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Abstract

who reached 65 years of age in good health.

Background: Diagnostics of the human ageing process may help predict future healthcare needs or guide
preventative measures for tackling diseases of older age. We take a transcriptomics approach to build the first
reproducible multi-tissue RNA expression signature by gene-chip profiling tissue from sedentary normal subjects

Results: One hundred and fifty probe-sets form an accurate classifier of young versus older muscle tissue and this
healthy ageing RNA classifier performed consistently in independent cohorts of human muscle, skin and brain
tissue (n = 594, AUC = 0.83-0.96) and thus represents a biomarker for biological age. Using the Uppsala
Longitudinal Study of Adult Men birth-cohort (n = 108) we demonstrate that the RNA classifier is insensitive
to confounding lifestyle biomarkers, while greater gene score at age 70 years is independently associated
with better renal function at age 82 years and longevity. The gene score is ‘up-regulated’ in healthy human
hippocampus with age, and when applied to blood RNA profiles from two large independent age-matched
dementia case—control data sets (n = 717) the healthy controls have significantly greater gene scores than
those with cognitive impairment. Alone, or when combined with our previously described prototype Alzheimer disease
(AD) RNA “disease signature’, the healthy ageing RNA classifier is diagnostic for AD.

Conclusions: We identify a novel and statistically robust multi-tissue RNA signature of human healthy ageing that can
act as a diagnostic of future health, using only a peripheral blood sample. This RNA signature has great potential to
assist research aimed at finding treatments for and/or management of AD and other ageing-related conditions.

Background

It is anticipated that novel genomic diagnostics that pre-
dict future health risks will help guide targeted preventa-
tive measures and enable the evaluation of individualized
treatment strategies for many prevalent diseases of older
age. So far, use of individual molecular biomarkers in
healthy populations has offered modest performance [1, 2]
compared with traditional, more integrated disease
markers (e.g., blood pressure) or chronological age [3]. For
example, in people with cardiovascular disease, circulating
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cystatin C concentration, a parameter that estimates renal
function, was related to 10-year mortality but was insuffi-
cient to predict cardiovascular deaths in healthy older
subjects [4]. Global RNA [5-9] and DNA methylation
profiling [10—12] have been recently utilized to study
the biology of chronological age. These existing signa-
tures will incorporate influences of age-related disease
and drug treatment. For example, Hannum et al. and
Horvath et al. built distinct multi-tissue linear models,
fitting age-related changes in DNA methylation with
chronological age [13, 14]. These models have a statis-
tical association with long-term health in the elderly
[15] but the associations are not substantive enough to
make it a practical diagnostic. In fact, as there are no
molecular diagnostics of ‘healthy’ ageing status in
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humans, we hypothesized that a molecular profile may
be useful at distinguishing people at risk for a variety of
age-related diseases.

The shift in population demographics in the coming de-
cades will mean that more than 1.2 billion people will be
aged 65 years or older worldwide [16]. Approximately 7 %
of this population will have dementia, with at least 60 % of
these having Alzheimer’s disease (AD). AD is the single
largest healthcare cost [17] and there are currently no
drug treatments that halt or cure it [18]. Consensus is that
only the earliest possible intervention is likely to signifi-
cantly impact on AD and thus we need to identify those at
greatest risk. The available validated diagnostics for AD
are neither scalable for mass population screening nor suf-
ficiently cost-effective to be practical [19]. For example,
brain imaging can provide clear evidence of neurodegener-
ation but is restricted to specialist centers [20] and an
imaging-based public health screening program would not
be affordable [19, 21]. There is a pressing need to stratify
the older healthy population, using simple and cost-
effective methods, to, for example, identify those appropri-
ate to enrich clinical trials of novel AD treatments.
Prototype blood diagnostics can be 75-85 % accurate at
distinguishing AD patients from controls; however, these
have not been validated using independently processed
samples or have failed to replicate in independent studies
[20]. For example, blood-based protein signatures can
diagnose mild cognitive impairment (MCI) and/or AD
from controls in single studies [22-26], yet a common set
of proteins has not been found across multiple studies.
Further, the candidate AD marker proteins included cyto-
kines and other markers of metabolic or cardiovascular
disease [27] and thus these will not be clinically specific
for AD when applied to older populations [28].

