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Abstract

Serious and underappreciated sources of bias mean
that extreme caution should be applied when using or
interpreting functional enrichment analysis to validate
findings from global RNA- or protein-expression
analyses.

Large gene-expression datasets are used for various pur-
poses, including the investigation of fundamental rules
that govern transcription, the prediction of responses to
drug treatment and studies of physiological adaptation.
A common strategy for analyzing such gene-expression
data is the identification of differentially regulated genes
using a statistical comparison of samples from different
conditions.

Differential expression analysis produces a list of
genes (often several hundred to several thousand) that
meet some criteria for statistical significance. These
criteria should ideally balance the false-positive and
false-negative rates, but their choice is typically ad hoc, es-
pecially in studies of limited sample size and/or size effect.
It is important to place such a gene list of differentially
expressed genes into an interpretable structure, which
hopefully reflects the underlying biological processes that
are uniquely regulated in the experiment [1]. Clinical tran-
scriptomics studies in particular regularly use the process
of ‘grouping’ genes into functional categories, combined
with a statistical test, to support the claim that an analysis
is robust [2, 3].

Most frequently, the functional categories are identified
using classification schemes such as that of the Gene
Ontology (GO) consortium [4] (MSigDB, GeneSigDB and
Ingenuity Pathway Analysis (IPA) are other examples).
Discovery that the list of regulated genes contains an over-
representation for one or more biological ‘functions’ can
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identify the underlying mechanism for the difference
between conditions, giving the data analysis a ‘plausibil-
ity factor’. This evidence is coupled with a statistical
value that summarizes the likelihood that the overrep-
resentation did not occur by chance. Functional enrich-
ment analysis is, therefore, a widely used strategy to
legitimize -omic studies and, consequently, impacts the
peer review process as a result of reviewer perceptions
and the statistical acceptability of the analysis [2, 3].

Two studies published in the last five years identified
significant sampling bias in functional enrichment analysis
[5, 6]. Specifically, both indicated that the ‘discovery’ of
significant and plausible functional enrichment profiles
could be achieved in almost every analysis, regardless of
how the regulated gene list was selected. However, the dis-
covery of ‘sampling bias’ has had little impact on how
-omic data are interpreted or reported.

To understand the nature of this ‘sampling bias’ prob-
lem, first appreciate that the statistical identification of a
functional category (for example, ‘muscle development’)
from the list of differentially regulated genes implies that
more of the genes on the list belong to that category
than one would expect from a random sample of ‘all
genes’. Critically, the statistical test for the enrichment
of a particular functional category utilizes a reference
gene list, and a problem arises if the content of this list
does not adjust for sampling bias.

Sampling bias (including reflecting features of the
DAVID (Database for Annotation, Visualization, and
Integrated Discovery) annotation status) can arise in
three different ways. First, every RNA detection tech-
nology, including RNA sequencing, has a biased repre-
sentation of the gene ontology structure. For example, the
Affymetrix Human Genome U133 Plus 2.0 GeneChip has
proportionately more genes linked to ‘acetylation’ (P <7 x
10°") than does the genome (as defined by the DAVID
online gene annotation tool [7]), whereas the Agilent
44 K chip has proportionately more genes linked to
‘mutagenesis site’ (P <2 x 107%%). In fact, hundreds of
gene categories are massively ‘enriched’” in functional
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classifications on every microarray—this is called tech-
nology bias.

Furthermore, not all genes can be detected with equal
reliability, to the extent that some genes are never de-
tected as being ‘regulated’ (the signal never changes).
This is detection bias, which can reflect aspects of the
transcriptomics technology or the sequence of the tran-
script that is being probed.

There is also a third and more obvious bias. The tran-
scriptome of a given cell type or tissue is highly special-
ized, to the point that it can be used to determine the
identity of an unknown RNA profile efficiently; this is
referred to as biological bias.

We use two published examples to illustrate a very com-
mon problem. The first is a study of transcriptional re-
sponses to disuse in human skeletal muscle [3]. Here, the
reported ontologies reflect the strong biological bias that
muscle has for oxidative metabolism and protein metabol-
ism. Muscle transcriptome profiles were generated from
biopsy material before and after bed rest. Gene functional
classification analysis was applied to a list of differentially
expressed RNAs, produced by applying an uncorrected t-
test to ~40,000 data points. The differentially expressed
gene list was subject to a Fisher’s exact test within IPA,
with the standard IPA database at that time used as the
reference.

Such an input gene list is unquestionably flawed. Never-
theless, the subsequent functional classification profile
appeared to be both significant and meaningful, identify-
ing metabolism and protein pathways that are known to
change in disused skeletal muscle [8]. This, in turn,
allowed the authors to claim that the regulated gene list
was an accurate reflection of the experiment and that
more novel features were uncovered by the IPA analysis.

