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Resources for the design of CRISPR gene
editing experiments
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Abstract

CRISPR-based approaches have quickly become a
favored method to perturb genes to uncover their
functions. Here, we review the key considerations in
the design of genome editing experiments, and
survey the tools and resources currently available to
assist users of this technology.
Genetic perturbations with CRISPR technology
The ability to edit genomes has been greatly enhanced
by the adaptation of the bacterial type II CRISPR-Cas9
system into mammalian and other cell types [1–8]. This
powerful technology has rapidly become a favored ap-
proach to perturb genes to probe their function. With
the rapid evolution of technology and applications based
on clustered regularly interspaced short palindromic re-
peats (CRISPRs), it is challenging for aspiring users of
CRISPR technology to keep up with all the latest devel-
opments in the field and with the tools and resources
available to help design and implement CRISPR-based
experiments. For common applications of CRISPR-based
technology in mammalian cells, we outline practical
considerations in designing CRISPR-based experiments,
and tools and resources available to assist in the design
and execution of such experiments.
Major applications of CRISPR technologies include

functional knockout (KO) of a small number of individual
genes [3, 9], large-scale KO screens [10, 11], gene editing
[knock-in (KI)] [2], transcriptional activation or inhibition
(small scale or screening scale) [12, 13], and in vivo mouse
models [14, 15]. Here, we focus mainly on reviewing strat-
egies for editing coding genes to uncover their function.
Many experimental considerations are shared across
different applications, but some factors differ in their
relevance or relative importance. Common considerations
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include delivery of CRISPR-associated protein 9 (Cas9)
and guide RNAs (gRNAs) to the target cells, maximizing
on-target activity and specificity, and evaluation of editing
results (for efficacy, specificity). We briefly discuss the
basics of CRISPR technology, then outline basic experi-
mental design considerations and associated tools and
resources, and finally highlight issues relevant for specific
CRISPR applications (summarized in Box 1).
A general description of type II CRISPR-Cas9
systems
As noted, CRISPR-based methods enable multiple distinct
types of genetic perturbations: KO of gene function, spe-
cific edits to the genome (KI), and activation or inhibition
of gene expression [16]. For all of these applications, two
molecules must be introduced into each target cell — a
Cas9 protein and a single guide RNA (sgRNA). These two
molecules form a complex with genomic DNA (gDNA),
specifically targeting DNA sites complementary to an ap-
proximately 20-base sequence within the sgRNA and
neighboring a protospacer adjacent motif (PAM), the
identity of which is dictated by the particular Cas9 protein
employed (Fig. 1). For the most commonly used Cas9 to
date from Streptococcus pyogenes, the optimal PAM se-
quence is NGG (where ‘N’ is any nucleobase). The wild-
type Cas9 (wtCas9) has two endonuclease domains that
produce double-stranded breaks (DSBs) in the targeted
gDNA sites. Alternatively, an endonuclease-dead Cas9
(dCas9) can be used to ferry functional domains to the
sequence-specified sites in the genome — for example,
for transcriptional activation (CRISPRa) or inhibition
(CRISPRi) at gene promoters.
For applications that modify the gDNA — for ex-

ample, KO and KI — the DSBs produced by wtCas9 are
subsequently repaired through endogenous DNA repair
mechanisms, either non-homologous end-joining
(NHEJ) or homology-directed repair (HDR) (Fig. 2).
NHEJ is prone to introduce sequence insertions or
deletions (indels), and can therefore produce frame-
shifts in open reading frames and gene loss of function.
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Box 1. Summary of major CRISPR experimental design factors

The following considerations and guidance apply to many types of CRISPR-based experiments:

� The delivery method for Cas9 and sgRNAs can be transfection or transduction. Viral transduction is required for pooled screens. More

consistent activity can be provided by selection of Cas9-expressing, CRISPR-active cells. CRISPR activity can be variable across cell types

and should be experimentally confirmed case by case.

� One should select sgRNAs to maximize the likelihood of high activity and specificity. The current state of knowledge provides useful

guidance for selecting target sites and sgRNAs, but predictions of efficacy and especially of specificity are currently far from perfect.

Table 1 describes tools now available to assist in this process. New tools and strategies are arising frequently as the understanding of

CRISPR technology improves.

� Multiple sgRNAs per target gene (typically ranging from three to eight) should be employed wherever possible, first, to provide more

opportunities to achieve the desired on-target modification and, second, to evaluate concordance of the phenotypic effects of multiple

independent reagents to prioritize results most likely to be on-target — that is, causally linked to the intended genetic perturbation.

� Validation of genetic models and phenotypes is essential. Confirmation of on-target efficacy is important for selecting good cell

clones to use for subsequent experiments and to establish the specific gene edits produced. Experimental assessment of off-target

effects of sgRNAs can also inform clone selection.
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As a variety of indels are produced at each CRISPR tar-
get site in coding genes — in-frame or out-of-frame
and varying in size — the resulting alleles are actually a
mixture of complete functional KOs, partial loss of
function, wild-type alleles, and even potentially altered
(neomorphic) function. As currently implemented, the
fraction of modified KO alleles typically ranges from
30–60 %, so that the cell population generally exhibits
loss-of-function phenotypes. Various factors can con-
tribute to the residual non-KO alleles, including (i) fail-
ure of Cas9 activity in individual cells — owing to a low
level of Cas9 or other reasons, (ii) poor accessibility or
susceptibility of the gene or target site, (iii) the NHEJ
errors incurred at the targeted site frequently produ-
cing still-active alleles, and (iv) targeting multiple alleles
of the same target gene sometimes being inefficient (for
Fig. 1 Components of the CRISPR-Cas9 system. Streptococcus pyogenes C
(sgRNA) comprising a spacer that hybridizes with the genomic target site
The protospacer adjacent motif (PAM) is required for sequence specificity
example, for >2 N cell lines and duplicated genomes
such as zebrafish). The relative importance of the factors
governing the ‘penetrance’ of KO across a cell population
in different genes, target sites, cell lines, etcetera is not yet
fully understood. Ideally, methods to improve, across the
board, the fraction of cells or alleles converted will
emerge, but, for the present, significant heterogeneity in
the initial edits is unavoidable. Thus, obtaining a uni-
formly edited cell population currently requires picking
individual cell clones for expansion. While conversion to
the desired genotype is not perfectly efficient, CRISPR is
nonetheless the most straightforward method to produce
KOs for most applications.
To utilize HDR to edit the genome, a DNA repair tem-

plate with the desired sequence modification is intro-
duced. The HDR process that incorporates the template at
as9 (SpCas9) forms a complex with a chimeric single guide RNA
, and a scaffold RNA termed tracrRNA required for complex formation.
of SpCas9-mediated endonuclease activity against genomic DNA



a b

c d

Fig. 2 Genetic perturbations enabled by engineered CRISPR/Cas9 systems. a Knockout approaches generate loss-of-function (LOF) alleles by
means of insertion/deletion (indel) mutations incurred by erroneous repair of DNA double-strand breaks by nonhomologous end joining (NHEJ). b
Knock-in approaches aim to introduce defined mutations [e.g., an insertion or single-nucleotide polymorphism (SNP)] encoded by repair templates that
exploit endogenous homology-directed repair (HDR) mechanisms. c Transcriptional inhibition with CRISPR interference (CRISPRi) employs
endonuclease-dead Cas9 (dCas9), or transcriptional repressors fused to dCas9, to suppress gene transcription. d Overexpression with CRISPR
activation (CRISPRa) employs transcriptional activators fused to dCas9 to activate gene transcription. In addition, single guide RNAs (sgRNAs)
have been engineered that contain aptamers to recruit additional transcriptional activator complexes
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DSBs is of relatively low efficiency, producing typically a
single-digit or low-double-digit percentage of the desired
edit in treated cells. NHEJ is more efficient than HDR,
producing undesired indels in the cell population, and it
will be desirable to find ways to enhance HDR versus
NHEJ for KI applications. In this context, chemical in-
hibition of NHEJ has been demonstrated to improve
the efficiencies of HDR-mediated genome editing [17, 18].
Even so, HDR remains a low-efficiency process, and, to
obtain the desired genome modifications, one must isolate
the low percentage (typically single digit) of single-cell
clones with the desired sequence for expansion. Import-
antly, HDR only occurs during S and G2 phase [19],
whereas NHEJ can occur at any point of the cell cycle
[20]. Thus, KI approaches requiring HDR are less suited
for terminally differentiated cells compared with cycling
cells [21]. Conversely, KO indels created by NHEJ can be
reverted to the wild-type sequence by HDR in rapidly cyc-
ling heterozygous cells, potentially slowing the accumula-
tion of KO cells in fast-cycling cell populations.
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For methods that use the CRISPR-Cas9 system to ac-
tivate or inhibit gene expression, an endonuclease-dead
dCas9 is used to recruit a transcriptional activating or
inactivating activity to the promoter regions of genes
[12, 13, 22–28]. In general, the dCas9-sgRNA system
could be used as a sequence-specific binding complex
to deliver, in principle, any ‘warhead’ (a functional do-
main, reporter, etc.) to sequence-specified target sites.