The expression of RNA is under genetic [29, 30], epi-
genetic [13] and environmental control [31, 32] and so
the abundance of individual RNA molecules in blood
cells reflects the integration of a variety of influences,
whether or not blood directly interacts with a diseased
organ. Thus, blood RNA [33-41] has been used to dis-
tinguish controls from MCI and/or AD, where variations
in blood RNA expression should reflect the shared gen-
etic, epigenetic [13] and environmental influences with
the brain. For some prototype RNA diagnostics, the per-
formances reported have been remarkably high (~95 %),
but the same samples have been used during model
building and validation [37, 38] and thus these represent
examples of extreme over-fitting. In general there is al-
ways a danger that a classification model, when built
using a specific set of cases and control samples from a
single study, reflects unknown specific features of that
particular cohort and thus is not generalizable.

In the present study we developed a RNA classifier of
‘healthy’ ageing starting with human muscle, with the
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hypothesis that this gene expression pattern may provide
reliable genomic predictors for risk of age-related disease.
We built the RNA classifier using human muscle global
gene expression profiles because it has proven a useful tis-
sue for predicting systemic physiological traits in humans
[42] and because we can define healthy physiological sta-
tus with ease [31]. When the RNA classifier was related to
cognitive health, this ‘healthy ageing gene score’ had the
advantage of being hypothesis driven, and built using a
paradigm and samples entirely distinct from clinical case—
control samples. When applied to blood RNA, we estab-
lished good validation for AD diagnosis and selectivity
over common age-related pathologies. The results of the
present study further support the idea that analysis of
peripheral blood RNA would be a fruitful strategy for
developing biomarkers of cognitive health and prove that
a common healthy ageing gene-expression program is
detectable across multiple tissues.

Results and discussion

Identification of a reproducible RNA signature for age of
human muscle, brain and skin

Our objective was to discover a pattern of RNA expres-
sion that could be reliably used as a biomarker for
‘health status’ in older subjects — one that differed sub-
stantially in terms of ability to stratify health, and one
that was more informative than chronological age. We
applied machine-learning methods to RNA expression
data to distinguish between healthy 25-year-old and
healthy 65-year-old individuals. We took a simple classi-
fier approach [43] without ad hoc a priori filtering to
identify a consistent set of RNA markers of ageing across
tissue types because standard differential expression is
unable to provide a common multi-tissue set of discrimin-
atory RNA molecules [9]. We selected muscle tissue gene-
chip profiles from 15 sedentary young and 15 sedentary
older subjects with good aerobic fitness (Gene Expression
Omnibus (GEO) accession [GSE59880]) [31, 44] and who
were free of diabetes [42, 44]. Specifically, we utilized a
k-nearest neighbor (kNN) classification approach be-
cause this captures data features that share non-linear
interactions with robust performance [45] and is a
method consistent with strategies recommended by the
Microarray Quality Control consortium [43]. This first
data set — called the ‘training data-set’ — was used
only once to select genes (Affymetrix probe-sets) and
direction of gene expression change, and was then dis-
carded from the project (Fig. 1). Expression differences
of ~54,000 probe-sets were ranked using an empirical
Bayesian statistic and a leave-one-out cross-validation
(LOOCV) process (see “Materials and methods”).
Probe-sets that targeted multiple genomic loci were re-
moved and a 150 probe-set list, each gene having a
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Fig. 1 Development, validation and clinical application of ageing
diagnostic. Overview of the selection process and use of RNA
probe-sets for the development and validation of the healthy
physiological age classifier. We identified useful probe-sets from a
possible starting number of ~54,000 during step one [e.g. probe-sets
with leave-one-out cross-validation (LOOCV) performance = 90 %]. We
then evaluated the performance of the top-ranked 150 probe-sets
in a number of independent muscle, brain, and skin samples,
demonstrating that the signature was diagnostic for age. We then
applied the 150-probe-set healthy ageing signature to several clinical
studies, as illustrated at the end of the workflow. Key features included
discarding the training data set immediately after selecting the 150
probe-sets and relying on LOOCV and full external validation processes

nominal performance of 90 % or better, was selected
for further study (Additional file 1). The extended list
of probe-sets with a 70 % or better performance is also
included in Additional file 1.