A second example is a study of the impact of obesity
on human liver ageing [2]. Here, 657 genes were identi-
fied for which the RNA expression levels correlated with
altered DNA methylation in liver samples from obese in-
dividuals. This list of genes was subject to analysis using
DAVID, and a number of processes were identified, each
of which would be expected if carrying out a GO ana-
lysis on any list of genes expressed in liver tissue versus
the genome. Critically, the GO analysis provided central
support to there being a plausible link between the samples’
‘age score’ and important components of liver biology.

In both of these studies, a complex combination of the
three aforementioned biases are at work. Most obvious
is the fact that, functionally, the tissue transcriptome
profiles were already biased towards the factors identi-
fied by the functional enrichment analysis. That is, they
had a greater than average chance of appearing in the
input (‘regulated genes’) list. Thus, the significance of
the pathway analysis cannot subsequently validate, for
example, the use of 40,000 unpaired t-tests.
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The issue of utilizing an appropriate background com-
parison list is further compounded in the case of the
muscle analysis [3], as it is impossible to replicate this
analysis exactly because the background reference ‘gene
universe’ used in IPA is frequently updated. This feature
of bespoke databases makes re-evaluation of existing lit-
erature problematic. At a minimum, analyses carried out
with IPA should utilize a defined background gene list
that is included in the publication.

Using a free tool like DAVID, it is possible to attempt
to correct for the three sources of sampling bias. This
can be attempted by using a background gene list, repre-
senting the ‘universe’ of possible genes that could be
called as significantly regulated in the experiment. This
list should contain only factors (RNA or protein) that
are both robustly ‘probed or sequenced’ (to avoid tech-
nology and detection bias) and ‘called’ as expressed (to
avoid biological bias) in the experiment. After all, we do
not want to carry out functional enrichment analysis of
a specific tissue simply to be informed that we are study-
ing that tissue!

Adjustments for such biases are currently imperfect.
For example, a technology that could detect all tran-
scripts with equal probability (regardless of differences
in abundance) is needed to make such a background
gene list. This could then be used to decide which func-
tional categories (or pathways) are enriched over and
above the bias that is already present in the tissue being
studied. Currently, no technology provides a solution.

We raised this issue with the providers of ‘Ingenuity’
(a commercial web-based application for functional ana-
lysis of “-omics’ data) in 2011, and since then, they have
allowed users to submit an experiment-specific back-
ground file (it is still important that researchers publish
a record of the final list of genes that were mapped to
the IPA database). Likewise, DAVID allows the user to
submit a custom background file (although there is no
clear guidance about its essential role). However, some-
what surprisingly, the Gene Ontology consortium web-
site analysis tool [9] does not allow for this option,
making any analysis thoroughly unreliable.

Thus, the seriousness of the bias issue remains substan-
tially underappreciated, and guidance to reviewers and
editorial boards on the importance of the three sources of
sampling bias is absent. We have noted in our studies that
correction tends to reduce or completely remove the sig-
nificance of functional terms, and this can be an unwel-
come observation after time and money has been spent
on collecting and analyzing the data. Subjectively, func-
tional enrichment analysis bias occurs very frequently in
clinical genomic studies. This is typically because the
sample size is limited, leading to loosening of statistical
thresholds for differential expression, which is ‘compen-
sated’ [sic] by the use of functional enrichment analysis.
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It might be thought that newer technologies like RNA-
seq, which is marketed as providing unbiased and global
coverage, would resolve the issue of technology and detec-
tion biases. Unfortunately, RNA-seq data are neither un-
biased nor global [4, 10]. Sequence-specific PCR-related
challenges exist and read-depth issues mean that, for any
specialized tissue, as few as 100 RNA species can dominate
the raw read counts [5]. Further, because the final RNA-
seq data are a statistically derived estimate of expression,
any bias that impacts on the likelihood of detection will
impact on the functional enrichment analysis [10].

The generation of an estimated background ‘universe’ in
RNA-seq data could be achieved by removing zero-count
genes, but the nature of this ‘universe’ will still depend on
many factors. For example, we have noted roughly twice
the number of genes detectable in adipocytes when using
Affymetrix Exon ST array compared with recently pub-
lished RNA-seq data from adipocytes (the latter data being
presented as a comprehensive and unbiased profile of adi-
pocyte transcripts [11]). This suggests to us that there is a
lack of awareness of the limitations of RNA-seq data, and
hence the validity of applying functional enrichment ana-
lysis to such data. Similarly, the application of functional
enrichment analysis to ‘global’ proteomics [12], where a
large part of the ‘molecular universe’ may not be detected,
is fraught with problems that are currently intractable.

In conclusion, functional enrichment analysis must
not be considered proof of biological plausibility or val-
idity in the analysis of high-throughput -omics data. We
strongly advocate for efforts to generate appropriate
background expression ‘universes. We also urge that
background gene lists are provided for any functional
enrichment analysis, and that a higher statistical threshold
is used as a default, given the scale of the pre-existing
biases, to avoid marginal (e.g., 1 x 107 or 1 x 10™*) enrich-
ments being relied on to drive the interpretation of an
experiment.
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