Practical considerations and tools for the
experimentalist
To obtain the best results from CRISPR-based experi-
ments, some basic factors must be considered in the
experimental design. The overall goal of CRISPR exper-
iments is to obtain, in your preferred biological model
system, high rates of the desired genome perturbation,
low rates of off-target (OT) or nonspecific effects, and
a good readout of the outcome. While CRISPR has
proven quite powerful, the editing efficiency and speci-
ficity are not perfect, and delivery of the CRISPR
system into the biological model system of interest is
challenging in some systems. Therefore, it is necessary
to optimize and validate experimental designs to achieve
the best results.

Delivery of Cas9 and sgRNAs and Cas9 activity
The gene encoding S. pyogenes Cas9 (SpCas9) can be
introduced by transfection or viral transduction with a
Cas9 expression construct or by direct delivery of Cas9
protein [29–34]. Furthermore, a germ-line Cas9 mouse
has been generated, providing a source of animals and
primary cells in which Cas9 expression is already estab-
lished [35, 36]. Delivery of Cas9 by transfection can be
quite efficient in many cell types; frequently employed
expression vectors include pX330-U6-Chimeric_BB-CBh-
hSpCas9 and lentiCRISPRv2 [3, 37, 38] (available from
AddGene). In hard-to-transfect cells, including many pri-
mary cell types, transduction with a viral vector provides
an alternative, using, for example, lentiCRISPRv2. Further-
more, for pooled screening applications, each cell must
receive only a single or small number of sgRNAs by treat-
ment with a mixed sgRNA pool, and hence transduction
is the only standard delivery option. Delivery of SpCas9,
alone or together with an sgRNA, can be achieved with
adeno-associated virus (AAV), retroviral or lentiviral vec-
tors and is challenging owing to the generally poor viral
packaging and titers of the 4-kb Cas9 gene. Whether
employing transfection or transduction, Cas9 expression
varies from cell to cell, and the levels also vary among cell
lines. Transduced cells are typically obtained by selecting
for a marker present on the Cas9 expression cassette. It is
important to verify that the promoter construct employed
is effective in the model of interest, and it can be helpful
to grow clonal populations with empirically verified high
Cas9 expression for subsequent experiments. By contrast,
delivery of sgRNA oligonucleotides is relatively straight-
forward and can be achieved by transfection of plasmids
or transduction with viral genomes driving sgRNA expres-
sion from the U6 promoter [2, 3]. Alternatively, sgRNAs
can be delivered by transfection of in vitro transcribed
sgRNA or chemically modified synthetic sgRNA [30].
It appears that most cell lines are amenable to CRISPR-

based editing, but some cell types appear to exhibit low or
no Cas9 activity even when Cas9 is expressed at high
levels. In general, the factors that govern how uniformly
the alleles in all the cells of a population receive the de-
sired edit have yet to be fully teased apart and could in-
clude, for example, not only the Cas9 and sgRNA levels,
but also Cas9 activity determinants such as localization,
the kinetics of DSB formation, and the kinetics and fidelity
of repair processes, all of which can vary across cells
types. For the moment, the suitability of any particular
model system of choice for CRISPR should be con-
firmed empirically.
A straightforward assay to assess CRISPR activity in a

cell population involves transducing the cells with a cas-
sette expressing both green fluorescent protein (GFP) and
a validated high-efficacy GFP-targeting sgRNA [37] (avail-
able at AddGene). The cells are then analyzed by flow cy-
tometry to determine the fraction of GFP-negative cells
[37]. The parental line with no Cas9 should be uniformly
GFP-positive, whereas a Cas9 line in which the cells are
all active for CRISPR should be mostly GFP-negative. It
should be noted that KO of a single GFP integrant can be
considerably more efficient than targeting both alleles of
an endogenous gene, so that this assay might represent a
near-best-case scenario for KO rate. Additionally, the time
required to achieve gene edits appears to depend on many
factors, such as target gene, cell type, KO versus KI, and
the levels of Cas9 and sgRNA. Generally, when feasible, it
is necessary to wait a week or more following the intro-
duction of Cas9 and sgRNA in order to accumulate edits
in the targeted cells.

Target-site selection, sgRNA design
For CRISPR-based experiments, one must select a target
site to achieve the desired modification. The Cas9 pro-
tein requires a PAM adjacent to the sgRNA homology
region to achieve efficient Cas9 binding and DSBs. For
gene KOs, there are typically many possible PAM sites
from which to choose. Different sites can yield widely
varying rates of gene KO, raising the question of how to
predict activity in advance. Similarly, it is obviously desir-
able to predict which sgRNAs will be most specific to the
intended target. Research is ongoing to determine criteria
that predict sites favoring high activity and specificity.
Here, we describe current criteria and tools for selecting
sgRNAs.
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Design criteria for on-target efficacy
For the most-used SpCas9, the optimal PAM site is NGG
or, to a much lesser extent, NAG. The NGG PAM se-
quence occurs on approximately every 8 bp in the human
genome [3]. The relatively common occurrence of NGG
sites in most genomes leaves many available target sites
for SpCas9. Recently, variants of SpCas9 with altered
PAM specificities have been developed [39], and some de-
sign tools offer features to accommodate user-defined
PAMs (Tables 1 and 2). One such SpCas9 variant (VRER)
recognizes NGCG PAM sites and was reported to exhibit
greater on-target specificity than wild-type SpCas9 [39].
Additional flexibility with respect to PAM constraints can
be achieved with Cas9 genes derived from other bacter-
ial species. For example, Staphylococcus aureus Cas9
recognizes NNGRR PAM sites and was demonstrated
by sequencing approaches (BLESS) to exhibit greater
on-target specificity compared with SpCas9, while being
1 kb smaller [40]. Although such new versions of Cas9 are
emerging, most CRISPR design tools are modeled for
SpCas9 and utilize NGG or NAG PAM consensus sites
for sgRNA design by default.
While the NGG PAM is required for high cutting effi-

ciency, it does not assure it. Different sgRNAs targeting
NGG PAM sites produce lesions with quite different
efficiencies [37, 41]. Clearly, sgRNA sequence features
independent of PAM proximity are important for target-
ing efficiency. Insight into these other factors has been
gleaned from genome-wide pooled CRISPR screens and
from screens specifically designed to assess sgRNA effi-
cacy by targeting a few easy-to-assay genes at all possible
sites. One obvious variable in picking among PAM sites
to generate indels and KO alleles is the position of the
target site within the gene. The best results are expected
for target sites in the 5′ end of coding regions in order
to produce early frame shifts and stop codons. In practice,
while some genes have displayed reduced KO rates when
targeted at sites very near the 3′ end of the coding DNA
sequence (CDS), in many cases PAM sites throughout the
CDS showed similar distributions of KO efficacy [11, 37].
It is easy to see how this could vary dramatically from
gene to gene. Targeting functional domains of proteins
was shown to improve KO rates for one class of proteins,
but generalizing this strategy would impractically require a
priori structure–function knowledge for every gene of
interest [42]. One trivial failure mode for KO is the target-
ing of an exon that is skipped in the cells being studied
[37]. In the context of CRISPRa, optimal transcriptional
upregulation occurs when the Cas9–transcriptional activa-
tor is targeted to the −200 bp region upstream of the
transcriptional start site (TSS) [13, 22], whereas efficient
transcriptional suppression by CRISPRi is achieved by tar-
geting the Cas9–transcriptional repressor to the +100 bp
region downstream of the TSS [22]. Some new CRISPR
design tools now accommodate considerations for tran-
scriptional activation and inhibition [43].
Another strong predictor of sgRNA activity is the se-