We checked that the 150 RNAs were not differen-
tially expressed to any measurable extent in human
muscle by exercise or a number of other common dis-
eases that impact on skeletal muscle, using our previ-
ously published gene-chip data [8, 31, 44, 46]. We later
confirmed this lack of association with lifestyle disease
using a sensitive gene-set approach. Use of fully inde-
pendent training and validation data sets allows for
genuine external validation to be demonstrated (see
“Materials and methods”). Using the ‘Campbell’ muscle
data set [GEO:GSE9419] [47] as the samples of known
identity, we demonstrated that additional young and
old muscle samples selected from four additional
muscle data sets (‘Trappe’ [GEO:GSE28422] [48], ‘Hoffman’
[GEO:GSE38718] [49], and ‘Kraus’ [GEO:GSE47969]
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and ‘Derby’ [GEO:GSE47881] [8]) could be classified
with an average ~93 % accuracy (70-100 %) using only
the 150 probe-sets selected at the start of the project.
Substitution of the Campbell data set with the other
muscle data sets worked equally as well. These data
shared a common microarray platform (Affymetrix
HGU133plus2) but, as we demonstrate below, the clas-
sifier remains robust in the face of alternative plat-
forms. Receiver operating characteristic (ROC) curves
for kNN = 5 demonstrating classifier performance for a
number of tissue types are presented in Fig. 2.

Remarkably, the muscle-derived 150 RNA profile
performed very well in classifying brain tissue by age.
Using data from the HGU133Plus2 microarray plat-
form for old and young samples of ectodermal origin
(I, e, brain, n = 120) [50] we confirmed that the 150
RNA ‘healthy ageing’ genes selected in muscle could
also distinguish the age of human brain one sample at
a time, with a classification success rate up to 91 %
(Fig. 2). Four brain regions were evaluated (postcentral
gyrus, entorhinal cortex, hippocampus and superior
frontal gyrus; [GEO:GSE11882]) and while they were
confirmed disease-free by histopathology in the ori-
ginal study [50], unlike our muscle cohorts, their true
functional status remains unknown. The postcentral
gyrus samples were classified with 86 % sensitivity and
89 % specificity. In this cohort, older hippocampal
regions were often misclassified using the 150 genes
(33 % sensitivity) as ‘young’. This higher misclassifica-
tion rate may relate to the substantial neurogenesis
known to take place in the adult hippocampus or de-
lays in tissue processing. We evaluated whether the
150 genes could accurately classify the age of tissue of
mesodermal origin (skin) using gene expression data
in a total of 279 human skin samples, of which there
were up to three technical replicates per clinical sam-
ple [9]. Notably, these data originated from a different
technology platform (Illumina Human HT-12 V3,
Array-express: E-TABM-1140), adding variability
above that derived from a distinct tissue and poten-
tially limiting the classification process. The two gene-
chip technologies had 129 genes in common, and we ob-
served excellent classification of human skin age [n = 131,
area under the curve (AUC) = 0.85; Fig. 2]. The classifi-
cation success was similar for all three replicates (71—
78 raw classification success). Thus, the technical
performance of the 150-gene healthy ageing classifier
was excellent, providing accurate tissue classification
despite inter-laboratory technical variation, different
gene-chip platforms and antemortem issues. We were
able, therefore, to conclude that we have identified a
reliable multi-tissue RNA signature of healthy tissue
ageing in humans, something that has not been previ-
ously demonstrated [8, 9].
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Fig. 2 ROC curves showing predictive performance of the healthy ageing classifier based on LOOCV (kNN = 5) for muscle, brain, and skin. Using
only the 150 probe-sets identified in the first stage of the project, this ‘healthy ageing classifier’ was able to correctly classify young and old samples
across independent data sets with an accuracy of ~96 9%, 91 %, 85 %, and 78 %. We present two examples of independent muscle data [48, 50] and
one example each for human brain [50] and skin data [11] with areas under the curve of 0.99, 0.94, 0.78, and 0.85, respectively, reflecting
excellent separation of the age groups and hence accurate multi-tissue performance

A healthy ageing gene score that is distinct from
chronological age and unrelated to lifestyle regulated
phenotypes in the ULSAM study

