can be detected provides an
estimate of the time for splicing [8]. Splicing kinetics
have also been estimated in human cells using fluores-
cence recovery after photobleaching and live cell im-
aging, by measuring either the amount of time that
fluorescently tagged spliceosomal small nuclear ribonu-
cleoproteins associate with transcripts, or the time taken
for an intron-tethered green fluorescent protein-fusion
protein to be removed by splicing [9]. By these diverse
approaches, estimates of the time taken to splice introns
in human cells have varied between 30 s and 5-10 min.
For budding yeast, Alexander et al. [10] used an indu-
cible reporter gene and high resolution kinetic analysis
of RNA by quantitative reverse transcription polymerase
chain reaction (RT-qPCR), estimating that splicing oc-
curred within 30s of the production of the pre-mRNA.
There are also computational approaches for predicting
the speed of RNA processing events [11].

Metabolic labeling is a way of proportionally enriching
classes of RNA that are difficult to detect in wild-type
cells at steady state. For example, 4-thiouridine (4sU)
has been used to label newly synthesized transcripts in
human cells [12] and budding yeast cells [13] followed
by biotinylation of the thiolated RNA to allow its selective
recovery for microarray analysis. Neymotin et al. [14]
used 4-thiouracil (4tU) labeling of RNA in budding
yeast followed by RNA sequencing o determine RNA
degradation rates, from which synthesis rates were
derived.

Labeling with 4sU has been used to measure RNA
synthesis, decay and splicing rates in human and yeast;
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however, the shortest labeling time was 3 min, by which
time a substantial fraction of the newly transcribed RNA
was already spliced or degraded [13, 15]. Therefore, to
be able to measure RNA processing rates with higher ac-
curacy and resolution transcriptome-wide, we have de-
veloped an extremely short (as little as 60 s) 4tU RNA
labeling protocol and combined it with high-throughput
RNA sequencing (RNA-seq). We demonstrate that our
method (4tU-seq) readily detects low abundance and
labile transcripts in wild-type cells that are normally de-
tected only in cells that are defective in RNA degrad-
ation. Our data show that at such short times, IncRNA
degradation kinetics depart significantly from first-order,
and quantitatively associate IncRNA turnover with struc-
tural features of the transcripts. Also, using 4tU-seq we
could, for the first time, measure relative pre-mRNA
splicing kinetics transcriptome-wide in budding yeast.
Unexpectedly, our results show that fast splicing of
intron-containing ribosomal protein mRNAs largely
depends on the degree of secondary structure between
the 5 splice site (5'ss) and branch point (BP) sequence
and indicate that there is an optimal range of stability
of intron secondary structures and base composition
that allows for rapid splicing.

Results and discussion

Thiolated RNA can be efficiently recovered after very
brief 4tU labeling

To isolate short-lived RNA species from the yeast
Saccharomyces cerevisiae, we incubated cells with 4tU
for very short periods, extracted the RNA, and treated it
with a thio-reactive reagent to biotinylate the newly syn-
thesized transcripts that contain thiol moieties [12, 16].
The biotinylated RNA was then affinity-purified with
streptavidin. To improve 4tU incorporation during very
short periods, the uptake of 4tU by yeast cells was en-
hanced by overexpressing the FUII permease gene from
a plasmid [17, 18]. Cell metabolism was rapidly halted
by snap-freezing the labeled cells directly in very cold
methanol, which is crucial for the recovery of short-lived
RNAs [10]. Furthermore, each stage of the RNA isola-
tion was carefully optimized to reduce background and
maximize yield, in particular by using a modified binding
and wash buffer (detailed in “Methods”). We used 4tU
rather than 4sU for our studies because 4tU is much less
expensive and gives very comparable incorporation rates
(data not shown).

There was a linear increase in the yield of thiolated
RNA over short labeling times up to 5 min, after which
a component of the system became limiting (Fig. 1a; R?
=0.99). Moreover, labeling for only 1.5 min was suffi-
cient to achieve at least 2-fold enrichment over the back-
ground (yield from an unlabeled sample). By fitting a
line to the data to indicate background levels, we
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Fig. 1 RNA yield increases with labeling time. a Plot of total yield of
RNA recovered in nanograms per ODgqo unit of cells against labeling
time in minutes. During the first five minutes of labeling, yield
increases linearly with labeling time (R” =0.985). Some RNA is
recovered when 4-thiouracil (4tU) is not added to the culture

(0 min). This is essentially background RNA that non-specifically
bound to the magnetic beads during the isolation procedure. The
horizontal dashed line indicates the level of background for this
experiment. The actual amounts of RNA recovered from 600 ml
culture (average of two experiments; R’ = 0.960) were: 0.50 pg (0 min),
0.77 ug (1 min), 1.16 pg (1.5 min), 3.30 ug (5 min) and 4.52 ug (10 min).
b Agilent Bioanalyzer trace demonstrating the qualitative differences
between the different fractions produced during the isolation of newly
synthesized RNA. The left panel displays the results when no 4tU is
added while the right panel shows 2.5 min labeling. The nonspecific
background can be seen to be different from the total RNA comprising
mostly short fragments. tRNA transfer RNA. 25S, 185 and 5S indicate
mature ribosomal RNA species.

deduced that the estimated time required before any 4tU
was incorporated was about 30 s (Fig. la). Bioanalyzer
analysis of mock samples indicated that most of the
background consisted of short RNA species (Fig. 1b),
which were mostly highly abundant tRNAs (Additional
file 1: Figure S1).
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4tU-seq proportionally enriches low stability species of
RNA

We next performed RNA-seq on thiolated RNA (4tU-
seq) isolated after 1.5, 2.5 and 5 min of 4tU labeling, on
unlabeled control samples (i.e., “background”) and on
rRNA-depleted total RNA, with all experiments per-
formed at least twice. Additional file 1: Tables S1 to S14
provide all the results of our 4tU-seq data bioinformatics
analyses. Additional file 1: Table S1 lists the total num-
ber of uniquely mapped reads for each sample. Notably,
for the majority of RNA species we did not observe a
significant correlation between the fraction of uridines
in the transcript and the read coverage or RNA half-life
(Additional file 1: Table S2 and Figure S2). However,
this was not the case for snRNAs, which had a small
sample size (only six) and are renowned for being U-rich
(Additional file 1: Table S2).

We then used DESeq2 [19] to calculate the enrich-
ment of different classes of RNA in the 4tU-labeled sam-
ples relative to the total RNA samples (see “Methods”
for more details on the differential analyses of transcript
abundance). In the 1.5-min 4tU-seq samples, a high pro-
portion (37 %) of intron-containing transcripts were sig-
nificantly enriched (adjusted p<0.05; Fig. 2a), with
substantially less enrichment seen in the 5-min samples.
This is not surprising given that longer labeling times
approach the steady state situation, where more of the
labeled transcripts are spliced, such that the proportion
of intron-containing transcripts is reduced. This illus-
trates the benefit of labeling for extremely short times.
To our knowledge, 90 s is the shortest labeling period
after which RNA-seq has been performed [14, 20].