quence composition of the approximately 20-bp target-
complementary portion of the sgRNA. First, sgRNAs con-
taining intermediate GC content outperformed their
counterparts with high or low GC content, in the context
of phenotypic scoring. This observation suggests that inor-
dinately high or low affinities of sgRNA–target-DNA du-
plexes negatively impact Cas9 cleavage efficiency [11, 37].
In addition to GC content, screening results indicated that
a purine in the most PAM-proximal position can enhance
Cas9 cutting efficacy [11]. To systematically define the
rules of Cas9 on-target efficacy with respect to loss of
function, Doench and colleagues [37] screened over 6000
sgRNAs tiling six murine genes and three human genes
encoding cell-surface receptors. After fluorescence-
activated cell sorting (FACS) of cells that had lost expres-
sion of target genes, the most effective sgRNAs were
identified and examined to determine which sgRNA
sequence-composition features were correlated best with
efficacy [37]. In many positions of the sgRNA target se-
quence, certain nucleotides were significantly favored or
disfavored among the most active sgRNAs, including the
variable nucleotide of the NGG PAM. By quantitatively
modeling these preferences, it was possible to predict
sgRNA activity — that is, a sequence-based activity pre-
diction model created using some of the activity data (the
training dataset) successfully predicted activity of the
held-out data (a test dataset). These predictions held up
across different target genes, across the many sites avail-
able within each gene target, and across species (mouse or
human), indicating that the observed correlations repre-
sent generalizable activity-predictive features. It was fur-
ther validated that the sgRNA efficacy model showed
concordance with phenotypic scores in the context of an
independent genome-wide pooled screen, showing that
this strategy for improving sgRNA performance translates
into improved screening results [37].

Tools to design for on-target efficacy
How can a researcher factor current knowledge about on-
target activity into CRISPR target-site selection? There are
various tools now available to assist with sgRNA selection
based on on-target activity considerations (Table 1). All
sgRNA design tools first apply the most basic criterion for
high on-target activity by identifying all PAM sites for the
specified Cas9. Tools have various degrees of flexibility
with respect to the genome and PAM site options; some
installable software packages, such as Cas-OT [44] and
sgRNAcas9 [45], flexibly permit users to input any gen-
ome of interest, but this can be an unwieldy process
involving large genome sequence files and formatting to
prepare input files. The user might further wish to specify



Table 1 Tools for the design of guide RNAs
Tool Website Reference Inputa Outputb Throughputc Use cases Genomes sgRNA sequence

constraints
Validation Pros Cons Software

sgRNA
Designer

http://
www.broadinstitute.org/
rnai/public/analysis-
tools/sgrna-design

[37] Ensembl
transcript
IDs or
nucleotide
sequences

Activity-ranked
sgRNA, exon,
percentage protein
sequence C-
terminal of target
site

Medium/high Find target
sequences for up
to ten transcripts
(small-batch mode);
good for generating
a lot of candidate
guides quickly

Human,
mouse

N/A Meta-
analysis of
genome-
wide
CRISPR
screens

Ease of use,
on-target efficacy
based on
experiment data
and validation

No OT
prediction

Web/local

CRISPR
MultiTargeter

http://
www.multicrispr.net/

[50] Gene/
transcript
ID or
sequence

Activity-ranked
sgRNA based on
sgRNA Designer
(see above).
Reports percentage
GC and Tm

Low Find all target
sequences for a
single sequence;
find all common
target sequences
for all transcripts
for a given gene;
find unique/non-
unique target
sequences
providing
multiple
sequences or
similar gene
types

12 common
genomes

5′ G or GG.
Target length.
PAM NGG or
user specified.
Paired sgRNA

Ease of use. Many
options, including
any PAM. Has
multiple modes,
separated out, that
could be useful

No OT
prediction.
Multiple
modes
can be
complicated

Web

Cas9 Design http://
cas9.cbi.pku.edu.cn

[102] Input
sequence
or FASTA
file

Target sequence
and exact matches
in reference
genome. Percentage
AT, predicted RNA
folding structure for
sgRNA

Low Find target
sequences for a
single sequence

Ten common
genomes

Target length.
User-specified
scaffold RNA
for structural
predictions

Can be used to
identify potentially
problematic hairpin
structures in sgRNAs

No on-target
efficacy
prediction.
No OT
prediction

Web

SSFinder https://
code.google.com/p/
ssfinder/

[46] FASTA
file

All potential
NGG-PAM guides

High Find target
sequences for any
number of FASTA
sequences

N/A None Very simple input/
output
requirements. Works
quickly on a small
number of
sequences. High
throughput possible

No options.
No on-target
or off-target
information

Python
script

Cas
OFFinder

http://
www.rgenome.net/cas-
offinder/

[103] sgRNA Lists OT sites
with number and
position of MM

Medium/high Find comprehensive
off-target
information for
one or more guide
sequences; must
run as script

Approximately
20 common
genomes

Alternative
PAMs, tolerance
for MMs

Ease of use.
Analyzes multiple
sgRNAs in batch. OT
sites with up to
nine MMs and two
bulges

Does not
indicate
whether OTs
are in CDS.
Does not
account for
identity of
MMs

Web/local

aThe input data are gene sequence or sgRNA sequence. bThe output is sgRNA sequence or off-target sites. c‘Low’: input format and run times support one-gene-at-a-time or one-guide-at-a-time queries. ‘Medium’: input
format and run times support small batches of genes or sgRNAs, tens to hundreds of queries. ‘High’: input format and run times support genome-scale queries
Abbreviations: CDS coding sequence,CRISPR clustered regularly interspaced short palindromic repeats, MM mismatch, N/A not applicable, OT off-target, PAM protospacer adjacent motif, sgRNA single guide RNA, Tm
melting temperature
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Table 2 All-in-one packages for the design of guide RNAs and prediction of off-target effects

Tool Website Reference Input Output Throughputa Use cases

CCTop http://crispr.cos.uni-heidelberg.de/ [68] Sequences 23 to 500 bp
(similar to crispr.mit input);
also has single or batch
mode

Scores OTs and ranks sgRNA by
OTs. OT sites; position with respect
to CDS. Number and position of MMs

Low Find target sequences for a
sequence or sequences (has
batch mode); good for
generating a lot of candidates
with comprehensive
on/off-target information

CHOPCHOP https://chopchop.rc.fas.harvard.edu/ [49] Target transcript ID or sequence
(raw or chromosomal position);
also allows gene input

Scores OT and ranks sgRNA by
off-targets, GC content, genomic map,
position with respect to CDS, primers
for validation, RE sites. Off-target sites
0–2 MM

Low/medium Find target sequences for a
single sequence/gene/transcript;
good for generating a lot of
guides for a single target quickly

Crispr.mit http://crispr.mit.edu/ [65] Sequence or FASTA files; single
or batch mode

Scores OT and ranks sgRNA by OTs,
paired sgRNAs for nickase, OT sites

Low/medium Find target sequences for a
sequence or sequences (has
batch mode); good for
generating a lot of candidates
with comprehensive
on/off-target information

WU-CRISPR http://crispr.wustl.edu [104] Gene symbol or 24–30,000 bp
sequence

List of sgRNA ranked by efficacy
score

Low Find target seqs based on
efficacy score and absence
of OT perfect seed match

GT-Scan http://gt-scan.braembl.org.au/gt-scan/ [69] Sequence or FASTA file.
Genomic coordinates

sgRNA, genomic sites with zero to
three mismatches. Links to genome
browser

Low Find target sequences and
OTs for a single sequence

CROP-IT http://www.adlilab.org/CROP-IT/
homepage.html

[58] sgRNA Lists OT sites. Scoring for OT sites.
Number, position, identity of MMs.
Genomic position, CDS gene name
if relevant. Email results

Low Find off-target information
for a guide sequence

Cas OT http://eendb.zfgenetics.org/casot/ [44] FASTA files sgRNA and OT sites Low/medium Target sequences and OTs

CRISPRseek http://www.bioconductor.org/packages/
release/bioc/html/CRISPRseek.html

[48] Software package Candidate sgRNAs with a variety of
scores, dependent on parameters

High Find target sequences and OT
sites for multiple sequences;
performs both nickase and
paired guide design

ZiFiT http://zifit.partners.org/ZiFiT/ [105, 106] Input sequence sgRNA, OTs with zero to three MMs.
Position and identity of MM. Genomic
position of OT

Low Find target sequences and OTs
for a single sequence

E-CRISP http://www.e-crisp.org/E-CRISP/ [47] Gene symbol/sequence Many options for output in advanced
mode; table provides sequence,
three-part score (specificity, annotation
of gene target regions hit, and
on-target efficacy), context, number
of hits

Low Find target sequences for a
single gene or sequence;
performs guide evaluation as
well (not tested); also cas9
nickase design for paired
sgRNAs

CRISPR Direct http://crispr.dbcls.jp/ [107] Transcript/genome location/
nucleotide sequence

Table with target position, sequence
plus context, some sequence info
(GC content, Tm, poly-T), target
counts plus downloads

Low Find target sequences for a
single transcript/sequence
with some limited off-target
info
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Table 2 All-in-one packages for the design of guide RNAs and prediction of off-target effects

Tool Website Reference Input Output Throughputa Use cases

COD http://cas9.wicp.net N/A 23–400 bp input
sequence

GenBank file and CSV file. OT scoring.
Position, identity, number of MMs.
Genomic position of OT site with
link to graphic

Low Find target sequences for an
input sequence. Predicts and
ranks OT sites

sgRNAcas9 http://www.biootools.com/
col.jsp?id=103

[45] Software package Multiple files that include all possible
designs for a given sequence plus
information to filter based on
cloning or on-target efficacy, OT
information

High Find target sequences for a
sequence or sequences (has
batch mode); good for
generating a lot of candidates,
with some limited on-target
or OT information

DNA 2.0 gRNA
Design Tool

https://www.dna20.com/
eCommerce/cas9/input

N/A Gene, locus, sequence Display of targets; table: hit
position, target sequence in
context, score, overlapping gene
info, number of splice variant targets

Low Find target sequences for a
single gene or sequence;
performs cas9 and nickase
design

Cas-Designer http://www.rgenome.net/
cas-designer/

N/A Nucleotide sequence
or FASTA

Target sequence and OT. Zero to
two MMs and one bulge.
Percentage GC. Link to Ensembl for
OT sites

Low Find target sequences.
Uses Cas-OFFinder and
Microhomology Predictor
for OT searching

sgRNA Scorer 1.0 https://crispr.med.harvard.edu/
sgRNAScorer/Input

[62] Nucleotide sequence.
FASTA files up to
10 kb sequences

Target sequence with activity score.
Number of OT sites with genomic
coordinates

Low Find target sequences OT
searching using CasFinder.
On-target activity scoring
using support vector machine
(SVM) model

Protospacer http://www.protospacer.com/ [51] Many inputs. Gene ID,
genomic coordinates,
etc.

Target sequence with activity score.
Percentage GC, OT sites, positions,
identities

Medium/high Find target sequences, OT
sites, prioritize sgRNAs

(Continued)
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Table 2 All-in-one packages for the design of guide RNAs and prediction of off-target effects

Tool Genomes sgRNA sequence constraintsb Validation Pros Cons Software

Tool Genomes sgRNA sequence constraintsb Validation Pros Cons Software

CCTop Approximately 15 common
organisms; only a single human
build available

NGG or NRG PAMs for on- and
off-target. 5′ G or GGa. MM
tolerance, total and in core.
Annotated OT sites with RefSeq
IDs, if applicable

On- and off-target efficacy
in vitro. For one guide

Ease of use, many options.
Comprehensive and
easy-to-understand output

No on-target efficacy
prediction. Does not
account for identity of
MMs. Regular mode is
relatively fast. Advanced
mode is slow

Web

CHOPCHOP Approximately 20 common
organisms, plus two most
recent builds for human

5′ GN, GG no TTTT, CDS, junctions,
alternative PAMs; specify restrictions
for position of mismatch, e.g.,
nine-nucleotide 5′ to PAM (seed)

Ease of use, flexible options,
downloadable results

No on-target efficacy
prediction. OT limited to
zero to two mismatches.
Does not account for
identity of mismatches

Web

Crispr.mit Approximately 15 common
organisms; only a single
human build available

Paired sgRNAs Ease of use. Scores OTs for
up to four MMs and provides
positions. Specifies OTs in
genes versus intergenic
sequences

Handles short sequences
23–500 bp, although
250 bp is actual upper
limit. Very slow. No
efficacy metric. Does
not account for identity
of mismatches. Occasionally
misses OT sites with
no MMs

Web

WU-CRISPR Mouse and human None Ease of use. On-target efficacy
scores based on re-analysis
from [37]

OT exclusion: perfect
13-nt seed match or
>85 % similarity of 20-nt
sequence to exome.
Doesn’t account for
identity of mismatches

web

GT-Scan Approximately 20 common
organisms; only a single
human build available

Many user-defined OT rules and
filters. Alternative PAMs

Ease of use. Many filters to
define OT rules

Has trouble finding exact
matches in genome.
Does not account for
identity of mismatches

Web

CROP-IT Mouse and human Cas9 binding sites versus predicted
cleavage sites. NGG or NNG PAMs

Ease of use. Provides gene
name if OT is in exon

Analyzes one sgRNA at
a time. Does not account
for identity of mismatches.
Email response slow

Web

Cas OT Provided by user Several OT rules and restrictions Many options. Alternative
PAMs, paired sgRNAs, 5′ G

Programming knowledge
necessary or helpful.
Does not account for
identity of mismatches

Perl script

CRISPRseek Several common genomes Many options. Very comprehensive
in terms of design and scoring

Many options Very laborious to both
install and operate,
despite having extensive
documentation. Does
not account for identity
of mismatches

Bioconductor
package in R

Table 2 All-in-one packages for the design of guide RNAs and prediction of off-target effects (Continued)
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Table 2 All-in-one packages for the design of guide RNAs and prediction of off-target effects

Tool Genomes sgRNA sequence constraintsb Validation Pros Cons Software

ZiFiT Nine common genomes 5' G or GG Ease of use No on-target efficacy
prediction. Does not
account for identity
of mismatches

Web

E-CRISP >30 genomes Basic mode: user defines MM
tolerance, PAM sequence.
Advanced mode: many options
for OT specs

Lots of options, fast results,
summary of all designs found

So many options —
could be confusing.
Does not account for
identity of mismatches

Web

CRISPR Direct 20 common genomes PAM type Very fast, visual display of
target sequence and OT info

No options, no on-target
efficacy, OT matches
limited to number of
target sites with
20/12/8-mer plus PAM
matches. Does not
account for identity of
mismatches

Web

COD 23 common genomes Length of target. OT stringency.
NGG and/or NAG for OT

Ease of use. OT scoring No on-target prediction.
Does not account for
identity of mismatches.
Slow

Web

sgRNAcas9 User can provide any genome
reference file

Can generate single or paired
sgRNAs; many options for OT
stringency (number of mismatches
and number of offsets); several
options for ease of cloning

Can generate several
candidates, with some (but
not a comprehensive set of)
options with respect to cloning
ease and efficiency and OT
matching

Difficult to use. No clear
on-target efficacy score.
Supports only NGG PAM
currently. Does not
account for identity of
mismatches

Local (Perl script)

DNA 2.0 gRNA
Design Tool

Human, mouse, Escherichia
coli, Arabidopsis, yeast

PAM type Simple interface, very fast
results, simple and clear
output

Tied in to commercial
site; output has very
few data points, and
unclear what is available
with respect to scoring.
Does not account for
identity of mismatches

Web/commercial

Cas-Designer 30 genome builds Accounts for bulge MMs.
Alternative PAMs

Ease of use. Fast.
Accommodates bulges in OT
prediction

No on-target efficacy
score. OT prediction
does not account for
identity

Web

(Continued)
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Table 2 All-in-one packages for the design of guide RNAs and prediction of off-target effects

Tool Genomes sgRNA sequence constraintsb Validation Pros Cons Software

sgRNA Scorer 1.0 12 common genomes Streptococcus pyogenes or
S. thermophiles PAMs

On-target efficacy score. Offers
a precomputed list of target
sequences for all human and
mouse genes

Slow. Email output. OT
prediction does not
account for identity

Web

Protospacer Provided by user Accounts for MMs. Alternative
PAMs

On-target efficacy score based
on sgRNA Designer rules
(Table 1). Many options for
assessing OT