Notably, many CUTs, SUTs and XUTs were signifi-
cantly enriched in the 4tU samples relative to total RNA,
with the degradation of these species appearing relatively
slow compared to pre-mRNA splicing (discussed below).

Many non-coding RNAs (ncRNAs) are matured by
cleavage and/or trimming of precursors at the 5" and/or
3" ends and the precursors were very well represented in
our 4tU-seq data. Pre-ribosomal RNAs (pre-rRNAs) were
readily detectable after 1.5 min of labeling, as judged by
the accumulation of reads mapping to the external-
transcribed and internal-transcribed spacer of the rDNA
unit (Fig. 2b). The processing of these spacer regions
seems to be slow given that they were still abundantly de-
tectable after 5 min of labeling. It has been reported that
incubation of human cells with concentrations of 4sU
>50 uM over long periods of time (>1 h) causes a nucle-
olar stress response and inhibition of the production and
processing of rRNA [21]. It is not known whether 4tU in-
cubation for the very short times used here affects rRNA
processing and, because rRNA was depleted from our
total RNA samples before sequencing, we did not calcu-
late relative pre-rRNA processing speeds.
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Fig. 2 Short labeling times proportionally enrich unstable transcripts. a DESeg2 [19] was used to identify features significantly enriched in 4tU-seq
data from short labeling times (1.5 min and 5 min) compared to total RNA. The figure displays the percentage of transcripts in each category that
was found to be significantly enriched (DESeq2 adjusted p < 0.05). For the DESeq analyses, all reads were considered. Thus for the intron-containing
mMRNAs we used reads that mapped to both introns and exons. b-d UCSC genome browser screen shots showing the change in distribution of reads
at different labeling times (Y-axis), with annotation below in blue. SS indicates steady-state levels, generated by sequencing total RNA. b 4tU detects
pre-rRNA precursors. Note that the total RNA sample is not shown because it was rRNA depleted. ¢ 4tU-seq detects 3" extended snR13 species. Data
from an rrp6A strain are displayed for qualitative comparison. d Polycistronic precursor from which multiple snoRNAs are processed. Blue boxes
represent the annotated mature snoRNAs. e Real time (RT) quantitative polymerase chain reaction (PCR) validation of the 4tU-seq results shown in (d).
For the RT reaction, a reverse transcriptase primer was used that was complementary to the 3" end of the snR72 snoRNA. This cDNA was then used to
amplify the different amplicons shown below each bar plot (see the illustration in (d) for what each amplicon represents). The data were then normalized
to the results obtained with rRNA-depleted total RNA (SS). 5'ETS 5" external transcribed spacer, 3' ETS 3" external transcribed spacer, 4tU 4-thiouracil,
CUTs cryptic unstable transcripts, /TS internal transcribed spacer, ncRNA non-coding RNA, RP ribosomal protein, snRNA small nuclear RNA, snoRNA
small nucleolar RNA, SUTs stable unannotated transcripts, tRNA transfer RNA

The snR13 snoRNA is processed from a 3’ extended
precursor [22] that accumulates in nuclear RNA surveil-
lance mutants [23, 24]. Our 4tU-seq data suggest that most
3" extended snR13 species are processed within 5 min of
4tU labeling. Another striking example from our 4tU-seq
data was the rapid processing of snoRNAs from the
snR72-snR78 polycistronic transcript [25] (Fig. 2d), which
we confirmed by reverse transcriptase quantitative PCR
(RT-qPCR; Fig. 2e). These results clearly demonstrate the
potential of very short 4tU-labeling experiments for meas-
uring the processing kinetics of short-lived RNA species.

Degradation rates of cryptic transcripts correlates with
transcript length and secondary structure

A comparison of the enrichment of the different classes
of cryptic transcripts for the 1.5 and 5 min labeling
times relative to the total RNA samples indicated that
CUTs, SUTs and XUTs were all readily detected and
decayed more slowly than intron-containing transcripts
and snoRNAs (Fig. 2a, Table 1, Additional file 1: Figure S1).
The heat maps in Fig. 3a, b show hierarchically clustered
normalized read data for 887 CUTs and for 823 SUTs [26]
at 1.5 min, 2.5 min, 5.0 min and steady state. They clearly
show the slow decay of both types of transcripts. The ex-
pression levels of CUTs and SUTs were generally similar
at early labeling times but significantly different at steady
states (p < 0.05; Fig. 3c). Interestingly, the levels of both
CUTs and SUTs rose rapidly and remained approximately

Table 1 Comparison of degradation dynamics between 925
cryptic unstable transcripts (CUTs) and 847 stable unannotated
transcripts (SUTs)

Time gaps CUT decrease  SUT decrease  p-value (t test)
1.5-2.5 min 0.31 0.32 0.79

1.5-5.0 min 0.63 0.68 0.84

1.5 min-steady state 341 2.86 39%x107"°

The first column shows the gap between the two time points considered. The
second column is the median decrease between the two time points for CUTs
[computed as log2(fragments per kilobase per million reads)]. The third
column shows the same quantity for SUTs. The fourth is the t-test p-values of
the differences between CUTs and SUTs decreases.

constant for the first 5 min at a level that was considerably
higher than the steady state (Figs 2a and 3¢, Additional
file 1: Figure S1). This seems incompatible with the
widely adopted first order kinetic assumption [27] and
suggests that processing of these RNA species involves
multiple steps, inducing delays that are comparable
with the sampling times used in this study.

The 4tU-seq data for three example CUTs (Fig. 3d)
were compared with RT-qPCR analysis of the same three
4tU-labeled CUTs (Fig. 3e), and showed good agreement
between the two methods. Thus, despite the fact that
these RNA species are labeled as “unstable,” processing
of many CUTs appears to be relatively slow.