Requires extensive setup.
Not obvious where OTs
fall with respect to CDS.
OT prediction does not
account for identity

Software,local

a‘Low’: input format and run times support one-gene-at-a-time or one-guide-at-a-time queries. ‘Medium’: input format and run times support small batches of genes or sgRNAs, tens to hundreds of queries. ‘High’: input
format and run times support genome-scale queries. bOptions for sgRNA sequence criteria: alternative PAMs. Require 5′ G to promote PolIII-dependent transcription from the U6 promoter, or 5′ GG for in vitro transcrip-
tion using the T7 polymerase. Avoid TTTT, which signals PolIII transcriptional termination.
Abbreviations: CDS coding sequence, MM mismatch, N/A not applicable, OT off-target, PAM protospacer adjacent motif, sgRNA single guide RNA, Tm melting temperature
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certain pre-defined subsets of the genome (e.g., exomes)
as a constraint for target site identification. Some tools
such as SSFinder [46] simply output the complete list of
PAM sites, leaving the user to dictate subsequent site
selection, whereas others such as E-CRISP [47] and
CRISPRseek [48] offer additional criteria to filter or rank
the target sites.
Next to the PAM requirement, perhaps the most im-

portant consideration for CRISPR modifications is the
position of the cut site with respect to the coding struc-
ture of the target gene. Some design tools output a
graphical representation of the target gene overlayed
with sgRNA sites to aid users in selecting optimal sites
for genetic perturbation [49]. In addition, some tools
offer options for Cas9 nickases that assist in selecting
paired sgRNAs that fall within a specified distance from
each other (Tables 1–2). Generally, many candidate
sgRNAs fall within the desired region of the target gene,
in which case an on-target efficacy prediction metric of-
fers an additional parameter on which to prioritize
among the candidate sgRNAs, such as provided by the
Broad Institute sgRNA Designer or other tools that em-
ploy target scoring metrics from the Doench et al. study
or elsewhere (CRISPR MultiTargeter [50], Protospacer
[51]). For genomic regions in which traditional SpCas9
PAM sites might be scarce, or greater targeting specifi-
city is required, new forms of Cas9 have been leveraged
that utilize alternative PAMs. To accommodate alterna-
tive Cas9 PAM requirements, several design tools now
offer options to select predefined or, in some cases, user-
defined PAMs (CRISPR MultiTargeter [50]).
All of the aforementioned features relate to sgRNA

function; however, design tools also incorporate options
related to efficient sgRNA production (e.g., ChopChop
[49]). For example, it is possible to select sgRNAs that
contain a 5′ G to promote PolIII-dependent transcription
from the U6 promoter, or 5′ GG for in vitro transcription
using T7 polymerase. Yet another option in some design
tools is exclusion of sgRNAs that contain TTTT stretches,
which signal PolIII transcriptional termination.
In general, more than one sgRNA is employed for each

target gene, and hence multiple designs are required.
This compensates for the fact that not all sgRNAs are ef-
fective, even with the best efficacy-prediction algorithms.
Furthermore, as described below, employing multiple ef-
fective sgRNAs per target is important to distinguish the
consistent effects of on-target perturbation from any OT
effects of individual sgRNAs. For a list of tools capable of
OT prediction, see Tables 1 and 2.

Off-target prediction
With respect to achieving specificity, the most basic de-
sign criterion is to target only unique PAM+ 20-nt sites
— that is, those target sequences that occur only once in
the genome. This does not, however, ensure that target-
ing will be perfectly specific as activity at imperfect-
match ‘OT’ sites does occur. Unbiased sequencing-based
approaches detected few OT mutations in the entire
genome [52, 53], suggesting that the overall picture with
respect to specificity is quite good. Analysis of indels in-
duced by a single sgRNA introduced into induced pluri-
potent stem (iPS) cells showed only one prominent OT
site [53]. By contrast, a variety of approaches suggest
that rates of OT activity are not always so low, and can
be quite variable among sgRNAs [54]. This makes it im-
portant to be able to predict in advance which sgRNAs
will provide better specificity.
Chromatin immunoprecipitation sequencing (ChIP-seq)

profiling of Cas9 binding sites suggests that homology to
the PAM-proximal half of the sgRNA, sometimes termed
the sgRNA core or ‘seed’ match, is sufficient to initiate
Cas9 binding, but cleavage requires more extensive base
pairing with the target site [55]. Thus, Cas9 can bind
many genomic sites (10–1000, depending on the
sgRNA), but genomic sequencing at the Cas9 binding
sites demonstrates that very few of these bound sites
incur indel mutations [55–57]. Another key finding
from Cas9 ChIP-seq studies is that binding preferen-
tially occurs in open chromatin, which is a factor that
has been incorporated into at least one OT prediction
model [56, 58]. However, the ability to routinely predict
a priori or measure chromatin state across cell types is
not currently feasible.
Further insight into OT effects has been obtained

from direct measurement of indel rates by whole-
genome sequencing [53], Digenome-seq [52], GuideSeq
[59] and high-throughput genome-wide translocation
sequencing (HTGTS) [60], revealing additional com-
plexities associated with CRISPR specificity [61–64].
The Guide-seq approach suggests wide variability in the
frequency of OT mutation rates produced by different
sgRNAs. In a test of 13 sgRNAs, one had zero detected
OT DSB sites, and the others had variable numbers of OT
sites, ranging up to approximately 150 sites [59]. The
same study also found that short 17-nucleotide to 18-
nucleotide sgRNAs exhibited greater specificity while
maintaining similar efficacy compared with 20-nucleotide
sgRNAs [59]. Importantly, inspection of the identity of
OT sites indicated that the sites most susceptible to
imperfect-match OT activity and indel production are not
readily predicted by computational methods or ChIP-seq
binding data [59].
Given that CRISPR systems can be highly selective,

but that sgRNAs do nevertheless show some variable
levels of OT activity against imperfect-match sites, how
can one design sgRNAs to minimize these OT effects?
Currently, the ability to predict OT liabilities is quite lim-
ited, but recent studies suggest that better OT predictions



Fig. 3 Summary of experimental options for validating CRISPR edits
at the target site and off-target sites, highlighting the varying degrees
of comprehensiveness that can be achieved
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might be possible. In general, SpCas9 cleavage efficiency is
more sensitive to mismatches in the sgRNA core (or seed)
sequence compared with mismatches in the 12-nucleotide
region at the 5′ end of the sgRNA [59, 65]. However, there
are clear exceptions to this generalization. Not all
DNA–sgRNA mismatches have an equivalent impact
on activity even within the core region or outside the
core region; both the specific base pairings and the spe-
cific mismatch positions matter for activity [41, 65, 66].
OT prediction tools have employed heuristics such as
mismatch counts for the sgRNA or within the core re-
gion of the sgRNA. Better predictions will depend on
improved experimental characterization and modeling
of all the factors driving specificity, including the posi-
tions and base identities of mismatches in potential OT
sites [65–67].

Tools for OT prediction and scoring
Currently, CRISPR design tools typically use simple mis-
match counts to predict OT liability. As noted above,
these approximations will presumably be replaced with
more refined predictions as the large systematic datasets
and modeling needed to predict OT activity emerge. Sev-
eral tools that use a mismatch-counting heuristic to search
for potential OT sites, identifying all sites in the genome
that align to a candidate sgRNA with fewer than n mis-
matches, provide flexibility for the user to determine their
own criteria for utilizing mismatches in the prediction of
potential OT sites (CCTop [68] and GT-Scan [69]), for ex-
ample, by specifying a core ‘seed’ sgRNA region within
which mismatches are assumed to be effective at blocking
activity. It is important to note that most of these tools
discount all sites with non-NGG PAMs despite the obser-
vation that alternative PAM sites, such as the NAG site
for SpCas9, can sometimes preserve high levels of activity.
While it is not recommended to target generally less-
active NAG PAM sites, such sites should not be ignored
as potential OT liabilities. Another key consideration for
specificity scoring is the relative importance of off-
targeting in different regions of the genome. For example,
potential OT sites in coding regions could be of greater
concern than those in intergenic regions, and some design
tools permit overweighting OTs within coding genes or
ignoring intergenic sites entirely. Based on the currently
available design tools, a reasonable prioritization of
sgRNAs for specificity in SpCas9 systems could be
based on the heuristic: first, avoid perfect matches aside
from the target site, including matches with the alterna-
tive NAG PAM; and, second, minimize the number of
OT sites (in exons) that have a perfect match to the
core ‘seed’ region of the sgRNA and fewer than three
mismatches to the 5′ non-core 10-nucleotide region.
Very recently, better-powered quantitative specificity-
prediction models have been developed from large
datasets of off-targeting frequencies for many thou-
sands of sgRNAs [66].
Some of the tools listed in Tables 1 and 2 perform OT