We then sought to quantitatively explain the observed
processing kinetics of CUTs and SUTs from sequence
and structural features. As a measure of decay rate for
each transcript, we considered the log ratio of the aver-
age expression level at the early times (1.5, 2.5 and
5 min) over the steady state expression level (Fig. 4a).
The rationale behind this choice was the following: given
the strong deviation from first order kinetics at early
times, we assumed that early measurements were effect-
ively proportional to RNA production rate, whereas the
steady state expression levels were approximately equal
to the ratio of production rate to decay rate (assuming
that the initial deviation from first order kinetics be-
comes unimportant over long times). We observed that
this decay rate was significantly negatively associated
with transcript length and predicted secondary structure
(Fig. 4b); in other words, long and/or highly structured
transcripts were more stable. This is consistent with the
model that many ncRNAs are subject to early termin-
ation by the Nrd1-dependent pathway and rapid degrad-
ation by the nuclear exosome [1-3, 4, 28] and/or are
degraded in the cytoplasm (e.g., by Xrnl [5]). Because
SUTs are significantly longer than CUTs (Fig. 4c), our
data provide a possible explanation for why SUTs are
generally more stable than CUTs. We note that, in a re-
gime where transcription is sporadic, transcript length
could be expected to be positively associated with
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Fig. 3 Cryptic unstable transcripts (CUTs) and stable unannotated transcripts (SUTs). @ Heat map of fragments per kilobase per million reads
(FPKM) at log2 scale for 887 CUTs at 1.5 min, 2.5 min, 5.0 min and steady state (SS). The hierarchical clustering is based on complete similarity
between the FPKMs of two CUTs at the four time points. b The same heat map for 823 SUTs. ¢ Comparison between log2 FPKM of 887 CUTs and
823 SUTs at 1.5 min, 2.5 min, 5.0 min and steady state. The levels of CUTs and SUTs are similar at initial time points but significantly different at
steady states. d FPKM changes for three example CUTs measured by RNA-seq. e Levels of the same three CUTs relative to steady state, measured
by reverse transcription quantitative polymerase chain reaction (RT-gPCR). 4tU 4-thiouracil

recovery at early time points, because longer transcrip-
tion times would increase the probability of a transcript
being labeled. Our analyses failed to reveal a significant
effect of transcript length on the recovery of relatively
short transcripts such as CUTs and SUTs at all time
points (Additional file 1: Figure S3). Indeed, a bias to-
ward longer transcripts at earlier labeling times would
lead to a negative association of length with stability
(longer transcripts would appear to have higher early ex-
pression and hence higher decay rate), which is the op-
posite of what we observed.

When attempting to fit a first order kinetic model to
the data, the resulting degradation rates were uncorre-
lated to transcript length or structural features (data not
shown), further underlying the inappropriateness of the
first order assumption at these extremely short labeling
times. Furthermore, using predicted secondary structure
and transcript length alone, we were able to train a ma-
chine learning classifier to classify CUTs and SUTs with
reasonable accuracy (Fig. 4d; area under receiver operat-
ing characteristic curve was 0.68 for CUTs and 0.73 for
SUTs, random baseline 0.5).

Very short 4tU labeling enables accurate measurements
of splicing kinetics

In the case of intron-containing transcripts, the extent
of RNA splicing can be determined by several alternative
approaches [7], for example, from sequence reads that
span intron—exon boundaries (splice sites) relative to
reads that cross splice exon junctions [29], or from the
number of intron reads relative to total gene reads [20].
Importantly, the transcription rate for any given gene
should be constant during short periods of growth at
steady state and will affect intron and exon production
similarly, allowing relative splicing speeds to be deter-
mined by comparing pre-mRNA and exon levels at differ-
ent labeling times without the influence of transcription
rate. In vivo, spliceosome assembly occurs largely co-
transcriptionally [7] and, theoretically, splicing catalysis
could occur on a nascent transcript as soon as the 3'ss
exits the polymerase. Additionally, because the 4tU-label
can be incorporated at any position in the transcript at the
time when the label is added, spliced mRNAs can be la-
beled even at the earliest time point. This could explain
the very rapid splicing of some transcripts. Splicing also
occurs in competition with pre-mRNA degradation [30,

31]; however, because degradation removes both the in-
tron and the exon, this would not affect our estimates of
splicing ratios.

In this work, we used a probabilistic model to estimate
splicing ratios, that is, the proportion of spliced mRNA
out of the total RNA for each transcript. This method was
a modification of the MISO model [32] for quantification
of splicing isoforms. Briefly, the method used information
from all mapped reads by introducing a latent categorical
variable for each read: the identity (i.e., whether it came
from mature or precursor mRNA). The method then used
computational statistical tools to compute a posterior
probability of the identity of each read, therefore providing
a quantification of mature and precursor mRNA. It is im-
portant to observe that in some cases (e.g., boundary or
junction reads) the identity of a read is unambiguous, and
indeed many direct methods only use unambiguously
assigned reads; however, it was convincingly shown [32]
that using information from all reads leads to more accur-
ate estimations of isoform abundance. For more details,
and for a comparison of different estimation methods, see
Additional file 1: Data and Methods.

A major benefit of using a probabilistic model for esti-
mating the abundance of precursor and mature mRNA
lies in the possibility of obtaining posterior confidence
intervals (CI) on the splicing ratios, which can then be
used to filter noise in a principled way. In the analysis,
we only retained genes with 95 % CI < 0.3, filtering out
genes for which reliable estimation was not possible (pri-
marily due to low sequence coverage). This filtering im-
proved the correlation between replicates from 0.757 to
0.864 (see Additional file 1: Tables S3, S4 and S7). We
also used a simulation to compare quantitatively the per-
formance of the probabilistic model against the two dir-
ect methods that use the splice junction and intron
boundary reads only, or intron reads and exon reads.
The simulation showed that the probabilistic model
yielded considerably lower variance results than the dir-
ect methods (Additional file 1: Figure S4), and therefore
likely generated better results, especially when analyzing
genes with low read coverage.

In this 4tU-seq analysis, 187 intron-containing tran-
scripts were selected that had a fragments per kilobase
per million reads score (FPKM) of >10, that did not en-
code snoRNAs in the introns, and that only contained a
single intron (to simplify the data analyses). Following
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Fig. 4 Analysis of degradation of cryptic unstable transcripts (CUTs) and stable unannotated transcripts (SUTs). a The log2 scaled ratio of CUTs
fragments per kilobase per million reads (FPKM) normalized to the steady state (SS) levels. These ratios were used to quantify the degradation
rate. A weighted average of the three nascent ratios was used to quantify the degradation rate, that is, the higher the ratio at the nascent points,
the faster the degradation. b Comparison of features between the fastest-degrading third and slowest-degrading third of CUTs/SUTs. Features
include average secondary structure free folding energy for each nucleotide, and transcript length. ¢ SUTs are significantly longer than CUTs.
Comparison of CUT and SUT transcript length distribution using the Kolmogorov-Smirnov (K-5) test. d The binary classification between the
fastest-degrading third of transcripts and the slowest-degrading third of transcripts using AG per nucleotide (nt), transcript length, AG of +15 nt
around the start site and AG of 15 nt around the stop site. The receiver operating characteristic (ROC) curves shows the data for the CUTs, SUTs
or both with 10-folder cross-validation via a naive Bayes classifier. The area under the curve (AUC) is used to represent the prediction performance

posterior CI filtering, data for 82 ribosomal protein (RP)
and 35 non-RP intron-containing genes were retained
for the splicing ratio analysis (Additional file 1: Table
S7). Figure 5 shows the mean splicing ratio of the three
replicates at different time points for the 35 non-RP and
82 RP intron-containing genes, in which transcripts are
ranked by speed of splicing from fastest (top) to slowest
(bottom).

We also estimated the amount of background un-
labeled (pre-)mRNA in our samples to determine to
what extent this could influence our estimated splicing
speeds. For these calculations we used RNA sequencing
data generated from “background” or “0” samples (0
time point in Fig. la), which were derived from RNA
that non-specifically bound to the magnetic beads dur-
ing the isolation procedure (see “Methods” for details).
We considered the intronic and exonic FPKM of the 250
intron-containing protein-coding genes in the back-
ground and 1.5-min samples. The middle column in
Additional file 1: Figure S1 shows that the intronic
FPKM percentages were 7.5 % and 46.1 % in the back-
ground and 1.5-min samples, respectively. Intuitively, the
presence of background RNA will tilt this balance towards
spliced mRNA, because unlabeled RNA is overwhelmingly
exonic in the background samples (Additional file 1:
Figure S1). Using these data, we estimated the back-
ground proportion using the difference between the
4tU-labeled intronic RNA fraction and the actually
measured fraction. Theoretically, the intronic FPKM
percentage in the signal should be lower than 50 %,
with this bound being attained if spliced intronic RNA
decayed at the same rate as mature mRNA (clearly a worst
case scenario). Using this theoretical assumption, we esti-
mated the upper bound on the background mRNA levels
in the 1.5-min samples to be <9.1 % (see details in
“Methods”). We conclude that this low level of mRNA
background may have very slightly affected our kinetic es-
timates of splicing speeds but will not have affected the
rankings (Fig. 5).

To validate some of our 4tU data, 4tU-RT-qPCR was
performed on transcripts of three well-expressed riboso-
mal protein genes, RPS13, RPL28 and RPL39 (Fig. 6a, b).
The levels of the 5’ss boundary amplicons (correspond-
ing to unspliced pre-mRNAs) were normalized to the

values for the corresponding exon 2 amplicon (Fig. 6a).
The resulting values provided a measure of the propor-
tion that corresponded to pre-mRNA. As the labeling
time increases, the amount of exon 2 should remain
more or less constant but the proportion of precursor
should change. After 1.5 min of 4tU labeling, the pro-
portion of pre-mRNA was high and decreased with la-
beling time, gradually approaching the level at steady
state. The time required to reach steady state was tran-
script dependent, being approximately 5 min for RPL39,
which was spliced relatively quickly, and longer for the
others, in agreement with the rank order in Fig. 5b.
These results confirm the enhanced recovery of
unspliced pre-mRNAs by the 4tU-seq approach and its
ability to detect different rates of pre-mRNA splicing for
different transcripts. The results also validate the prob-
abilistic model used.

One drawback of using intron read counts to measure
splicing rates is that it is not always possible to distin-
guish between reads originating from pre-mRNA introns
or intron lariats. This could potentially lead to an under-
estimation of splicing rates for some mRNA transcripts.
However, based on the following results, we do not think
that lariat reads significantly contributed to the splicing
speeds reported here: several attempts were made to
identify lariats in the 4tU-seq data using existing strat-
egies [33] but only a handful of lariats could be detected.
This is not surprising, because sequencing lariats tends
to require use of dbrl mutants that lack lariat debranch-
ing activity and dedicated library preparation [33, 34].
Furthermore, we found a very high correlation between
intronic read counts and counts for reads that overlap 5’
ss—intron boundaries (Additional file 1: Figure S5). There-
fore, we conclude that our use of intron versus exon reads
accurately measures splicing rates.

A/U richness and secondary structure of the intron affects
ribosomal protein splicing kinetics

Our results show that different introns were spliced at
different rates based on area under the curve (AUC) cal-
culations (see “Methods,” and scores in Fig. 5). Various
features of introns could impact their speed of splicing.
These include how close to consensus are the 5'ss, 3'ss
and BP sequences as well as the strength of the
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Fig. 5 The splicing speed and associated features. The mRNA proportions at 1.5 min, 2.5 min, 5.0 min and steady state for 35 non-ribosomal
protein (RP) intron-containing genes (a) and 82 RP intron-containing genes (b). The proportion of MRNA is estimated using the probabilistic
model described in Additional file 1: Data and Methods RNA-seq data, and the area under the curve (AUC) score denotes the splicing speed as
defined in the “Methods” section. Faster splicing transcripts cluster at the top, and slower splicing transcripts at the bottom. Red transcripts were
also validated by reverse-transcription quantitative polymerase chain reaction (Fig. 6). All four colored bars are overlapping

secondary structure of the intron. We looked for corre-
lations between different transcript features and the rela-
tive speed of splicing. Analyzing the fastest-splicing and
slowest-splicing thirds of transcripts, we noticed there
was a marked difference in the behavior of intronic RP
transcripts compared to that of non-RP intronic genes:
for the intronic RP transcripts, a highly significant differ-
ence (Wilcoxon's test p <0.0003) was found only with
regard to the normalized secondary structure scores of
RP introns, with the major contribution coming from
the 5'ss to BP region ( <1e04; see Fig. 7a). In the case of
the non-RP transcripts, those that were spliced faster
generally had less secondary structure at the 3'ss and a
shorter exon 2 (Fig. 7b). All the feature comparisons are
shown in Additional file 1: Figure S6 (non-RP tran-
scripts) and Figure S7 (RP transcripts). The failure to see
a significant effect of 5'ss, 3’ss and BP sequences in RP
transcripts was likely due to the high similarity of these
features.

The effect of intron secondary structure should be evi-
dent for paralogous RP genes that share highly related
or identical exon sequences but have different intron se-
quences. Indeed, we found that some paralogs, such as
RPL27A/B, RPS10A/B and RPL40A/B, that have introns
with similar predicted secondary structure stabilities
(AG values), had similar splicing speeds (Fig. 7c, left
panel), whereas paralogs with introns that have different
predicted AG values, such as RPL31A/B and RPS18A/B,
had different splicing speeds (Fig. 7c, right panel).

Because the predicted secondary structure within RP
introns was significantly correlated with the splicing
speed, we further explored the intron sequences and
found that several short base combinations were signifi-
cantly correlated with splicing speed (Fig. 7d). Generally,
fast splicing introns were enriched for adenosines, while
slower splicing introns had a higher density of uridines.
Surprisingly, the proportion of “A” and “U” in the in-
trons was highly negatively correlated (Pearson’s correl-
ation coefficient < —0.75). Furthermore, we used the
above features (all listed in Additional file 1: Tables S8
and S9) to predict the splicing speed by a random forest
regression model. Figure 7e shows that the splicing
speeds for RP pre-mRNAs could be well predicted by
these features (Pearson’s R =0.578 between observed
and predicted splicing speed).