(mismatch) site searches; however, users should be aware
that many of the algorithms used (most commonly Bowtie)
are not comprehensive at finding mismatch sites: they
do not reliably detect all sites with the specified num-
ber of mismatches. In particular for 2+ mismatches,
Bowtie can miss a substantial fraction of sites without
warning, and the fraction of sites recovered can vary in
an unpredictable manner, depending on input parame-
ters. Beyond this widely unappreciated problem in
implementing OT scoring, as noted above the criteria
used by most current tools to predict OT liabilities are
not well-supported by empirical data, as is evidenced
by the various user-definable options for these OT
searches — for example, the number of mismatches
allowed, core ‘seed’ region specification and different
OT genome subregions. Avoiding sgRNAs with perfect
OT matches in the genome is clearly wise, but other-
wise current mismatch-detection OT prediction tools
are generally of unknown value for improving specifi-
city. Better quantitative models and validation are
emerging and will presumably be incorporated into the
next generation of design tools.

Experimental evaluation of on- and off-target activity and
clonal selection
As with all gene-perturbation technologies, various types
of validation are needed to confirm the relationship be-
tween the perturbed gene and the phenotype, and to
understand the observed phenotype and its mechanism.
For CRISPR-based results, one useful validation experi-
ment is to assess the genotype of the modified cells at the
intended target site, and with respect to OT effects else-
where in the genome. Numerous approaches have been
employed (Fig. 3), and determining which ones to use and
the degree of validation necessary can be challenging.
Validation practices are currently far from standardized,
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but we will outline below some of the options and the key
considerations in choosing a practical path to validating
the link between the gene targeted for perturbation and
the observed phenotypes.

On-target editing confirmation
A common approach for evaluating on-target modifica-
tions is the Surveyor assay [3, 14]. Implementation is
quite straightforward and involves PCR amplification of
the modified and unmodified target site, followed by
denaturation and annealing of the PCR products.
Addition of the Surveyor nuclease then specifically
cleaves double-stranded DNA (dsDNA) at mismatch
sites created by indels. Under optimal conditions, this
approach facilitates estimation of CRISPR indel fre-
quency. While the strength of Surveyor assays is their
rapid and simple workflow, for many target sites some
level of custom optimization is required to achieve
good results, and the sensitivity and quantitative accur-
acy are limited. Moreover, nuclease assays do not reveal
the frame of indels relative to the coding sequence and
cannot predict loss-of-function rates. Another approach
for determining on-target cleavage efficiency employs an
in vitro cutting reaction that again uses the target PCR
amplicon, but combines it with transcribed sgRNA, and
recombinant Cas9. While this assay is extremely sensitive,
it does not reliably predict cutting efficiency in situ in
cellular gDNA, as the in vitro reaction is vastly more
efficient.
The most definitive means of determining on-target

efficacy in cells is sequencing the target site. PCR ampli-
cons derived from the target site can be sequenced by
next-generation sequencing (NGS) to obtain the distribu-
tion of allele modifications. If access to NGS is limiting,
an alternative can be to clone the target amplicon into a
standard plasmid, transform competent Escherichia coli
with the ligation products, and submit bacterial plates for
colony sequencing. Many companies now offer services
for Sanger sequencing directly from bacterial colonies.
Importantly, sequencing approaches allow for quantitative
determination of indel frequencies and out-of-frame mu-
tations. Furthermore, programs such as ‘tracking of indels
by decomposition’ (TIDE) have been developed to assist
users in PCR primer design and downstream sequence de-
convolution of CRISPR target sites [70].

Empirical OT specificity assessments
In principle, the experimenter could assess OT mutations
for each sgRNA by sequencing genome-wide. In practice,
the required high-coverage sequencing is impractical. The
GuideSeq-type alternatives described above provide a
more focused look at OT DSBs, but they too are impracti-
cal to perform on more than a small number of sgRNAs.
Furthermore, while there is evidence that these methods
can be quite thorough, it is hard to preclude false-negative
blind-spots in their OT detection.
How can a CRISPR user identify OT effects in a prac-

tical manner in gene-function experiments? Most import-
antly, one should employ multiple distinct sgRNAs to
target each gene. On-target effects should exhibit pheno-
typic concordance among different sgRNAs targeting the
same gene, whereas the likelihood that relatively rare OT
events will overlap among distinct sgRNAs is very small.
Therefore, provided that the background rate of scoring
by negative controls is low, a phenotype produced by
multiple sgRNAs targeting the same gene can be ascribed
to on-target activity. If target cells are to be subcloned,
multiple such clones and controls should be produced so
that their behaviors in experiments can be compared. A
gold standard to determine whether a phenotype was
caused by loss of a specific gene is to perform a rescue ex-
periment. Specifically, introduction of cDNA encoding the
target gene and mutated at the sgRNA target site should
rescue the observed phenotype of a KO, provided that the
phenotype is reversible and that the ectopically expressed
cDNA faithfully recapitulates the gene activity.
To investigate OT mutations of individual sgRNAs, a

common approach is to predict a list of likely OT sites
based on sequence homology between the genome and
sgRNA and then sequence these regions. As discussed
above, many design tools facilitate these types of predic-
tions, but these predictions are only as accurate as the
data they are based upon, which is currently quite lim-
ited, and so the candidate site list can have high false-
positive and false-negative rates. As many relevant OT
sites can be overlooked, this approach is no substitute
for experimental validation of sgRNAs. Such predictions
can be useful for a priori selection of sgRNAs to maximize
the odds of obtaining target-specific phenotypic results or
the desired engineered cell clones. Specificity can also be
increased by employing the paired sgRNA Cas9 nickase or
FokI-chimera approaches [71, 72], although these ap-
proaches also reduce on-target efficacy and still do not
guarantee perfect specificity.
Looking ahead, new versions of Cas9 or other RNA-

guided nucleases (RGNs) will continue to improve the
specificity of genome engineering, but experimental con-
firmations of specificity will still be needed. Rescue experi-
ments and the use of multiple independent sgRNAs are
the most straightforward approaches, but in some cases it
can be worthwhile to empirically assess the specificity of
individual ‘high-value’ sgRNAs. For example, for low-
throughput experiments to generate model cells or mice
that go through clonal selection, the selected clones can
be assessed not only for definitive on-target modifications
but also based on OT site assessments. Recent advances
have provided options, but their cost limits their applica-
tion to small numbers of sgRNAs. As noted above,
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relatively unbiased identification of OT sites can be
achieved in cells by monitoring integration of exogenous
DNA elements into Cas9 cleavage sites (reviewed in [73]).
Recovery of the genomic coordinates of these integrants is
then determined by sequencing. For example, integrase-
defective lentiviral genomes [67] will primarily integrate
into Cas9 cleavage sites. GuideSeq [59] and BLESS [40]
approaches employ short dsDNA elements to tag DSBs
created by Cas9 and rely on mapping these known DNA
sequences within the context of the entire genome.

CRISPR use cases: application-specific considerations
for experimental design
Functional knockout of individual genes
The knockout of protein function for individual genes has
been a powerful tool to determine the functional role of a
gene in cell-based or in vivo models [9, 74, 75]. In this ap-
proach, a cell, tissue or animal model is assayed for
phenotypic changes following the selective knockout of
one or more genes. CRISPR has arguably become the go-
to gene-perturbation technology to evaluate gene func-
tion, and CRISPR-based gene phenotyping has become an
accepted standard for confirming gene function hypoth-
eses. Before CRISPR technology, a workhorse for mamma-
lian loss-of-function experiments was RNA interference
(RNAi), but CRISPR approaches are now favored over
RNAi for many or most applications, mainly owing to its
dramatically improved target specificity. In addition to its
improved specificity, CRISPR can provide complete func-
tional knockout, which has the potential to generate
stronger and more-uniform phenotypes than might arise
from the varying degrees of incomplete loss of function
achieved by RNAi. It should be noted that RNAi repre-
sents a fundamentally different type of gene perturb-
ation than genomic DNA modifications, and this might,
in some cases, offer important advantages (e.g., if re-
ductions in the levels of transcripts more accurately
model the biology of interest), but, for many experi-
ments, CRISPR has supplanted RNAi approaches.
For small-scale gene KO experiments, the basic three is-

sues of (i) reagent delivery and CRISPR activity in the cells
of interest, (ii) efficiency of the desired edit(s), and (iii)
specificity are all important. As in current CRISPR imple-
mentations the per-cell rate of CRISPR KO typically
ranges from 30–60 %, it is not possible to produce genet-
ically uniform cells without a step of single-cell cloning to
isolate and identify lines that have been modified in the
desired manner. As single-cell cloning is unavoidable to
obtain uniformly edited cells and requires considerable ef-
fort, it is highly desirable to achieve high CRISPR efficien-
cies in order to minimize the number of clones needed to
obtain the desired target-site modifications. How does one
contend with OT effects? Again here, cell-to-cell hetero-
geneity is a problem, and the cost and effort associated
with fully characterizing all possible OT modifications in
every cell clone are impractical. A standard strategy has
been to produce multiple distinct cell clones employing
several distinct sgRNAs and target sites for each gene of
interest. If these clonal lines all exhibit a concordant
phenotype, one can assume it is due to the common on-
target perturbation rather than OT effects that would gen-
erally differ among clones, especially if different sgRNAs
were employed. A minimum of three effective sgRNAs
per gene is recommended. The benefits of obtaining
multiple good clones places an even higher premium
on good design to minimize the clone picking re-
quired. When targeting a single or very small number
of genes, it is practical to curate the sgRNA selection
process manually and to factor in gene-specific know-
ledge for each gene to optimize the on-target site
selection. This permits more flexibility than for
larger-scale CRISPR applications for which computa-
tional tools must be fully automated and fast enough
to evaluate hundreds or thousands of genes.

Large-scale KO screens
An increasingly common application of CRISPR-Cas9
technology is to functionally evaluate hundreds, thousands
or all genes in the genome by a high-throughput screening
approach. Genome-wide and genome-scale pooled screens
have been successfully executed [10, 11, 76–80]. Particu-
larly exciting with respect to these screens is the frequency
of ‘multiple-hit’ genes for which most or all of the sgRNAs
score strongly. In analogous RNAi screens, much lower
concordance is observed among short hairpin RNAs
(shRNAs) or small interfering siRNAs (siRNAs) targeting
the same gene [10]. Furthermore, the validation rate of
hits from these early CRISPR screens appears to be gener-
ally quite high (albeit with relatively few examples thus
far), supporting the notion that these reagents will gener-
ally yield far more accurate hit-lists than RNAi.
Pooled screens require that cells with the hit pheno-

type can be enriched or depleted within the screened
cell population. This is feasible for phenotypes that are
distinguishable using FACS or by proliferation–viability
(‘selections’). To perform such screens, a cell popula-
tion is treated with a pooled viral library carrying many
different sgRNAs. The cell population is transduced at
low titer such that each cell receives a single sgRNA to
knock out a different gene in each cell. At the end of
the screen, genomic DNA is harvested from the hit-
enriched cell population (e.g., a population that has
been subjected to FACS for the hit phenotype), and
PCR-sequencing is used to determine which sgRNAs
were enriched among the hit cells and, therefore, by infer-
ence the list of genes whose KO produces the phenotype.
CRISPR pooled-screen publications provide detailed de-
scriptions of the methods employed [10, 11, 76]. Here we
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highlight several key considerations for design of sgRNA
pooled screens.
To deliver Cas9 activity to the cell population to be

screened, a Cas9 stable cell line can be established first,
and the sgRNA pooled virus added later, or the Cas9 can
be delivered simultaneously with the sgRNA. As Cas9
packages poorly and yields low viral titers, there is a prac-
tical advantage to making and expanding a stable cell line
first, whereas combining the Cas9 and sgRNA in a single
vector reduces the titer of the library pool, but does have
the advantage of permitting single-step perturbation of
the cells. As indicated above, Cas9 activity in the cells to
be screened should be experimentally confirmed. The de-
sign of the sgRNA library is another key factor in screen
performance. As always, sgRNAs should be designed to
maximize activity and specificity. High sgRNA activity is
particularly important for screens because, unlike small-
scale experiments, it is not possible to select single-cell
clones with the desired mutations before evaluating
phenotype. The entire population of cells receiving any
particular sgRNA must represent, in bulk, the phenotypic
effect of that sgRNA. Thus, cells that receive an sgRNA
but do not fully lose function of the target gene will dilute
the apparent effect of that sgRNA in the screen. Tools for
sgRNA selection for large-scale libraries must be capable
of fully automated design for every gene. Multiple sgRNAs
per gene are advised: first, to provide more chances for
efficacy and, second, so that consistency of sgRNAs per
gene can be used as a gauge of gene specificity. Popular
sgRNA libraries include approximately half a dozen
sgRNAs per gene (i.e., 120,000 sgRNAs for a whole gen-
ome of 20,0000 genes). Improved designs yielding higher
proportions of highly active sgRNAs could reduce the
number of guides employed without sacrificing the power
of the library to identify hit genes. Reducing the size of the
library reduces the scale and cost of the screen, permitting
more cells or conditions to be tested. In cases where the
cells are difficult to obtain or the screen is particularly dif-
ficult or prohibitively expensive, reducing screen scale can
be not only helpful but necessary. A few publically avail-
able software tools permit the high-throughput sgRNA
design and scoring required for large libraries, but those
that do are generally computationally intensive and must
be installed and run locally (SSFinder [46], CRISPRseek
[48], sgRNAcas9 [45]).
As an sgRNA can produce heterogeneous phenotypic re-

sults for both technical (non-uniform gene modifications)
and biological reasons (inherent cell-to-cell variability and
stochasticity of responses), a screen must employ enough
cells to ensure that each sgRNA is tested in many cells.
Experience with shRNA and sgRNA screens suggests that
approximately 1000–2000 cells per sgRNA (combining
across all replicates) is typically sufficient, assuming that
the library pool is evenly represented, with all sgRNAs
present in similar abundance. In practice, for each screen,
the actual number of cells needed to converge to re-
producible results depends on many variables, and
the scale required should be validated for each screen
by comparison of independent replicates to determine
whether the hit-list has converged. Several scoring
schemes have been proposed for RNAi pooled screens
that similarly apply to sgRNA screens. None has become
standard, and they are not reviewed here. Such schemes
combine the phenotypic enrichment scores from the mul-
tiple sgRNAs targeting each gene, and vary mostly in the
degree to which they emphasize the magnitude of scoring
(of the best sgRNA) versus constituency among the mul-
tiple sgRNAs per gene. In any case, detailed experimental
validation of findings from large-scale screens is essential
to confirm gene effects.
There are several contexts in which in vivo mouse

pooled screens are feasible using either RNAi or CRISPR.
One uses tumor xenograft models in which cancer cells
are library-perturbed ex vivo and then implanted into the
animal subcutaneously, orthotopically or into the blood
[81]. More complex in vivo screens involve library trans-
duction of mouse hematopoietic stem cells (HSCs) or im-
mune cells ex vivo and then reconstituting them into the
mouse through bone marrow transplant or adoptive trans-
fer or by injection of virus into the tissue of interest for
in vivo transduction [82–84]. To date, these approaches
have been performed at sub-genome scale on focused sets
of 20–2000 genes. For pooled screens, either in vitro or
in vivo, inducible Cas9 systems for delayed gene perturba-
tions can provide additional possibilities in screen design.
Inducible systems optimized to both avoid leakiness and
provide rapid efficient gene editing upon induction are in
development by many groups.
Pooled screens for gene activation or inhibition are

performed in a similar manner, but the library designs
for such CRISPRa or CRISPRi systems differ as de-
scribed above. Few such screens have been published to
date, and these systems are not reviewed here, but given
the advantages of modulating the endogenous gene in
context versus expressing the CDS from an artificial pro-
moter, CRISPR transcriptional modifications promise to
be a popular screening approach [13, 22, 24, 26].