Overall, the most significant features we have been
able to identify that distinguish intron splicing rates for

RP pre-mRNAs in budding yeast are the predicted sec-
ondary structure in the region between the 5'ss and the
BP, and A or U density. In our data, slower splicing was
associated with greater predicted secondary structure
stability and U-richness in the intron. The effect of sec-
ondary structure was observed to be strongest for the
set of highly expressed RP transcripts whose introns
were mostly longer than average in budding yeast. The
idea that secondary structure may have a role in splicing
is not new [34-37], but previous work has mostly sug-
gested that secondary structure in long introns in fact fa-
vors efficient splicing. Structure between the 5°ss and
the BP has been proposed to be necessary for efficient
splicing when this distance is greater than 200 nucleo-
tides [37]. Work done on RPS17B by the Rosbash la-
boratory experimentally identified two complementary
regions between the 5’ss and the BP that base paired to
form a stem loop, thereby reducing the effective distance
[38]. Mutations that disrupted this stem loop reduced
the efficiency of splicing; compensatory mutations that
restored the loop restored splicing efficiency. Further
work by Rogic et al. [37] suggested that a specific struc-
tural arrangement was not required but that a very
thermodynamically stable structure could slow splicing,
possibly by masking splicing signals. Taken together with
the results of Rogic et al. [37], our work indicates that
efficient splicing of RP pre-mRNA transcripts requires
an optimal amount of secondary structure between the
5'ss and the BP, with either too much or too little being
detrimental. Furthermore, our results suggest that in the
endogenous context, RP transcripts that splice slower
are more often victims of too much structure rather
than too little. A recent paper showed that fast splicing
of reporter constructs correlated with low secondary
structure around the splice sites [39]. For the RP genes
we did not find a significant correlation between splicing
speed and folding energies of splice sites (Additional file 1:
Figure S7); However, this is presumably because the splice
signals for these RP genes are very similar to the consen-
sus sequences. We did, however, find a correlation be-
tween weak folding of the 3'ss sequence and efficient
splicing for the non-RP genes analyzed here (Additional
file 1: Figure S6), consistent with previous work [39].

Conclusions
4tU-seq is a powerful way of examining RNA processing
kinetics and has many other potential applications. Our
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generated by sequencing total RNA

Fig. 6 Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis of splicing status shows differences between transcripts. a
Diagram showing the location of diagnostic amplicons. Exons are denoted by blue boxes and the intron is represented by a black line. Amplicons
are indicated by lines below. Pre-mRNAs were detected using oligonucleotides that amplify the exon-intron boundary at the 5’ splice site. b
Relative pre-mRNA levels of three transcripts, RPL28, RPL39 and RPS13, analyzed by RT-qPCR, normalized relative to steady state (5S) levels. Data
show how the level of each amplicon approaches the level detected at steady state as labeling time increases. Data were normalized to the levels
of exon 2 and steady state to account for different RNA yields obtained at each labeling time. Different transcripts show different rates of splicing.
c-e UCSC genome browser screen shots showing the change in distribution of reads at different labeling times (y-axis) for RPL28, RPL39 and
RPS13, with annotation below in blue. Exons are represented by blue boxes and intron indicated by a blue line. SS indicates steady-state levels,

analysis at very short labeling times reveals unexpected
complexity in RNA processing for several different fam-
ilies of RNAs. For IncRNAs, such as CUTs and SUTs,
our data show that early abundances cannot be ex-
plained by simple first order kinetics, and quantitatively
relates degradation of CUTs and SUTs to transcript
length and predicted secondary structure.

Our analysis shows that to measure splicing kinetics in
S. cerevisiae it is essential to recover the RNA after ex-
tremely short 4tU labeling times; many transcripts ap-
proach steady state by about 2.5 min. By measuring the
speed of splicing of many different newly synthesized
pre-mRNAs we were able to search for factors that
could explain why some splice faster than others in vivo.
For the 35 non-RP intronic genes for which we had ad-
equate sequence coverage, we found a significant correl-
ation between the secondary structure around the 3’ss
and exon 2 length. This suggests that for these tran-
scripts, selection of the 3'ss might be the rate-limiting
step because it requires unwinding of RNA secondary
structures. Differences were found even between in-
tronic RP transcripts that have similar expression levels,
the same gene annotation (Gene Ontology term), and
similar lengths and strength of splice sites. Moreover,
transcripts of certain highly related paralogous genes
displayed differences in splicing speeds. Our results sug-
gest that this difference in splicing kinetics is in part due
to the secondary structure of the introns as well as the
nucleotide composition. Within the RP gene subgroup,
introns with a less favorable predicted secondary struc-
ture (less negative AG) spliced faster than those with
more structure. One simple explanation for the observed
trends is that it is more difficult for spliceosomes to as-
semble on introns with a stronger secondary structure
and so more time is required to overcome this impediment.
Another possibility is that structural re-arrangements re-
quired within the spliceosome to allow catalysis are costlier
when there is more structure to contend with. Whether a
transcript splices quickly or slowly carries over into its
mRNA level at steady state, and it seems probable that
regulating the secondary structure of the intron will in
effect regulate the expression of the gene. Furthermore, in
organisms with multi-intron genes and alternative splicing,
an optimal degree of secondary structure could contribute

to determining which introns get spliced in kinetic
competition. It will be interesting to use 4tU-seq to study
the kinetics of splicing under different metabolic and
environmental conditions and to test the effects of differ-
ent splicing factors on the speed of splicing.

Methods

Yeast strains and plasmids

The ura3 point mutation in W303 (MATa, ade2-1, ura3-1,
his3-11, 15 trp 1-1, leu2-3, 112 can1-100) was corrected to
create W303U. W303U was transformed with plasmid
pAT1 (FUII on the plasmid pRS425).

4tU-seq

Cultures were grown in Synthetic Defined —Ura —Leu
medium to ODgg = 0.8, at which point 4tU was added
to a final concentration of 500 uM. Cultures were main-
tained at 30 °C and were shaken throughout the experi-
ment. Large (600 ml) cultures were used for 4tU-seq
experiments. After the desired labeling time the cells
were snap frozen by dropping the culture into a half vol-
ume of methanol in a large beaker sitting in dry ice to
rapidly halt metabolism [10]. While the methanol slurry
was still liquid, the frozen cells were pelleted by centrifu-
gation at 3000 g for 3 min at 4 °C. RNA was isolated
using a standard hot-phenol extraction. Biotinylation
was performed on 2 mg of RNA as previously described
[20], but only incubated for 15 min at 65 °C to reduce
RNA degradation. The RNA was purified using 2 ml
Zeba columns (ThermoFisher Scientific, Perth, UK), as
per manufacturer's instructions, and ethanol precipi-
tated. Biotinylated RNA was extracted using streptavidin
C1 Dynabeads (ThermoFisher Scientific). We equili-
brated 50 pl of beads in NazPO,TMgCl, (0.2 M NaCl,
0.1 M sodium phosphate pH 6.8, 25 mM MgCl, and
0.4 % Tween) then blocked in NazPO,TMgCl, and 1 pg/
ul glycogen for 20 min. The biotinylated RNA was puri-
fied for 30 min with the Dynabeads at 4 °C in
NazPO,TMgCl,. The beads were washed three times in
NazPO,TMgCl, and twice with TEN1000 (10 mM Tris-
HCI pH 7.5, 1 mM EDTA pHS8 and 1 M NaCl). All bead
block, incubation and wash volumes were 400 pl. The
RNA was eluted twice with 50 pl of 0.7 M beta-
mercaptoethanol for 5 min at room temperature before
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Fig. 7 Features associated with splicing speed and comparison of paralogs. a Comparison of secondary structure scores (AG; y-axis) for the
fastest-splicing and slowest-splicing thirds of 82 ribosomal protein (RP) intron-containing genes (x-axis). The violin plots show the distribution of
the features, and the blue dots represent individual RP genes, with dot size corresponding to the splicing speed. The p-value was obtained using
Wilcoxon's test. b Comparison of exon 2 length and secondary structure at the 3’ splice site (3'ss) (y-axis) for 35 non-ribosomal protein (non-RP)
intron-containing genes to splicing speed (x-axis). The violin plots show the distribution of the features, and the blue dots represent individual
genes, with dot size corresponding to the splicing speed. The p-value was obtained using Wilcoxon's test. € The mRNA proportion changes of
three pairs of paralogs, each pair of which show a similar splicing rate (left panel) and of three pairs of paralogs, each pair of which shows
different splicing rates (right panel). The proportion of mRNA is estimated using the probabilistic model described in Additional file 1: Data and
Methods from 4-thiouracil (4tU) data. The AG per nucleotide values (see “Methods” section) between the 5'ss and branch point are stated in the
inset boxes. d Pearson'’s correlations between splicing speed and sequence patterns show the significantly correlated features (p < 0.05) to splicing
speeds for all 117 intron-containing genes (left panel), 35 non-RP intron-containing genes (middle panel), and 82 RP intron-containing genes (right
panel). The features are the occurrence of the specific base or bases in the intron. Yellow represents positive correlation with splicing speed and
purple represents negative correlation. e Scatterplot of observed and predicted splicing speeds from the associated features. The features are
listed in Additional file 1: Tables S8 and S9, and include secondary structures, splice site scores, intron length and exon length. The predictions are

obtained by random forest regression with automatic feature selection. AUC area under the curve

being ethanol precipitated with 20 pg glycogen at —20 °C
for at least 2 h and re-suspended in 10 pl DEPC-treated
H,0. To generate the 0 min or background RNA sam-
ples, we applied this protocol to cultures to which no
4tU had been added, which essentially provided an over-
view of RNAs that non-specifically bound to the strepta-
vidin magnetic beads during the isolation procedure.

RNA-seq libraries were produced essentially as de-
scribed previously [40]. Briefly, between 100 and 250 ng
of (thiolated) RNA was fragmented in SuperScript Re-
verse Transcriptase buffer (ThermoFisher Scientific) for
5 min at 95 °C. Fragmented RNA was subsequently ran-
domly primed as described [40]. Edinburgh Genomics
(Edinburgh, UK) performed the 100-base pair paired-
end sequencing using the Illumina HiSeq 2500
platform.

Differential analysis of transcript abundance

To determine what classes of transcripts were signifi-
cantly enriched between two time points (1.5 and 5 min)
and in the total RNA (Fig. 2a), we used DESeq2 [19].
Three biological replicates of each time point were used
for these analyses. For each comparison, DESeq2 gener-
ated a list of transcript names (such as CUTs, SUTs and
protein-coding genes) that were significantly over-
represented in each time point. We used a p-value of
0.05 as threshold. We then counted the total number of
transcripts from each class over-represented at each time
point and divided that number by the total number of
transcripts in each class. This showed us what fraction
of each class was significantly enriched in the thiolated
RNA.

Estimation of mRNA background levels in 4tU-seq data

To estimate the mRNA background levels in 4tU-seq
data, we let the measured intronic FPKM percentage be
ap and a; at 0 (“background”) and 1.5 min, respectively.
We let the intronic FPKM percentage be /8 for signal;
this value was unknown but we know from theoretical

considerations that f<0.5. We denoted the background
and the signal fractions of RNA mapped to intron-
containing genes at 1.5 min as m and n respectively.
This gave us ao x m + S x n)/(m + n) = ay, so:

m/n = (B-a1)/(a1-a9)<(0.5-a;)/(a1-ao)

Therefore, the proportion of background reads over
the total was bounded by [(m/n)/(1 + m/n)]. Substituting
the observed values for ag and «;, we obtained the 9.1 %
upper bound as reported in the main text.

RT-qPCR
RT-qPCR was carried out as described previously [10]
using oligonucleotides listed in Additional file 1: Table S5.

Processing of raw sequencing data

Sequencing was performed on a HiSeq 2500 by Edinburgh
Genomics. Raw fastq files were demultiplexed using
pyBarcodeFilter version 2.3.3 from the pyCRAC tool suite,
version 1.2.2.4 [41]. Quality trimming and removal of 3’
adapter sequences (5'- AGATCGGAAGAGCACACG-3")
was performed using Flexbar, version 2.4 [42]. RNA-seq
reads were aligned to the yeast genome by STAR [43].
Counts for annotated genomic features were generated
using pyCRAC [41], in-house python scripts and genomic
feature files (GTF) from ENSEMBL, version R64-1-1.75.
Coordinates for CUTs and SUTs were obtained from
Xu et al. [26]. The python scripts used for this study
are available upon request.

Quantification of splicing ratio and splicing speed

The splicing ratio, that is, the mRNA proportion, was
then calculated from the aligned reads either by direct
methods or using a probabilistic method (see Additional
file 1: Data and Methods); the code for the probabilistic
method is available at https://github.com/huangyh09/
diceseq. To combine the measurements of pre-mRNA
and mRNA abundance at 1.5, 2.5 and 5 min into a single
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measure of splicing speed, we considered the AUC as
follows:

(Rys5 + Ri5)/2+2.5 X (Rs 0+ Ry5)/2

AUC =
3.5 % Rss

(1)

where R; is the splicing ratio, that is, mRNA/(mRNA +
pre-mRNA), at time point i (in minutes), estimated as
the average of the posterior mean for the three repli-
cates. Rgs represents the merged splicing ratio at the
steady state. Therefore, the larger the AUC, the more
efficient the splicing process.