Gene editing
Another mainstay application of CRISPR-Cas9 technology
is to produce precise gene edits — for example, to intro-
duce specific alleles that correlate to, and might have a
causal role in, a disease phenotype. In contrast to the low-
throughput and high-throughput strategies for producing
gene KOs described above, this method relies on the
introduction of a repair template, such that new sequence
is substituted at the site of the DSB. Using these HDR-
mediated edits — KI alterations — any desired sequence
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can be inserted to produce, for example, loss of function,
gain of function or altered (neomorphic) function or to in-
vestigate variants of unknown functional status. One
could engineer coding variants to model a human disease
or to introduce reporter genes or epitope tags into en-
dogenous loci [15, 17]. It is clearly advantageous to obtain
specifically chosen gene edits, versus the ‘take-what-you-
get’ modifications resulting from NHEJ, but it comes at
the cost of reduced editing efficiency. Use of HDR cur-
rently necessitates single-cell cloning to isolate the small
percentage of cells with the desired modification. As with
the production of high-value KO cell lines, it is strongly
advisable to produce multiple correctly modified clones
generated by multiple sgRNAs to enable the consistent
on-target effects to be discerned from OT effects that
might be exhibited by individual clones. The required
single-cell cloning and analysis make KI strategies strictly
low-throughput processes, but ongoing efforts to make
isolation and identification of the desired clones more
efficient [85, 86], or to avoid it entirely by dramatically
increasing the efficiency of the HDR process [21, 87–90],
could make larger scales more feasible.
When designing KI strategies, the first consideration is

the location of the DNA break. For small mutations such
as single-nucleotide replacements, a DSB in close proxim-
ity to the desired site of mutation can be efficiently
repaired with a short single-stranded DNA oligo encoding
the desired mutation and an approximately 50-nucleotide
flanking sequence on both sides [91, 92]. Introduction of
large insertions such as GFP reporters can be achieved by
using a longer repair template such as a targeting plasmid
with 400- to 1000-bp homology arms on either side of the
mutation site [15, 17, 18]. In some instances, a suitable
PAM might not occur within 20 bp of the mutation site,
or the sgRNA in closest proximity might have excessive
OT liabilities. It is preferable to select a more specific
sgRNA, even if it is over 100 bp away from the mutation
site, and to use a targeting plasmid with 400- to 1000-bp
homology arms to improve HDR efficiency. When using
either short single-stranded DNA repair templates and
longer dsDNA plasmids or PCR products, mutating the
targeted PAM site is advised to prevent subsequent cleav-
age of modified or repaired alleles [93]. In some cases, it
might be desirable to introduce several silent mutations in
the repair template at the sgRNA-binding site, so as to
create a distinct primer-binding site in repaired alleles to
facilitate genotyping. Alternatively, introduction of silent
mutations that generate a new restriction enzyme recogni-
tion sequence can be leveraged for genotyping strategies.
It is important, however, that any introduced mutations in
the PAM or elsewhere be silent or not disrupt splicing.
Thus, it is advisable to evaluate gene expression from the
modified locus, and to verify on-target integration of the
repair template. Several approaches are available for
detecting spurious integration of repair templates and
other OT indels [94].

Mouse models
Soon after CRISPR-mediated genome engineering was
demonstrated in cultured cells, it was adapted to the
generation of mutant mice [14, 15, 17, 95, 96]. Many of
the same considerations for in vitro genome engineer-
ing in cells apply in vivo as well, such as the selection
of target sites to maximize target efficacy and specifi-
city against OT liabilities. To generate mice, Cas9 and
sgRNA can be delivered into embryonic stem (ES) cells
or injected directly into zygotes. Injection of in vitro
transcribed sgRNA and Cas9 mRNA into zygotes and
subsequent implantation into pseudopregnant foster
mothers has produced efficient generation of KO alleles
[14]. When targeting a single gene, indel mutations can
be detected in a majority of the resulting mice, and two
out-of-frame alleles can be observed in up to 35–40 %
of mice, provided that loss of function does not com-
promise viability [93]. Although founder mice tend to
exhibit mosaicism [97], germline transmission of modi-
fied alleles is quite efficient, suggesting that the major-
ity of indels occur early during blastocyst development.
OT mutations presumably will also be transmitted effi-
ciently to subsequent generations [98]. By sequencing
predicted OT sites in CRISPR-modified mice, investiga-
tors have documented variable OT effects depending
on the sgRNA selected, but in vivo CRISPR can be
quite selective, consistent with in vitro observations
[14]. To try to reduce OT effects, dCas9 nickase has
been employed with paired sgRNAs in vivo as well as
in vitro, but unfortunately on-target efficiency is also
reduced with this strategy. Nevertheless, it is possible
to obtain up to 20 % of mice with homozygous loss-of-
function alleles [93]. Even with highly selective sgRNAs,
OT effects cannot be discounted when generating mice.
Evaluating undesired mutations by sequencing of pre-
dicted OT sites is fairly straightforward; however, as noted,
prediction of OT sites is relatively poor in both directions
— it can generate an overly long list of candidate sites of
which few are actually found to be modified, and yet still
miss many actual OT sites. Thus, many researchers might
wish to maintain breeder colonies of CRISPR-modified
mice by backcrossing to wild-type mice [15, 17, 93]. There
are many potential applications for such in vivo modifica-
tions, such as creation of disease models, engineering of
reporter mice for in vivo assays, and even in vivo screen-
ing using pooled sgRNAs delivered, for example, to the
lung or immune cells [82, 99].

Future prospects for CRISPR-Cas9
CRISPR-Cas9 technology has emerged as a dominant
technology for genetic perturbations, including editing
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of genome elements, modulation of transcription levels
of specific genes, and engineering of model systems
tagged with reporters, binding elements or other con-
venient handles. For research applications, it holds
tremendous advantages with respect to ease of use, effi-
cacy, specificity and versatility. There are many ongoing
efforts to improve and expand CRISPR technology on
multiple fronts.
One major goal is to achieve more efficient, predictable

editing. If it were possible to convert every cell in a popu-
lation to the desired genotype, the painstaking work of
selecting and characterizing individual clones would be re-
duced or eliminated. This would make it feasible to engin-
eer large numbers of clonal cell lines, or even to engineer
specific alleles at a screening scale. It would also make it
far more efficient to produce cells with multiple edits.
One approach is to re-engineer Cas9 for desirable charac-
teristics, including altered PAM sequences, better pack-
aging into virus, better binding and cutting efficacy and
higher specificity. The hunt is also under way for better
type II Cas9 proteins [40] or other type II CRISPR pro-
teins that might possess performance advantages, or to
provide altogether new activities. The adoption of new
CRISPR systems might necessitate new studies to deter-
mine their on- and off-target behavior and ideal design pa-
rameters. Experience with SpCas9 can inform strategies to
determine the properties of new CRISPR systems effi-
ciently. Heuristic rules currently employed to predict
CRISPR efficacy and OT effects must be replaced with
data-driven models. To truly understand the products of
CRISPR systems and to predict and evaluate accurately
the performance of CRISPR systems, thorough experi-
mental evaluation of on-target modification efficacy and
target-site specificity across many contexts will be re-
quired. Parallel work is under way to make transcriptional
modulation easier and more predictable, building on the
previous versions [12, 13, 22–24, 26–28, 100]. Transcrip-
tional modulation approaches are being applied to non-
coding as well as coding genes for which loss-of-function
edits may be hard to interpret, short of deleting the entire
region of gDNA [101]. Improving the modularity and
versatility of the CRISPR functions that carry cargo — for
example, functional domains sometimes referred to as
‘warheads’ — could make effector functions such as tran-
scriptional modulations or targeted epigenetic changes
easier to devise and use.
Given the recent history of gene-perturbation technolo-

gies, including predecessors to CRISPR for gene editing
such as zinc-finger nucleases and transcription-activator-
like (TAL) proteins, it is certainly possible that CRISPR
will be joined by other gene-editing techniques. At this
time, CRISPR-Cas9 enjoys major advantages for diverse
research applications with respect to ease of use, efficacy,
specificity and versatility. Continuing efforts to evaluate
CRISPR technologies thoroughly with respect to their
strengths and limitations in the context of different types
of cells and model systems will be crucial, and research
into novel variations and applications of this technology
will drive new functional genomics opportunities in the
coming years.
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