Intron-containing RP gene annotation and features

The lengths and sequences of various features were
obtained from SGD (http://www.yeastgenome.org/). BP
locations were obtained from the Yeast Intron Database
[44]. The scores assigned to the 5'ss, 3'ss and BS were
obtained using the method described by Crooks et al.
[45]. The free-energy of the predicted secondary struc-
ture was calculated using quickfold (http://mfold.rna.
albany.edu/?q=DINAMelt/Quickfold). This value was
then divided by the number of bases in the intron (or
part of the intron) to give the secondary structure per
base (a AG value and therefore negative). The more
negative the AG value, the more structured the intron
is predicted to be.

Data access

Raw (fastq) and processed sequencing data can be down-
loaded from the NCBI Gene Expression Omnibus
repository [GEO: GSE70378]. All raw read count and
feature data can be found in Additional file 1: Tables S6
to S14.

Ethical approval
No ethical approval was required for this study.
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Additional file 1: Tables S1-S14; figures S1-S7; and Supplementary
Methods and References. (ZIP 6028 kb)

Abbreviations

3'ss: three prime splice site in intron; 4tU-seq: 4-thiouracil labeling and
sequencing; 5'ss: five prime splice site in intron; BP: branch point sequence;
Cl: confidence interval; CUT: cryptic unstable transcript; ETS: external
transcribed spacer ; FPKM: fragments per kilobase per million reads ;
[TS: internal transcribed spacer ; INcRNA: long non-coding RNA;
mMRNA: messenger RNA; miRNA: microRNA; ncRNA: non-coding RNA; non-
RP: non-ribosomal protein; RNA-seq: RNA sequencing; RP: ribosomal protein;
SiRNA: small interfering RNA; snRNA: small nuclear RNA; snoRNA: small
nucelolar RNA; SS: steady state; SUT: stable unannotated transcripts;
tRNA: transfer RNA; XUT: Xrn1-dependent unstable transcript.

Competing interests
The authors declare that they have no competing interests.

Page 16 of 17

Authors’ contributions

All authors contributed to planning the experiments and computational
procedures. JR, DB, RH and SG carried out the experiments. YH, GS and SG
performed the bioinformatics and computational analyses of the sequencing
data. All authors contributed to writing the manuscript and approved the
final manuscript.

Acknowledgements

This work was supported by grants from the Wellcome Trust to JR (093853),
JB (087551), and SG (091549), and the Wellcome Trust Centre for Cell Biology
core grant (092076). GS acknowledges support from the European Research
Council under grant MLCS306999. YH is supported by the University of
Edinburgh Principal Career Development scholarship. JB is the Royal Society
Darwin Trust Research Professor. Next-generation sequencing was carried
out by Edinburgh Genomics, The University of Edinburgh, Edinburgh, UK.
Edinburgh Genomics is partly supported through core grants from NERC
(R8/H10/56), MRC (MR/K001744/1) and BBSRC (BB/J004243/1).

Author details

"Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh
EH9 3BF, UK. “School of Informatics, University of Edinburgh, Edinburgh EH8
9AB, UK. *Centre for Synthetic and Systems Biology (SynthSys), University of
Edinburgh, Edinburgh EH9 3BF, UK. *Present Address: Institute of
Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK.

Received: 4 October 2015 Accepted: 30 November 2015
Published online: 17 December 2015

References

1. Jensen TH, Jacquier A, Libri D. Dealing with pervasive transcription. Mol Cell.
2013,52:473-84.

2. Tuck AC, Tollervey D. RNA in pieces. Trends Genet. 2011;27:422-32.

3. Yamashita A, Shichino Y, Yamamoto M. The long non-coding RNA world in
yeasts. Biochim Biophys Acta. 2015. doi:10.1016/j.bbagrm.2015.08.003.

4. Tudek A, Candelli T, Libri D. Non-coding transcription by RNA polymerase Il
in yeast: Hasard or nécessité? Biochimie. 2015;117:28-36.

5. van Dijk EL, Chen CL, d'Aubenton-Carafa Y, Gourvennec S, Kwapisz M,
Roche V, et al. XUTs are a class of Xrn1-sensitive antisense regulatory
non-coding RNA in yeast. Nature. 2011;475:114-7.

6. Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harb
Perspect Biol. 2011;3. doi:10.1101/cshperspect.a003707.

7. Herzel L, Neugebauer KM. Quantification of co-transcriptional splicing from
RNA-seq data. Methods. 2015,85:36-43.

8. Singh J, Padgett RA. Rates of in situ transcription and splicing in large
human genes. Nat Struct Mol Biol. 2009;16:1128-33.

9. Huranova M, Ivani |, Benda A, Poser |, Brody Y, Hof M, et al. The differential
interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells.
J Cell Biol. 2010;191:75-86.

10.  Alexander RD, Barrass D, Dichtl B, Kos M, Obtulowicz T, Robert M-C, et al.
RiboSys, a high-resolution, quantitative approach to measure the in vivo
kinetics of pre-mRNA splicing and 3'-end processing in Saccharomyces
cerevisiae. RNA. 2010;16:2570-80.

11. Gray JM, Harmin DA, Boswell SA, Cloonan N, Mullen TE, Ling JJ, et al.
SnapShot-Seq: a method for extracting genome-wide, in vivo mRNA
dynamics from a single total RNA sample. PLoS One. 2014;9:e89673.

12. Dolken L, Ruzsics Z, Radle B, Friedel CC, Zimmer R, Mages J, et al.
High-resolution gene expression profiling for simultaneous kinetic
parameter analysis of RNA synthesis and decay. RNA. 2008;14:1959-72.

13. Miller C, Schwalb B, Maier K, Schulz D, Dimcke S, Zacher B, et al. Dynamic
transcriptome analysis measures rates of mMRNA synthesis and decay in
yeast. Mol Syst Biol. 2011,7:458.

14. Neymotin B, Athanasiadou R, Gresham D. Determination of in vivo RNA
kinetics using RATE-seq. RNA. 2014;20:1645-52.

15. Schulz D, Schwalb B, Kiesel A, Baejen C, Torkler P, Gagneur J, et al.
Transcriptome surveillance by selective termination of noncoding RNA
synthesis. Cell. 2013;155:1075-87.

16.  Cleary MD, Meiering CD, Jan E, Guymon R, Boothroyd JC. Biosynthetic
labeling of RNA with uracil phosphoribosyltransferase allows cell-specific
microarray analysis of mRNA synthesis and decay. Nat Biotechnol.
2005;23:232-7.


http://www.yeastgenome.org/
http://mfold.rna.albany.edu/?q=DINAMelt/Quickfold
http://mfold.rna.albany.edu/?q=DINAMelt/Quickfold
dx.doi.org/10.1186/s13059-015-0848-1

Barrass et al. Genome Biology (2015) 16:282

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Wagner R, de Montigny J, de Wergifosse P, Souciet JL, Potier S. The ORF
YBLO042 of Saccharomyces cerevisiae encodes a uridine permease. FEMS
Microbiol Lett. 1998;159:69-75.

Blondel M-O, Blondel MO, Morvan J, Dupré S, Urban-Grimal D, Haguenauer-
Tsapis R, et al. Direct sorting of the yeast uracil permease to the endosomal
system is controlled by uracil binding and Rsp5p-dependent ubiquitylation.
Mol Biol Cell. 2003;15:883-95.

Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Windhager L, Bonfert T, Burger K, Ruzsics Z, Krebs S, Kaufmann S, et al.
Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA
processing at nucleotide resolution. Genome Res. 2012;22:2031-42.

Burger K, MUhI B, Kellner M, Rohrmoser M, Gruber-Eber A, Windhager L, et al.
4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response.
RNA Biol. 2013;10:1623-30.

Rasmussen TP, Culbertson MR. The putative nucleic acid helicase Senlp is
required for formation and stability of termini and for maximal rates of
synthesis and levels of accumulation of small nucleolar RNAs in
Saccharomyces cerevisiae. Mol Cell Biol. 1998;18:6885-96.

Steinmetz EJ, Conrad NK, Brow DA, Corden JL. RNA-binding protein Nrd1
directs poly(A)-independent 3'-end formation of RNA polymerase I
transcripts. Nature. 2001;413:327-31.

Kim M, Vasiljeva L, Rando OJ, Zhelkovsky A, Moore C, Buratowski S. Distinct
pathways for snoRNA and mRNA termination. Mol Cell. 2006;24:723-34.

Qu LH, Henras A, Lu YJ, Zhou H, Zhou WX, Zhu YQ, et al. Seven novel
methylation guide small nucleolar RNAs are processed from a common
polycistronic transcript by Rat1p and RNase Il in yeast. Mol Cell Biol.
1999;19:1144-58.

Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, et al.
Bidirectional promoters generate pervasive transcription in yeast. Nature.
2009;457:1033-7.

Eser P, Wachutka L, Maier KC, Demel C, Boroni M, lyer S, et al. Determinants of
RNA metabolism in the Schizosaccharomyces pombe genome. bioRxiv. 2015;
025585. http//biorxiv.org/content/biorxiv/early/2015/08/26/025585 full pdf.
Colin J, Libri D, Porrua O. Cryptic transcription and early termination in the
control of gene expression. Genet Res Int. 2011;2011:653494.

Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, et al.
Deep sequencing of subcellular RNA fractions shows splicing to be
predominantly co-transcriptional in the human genome but inefficient for
INcRNAs. Genome Res. 2012;22:1616-25.

Gudipati RK, Xu Z, Lebreton A, Séraphin B, Steinmetz LM, Jacquier A, et al.
Extensive degradation of RNA precursors by the exosome in wild-type cells.
Mol Cell. 2012;48:409-21.

Bousquet-Antonelli C, Presutti C, Tollervey D. Identification of a regulated
pathway for nuclear pre-mRNA turnover. Cell. 2000;102:765-75.

Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA
sequencing experiments for identifying isoform regulation. Nat Methods.
2010;7:1009-15.

Bitton DA, Rallis C, Jeffares DC, Smith GC, Chen YYC, Codlin S, et al. LaSSO, a
strategy for genome-wide mapping of intronic lariats and branch points
using RNA-seq. Genome Res. 2014;24:1169-79.

Awan AR, Manfredo A, Pleiss JA. Lariat sequencing in a unicellular yeast
identifies regulated alternative splicing of exons that are evolutionarily
conserved with humans. Proc Natl Acad Sci U S A. 2013;110:12762-7.
Meyer M, Plass M, Pérez-Valle J, Eyras E, Vilardell J. Deciphering 3'ss selection
in the yeast genome reveals an RNA thermosensor that mediates
alternative splicing. Mol Cell. 2011;43:1033-9.

Parker R, Patterson B. 9 - Architecture of fungal introns: implications for
spliceosome assembly. In: Dudock MIS, editor. Molecular biology of RNA. San
Diego, CA: Academic Press, Inc; 1987. p. 133-149. [Molecular Biology of RNA.
Rogic S, Montpetit B, Hoos HH, Mackworth AK, Ouellette BF, Hieter P.
Correlation between the secondary structure of pre-mRNA introns and
the efficiency of splicing in Saccharomyces cerevisiae. BMC Genomics.
2008;9:355.

Goguel V, Rosbash M. Splice site choice and splicing efficiency are positively
influenced by pre-mRNA intramolecular base pairing in yeast. Cell.
1993;72:893-901.

Zafrir Z, Tuller T. Nucleotide sequence composition adjacent to intronic
splice sites improves splicing efficiency via its effect on pre-mRNA local
folding in fungi. RNA. 2015;21:1704-18.

40.

42.

43.

44,

45.

Page 17 of 17

Hector RD, Burlacu E, Aitken S, Le Bihan T, Tuijtel M, Zaplatina A, et al.
Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly
dynamics at nucleotide resolution. Nucleic Acids Res. 2014;42:12138-54.
Webb S, Hector RD, Kudla G, Granneman S. PAR-CLIP data indicate that
Nrd1-Nab3-dependent transcription termination regulates expression of
hundreds of protein coding genes in yeast. Genome Biol. 2014;15:R8.
Dodt M, Roehr JT, Ahmed R, Dieterich C. FLEXBAR-flexible barcode and
adapter processing for next-generation sequencing platforms. Biology
(Basel). 2012;1:895-905.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.
Spingola M, Grate L, Haussler D, Ares M. Genome-wide bioinformatic
and molecular analysis of introns in Saccharomyces cerevisiae. RNA.
1999,5:221-34.

Crooks GE, Hon G, Chandonia J-M, Brenner SE. WeblLogo: a sequence logo
generator. Genome Res. 2004;14:1188-90.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central



http://biorxiv.org/content/biorxiv/early/2015/08/26/025585.full.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Thiolated RNA can be efficiently recovered after very brief 4tU labeling
	4tU-seq proportionally enriches low stability species of RNA
	Degradation rates of cryptic transcripts correlates with transcript length and secondary structure
	Very short 4tU labeling enables accurate measurements of splicing kinetics
	A/U richness and secondary structure of the intron affects ribosomal protein splicing kinetics

	Conclusions
	Methods
	Yeast strains and plasmids
	4tU-seq
	Differential analysis of transcript abundance
	Estimation of mRNA background levels in 4tU-seq data
	RT-qPCR
	Processing of raw sequencing data
	Quantification of splicing ratio and splicing speed
	Intron-containing RP gene annotation and features
	Data access

	Ethical approval
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