In order to examine specificity for ‘healthy ageing, we
examined the relationship between the classifier genes,
chronological age and markers of lifestyle-associated
genes. We collapsed the expression pattern of all genes
into a single score for each sample (see “Materials and
methods”). The distribution of scores was examined
for ~70-year-old males (subjects born in Uppsala
within a 1-year period) and the gene ranking score
was also correlated with markers of lifestyle-associated
disease (Fig. 3). The gene expression profiles from 108
muscle samples from ~70-year-old male subjects from
the Uppsala Longitudinal Study of Adult Men
(ULSAM) cohort [51] were produced using Affymetrix
arrays (Human Exon 1.0 ST Array). We ranked each
subject for each of the 150 genes, taking the direction
of gene expression change from the original classifier
model into account (85 % down-regulated; see “Materials
and methods”). We then converted the individual gene
rankings into a summed median gene score for each sub-
ject. We demonstrated that despite all subjects being ~70
years of age at the time of the RNA sample, there was a
very wide distribution in gene score (Fig. 3a). Thus, the
healthy ageing gene score in muscle was very distinct from
chronological age. The healthy ageing gene score was
regressed against a variety of continuous clinical variables
(variables listed in Additional file 2). The gene score at
chronological age ~70 years was unrelated to conventional
lifestyle regulated biomarkers (e.g., blood pressure,

glucose, cholesterol, or renal function; Fig. 3b). This con-
firmed that the 150 gene expression markers were not
reflecting a variety of lifestyle regulated biomarkers and
diseases (e.g., exercise, diabetes) and tissue ‘healthy ageing
status’ could not be derived from a simpler clinical
biomarker.

Despite the limited sample size of the ULSAM co-
hort (n = 108), we were also able to demonstrate that
subjects with the highest muscle healthy ageing gene
score at age 70 years had significantly better renal
function 12 years later (at age 82 years, p = 0.009).
Remarkably, the healthy ageing gene score in muscle
at ~70 years was also independently related to 20-year
survival (p = 0.0295; Fig. Sla in Additional file 3) in a
logistic regression model that included factors listed
in Additional file 2). While this observation should be
interpreted cautiously, to illustrate the temporal rela-
tionship between the healthy ageing gene score and
death, we divided the gene score into quartiles and
applied a Cox-regression model (Fig. S1b in Additional
file 3) and found a significant difference between the
first versus the fourth quartile (p = 0.04). In contrast
to the healthy ageing gene score, a median gene rank
score based on inflammatory gene (GO:0006954) or
mitochondrial gene (GO:0005739) expression in
muscle demonstrated no relationship with health or
mortality (data not shown). The significant relation-
ship between the healthy ageing gene score and organ
function demonstrates that the gene expression pat-
tern most similar to the healthy 65-year profile in the
classifier model (i.e., the largest gene score in the
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Fig. 3 Distribution of healthy ageing gene score in ULSAM samples and its relation with clinical parameters. At the date of assessment (1992),
when the muscle biopsy was taken for subsequent gene-chip profiling, all subjects were considered in reasonable health for their age and
remained physically active. a Distribution of gene score based on the median rank for each of the 150 genes (see “Materials and methods").
b Clinical variables were determined as previously reported for ULSAM samples (chronological age = 69-70 years) [71, 101]. Linear regression was
used to examine the relationship between the healthy ageing gene score at ~70 years and a variety of clinical parameters at age ~70 years. No
relationship between baseline gene score and renal function (estimated from cystatin C, r2 < 0.001), systolic blood pressure (mmHg, r2 = 0.0013),
2 h glucose concentration following a standard oral glucose tolerance test (OGTT; mmol, r2 = 0.015) or total cholesterol (mmol, r2 = 0.002) was
observed. Gene score was also unrelated to resting heart rate or physical activity questionnaire, and thus habitual exercise status. In fact the
healthy ageing gene score was not correlated with any conventional risk factors (as listed in Additional file 2)

ranking system) was associated with better health in
the ULSAM cohort.

A greater healthy ageing gene expression score is
associated with better cognitive health

Neurocognitive pathology (e.g., AD) becomes more pro-
nounced with age and is often apparent in individuals
who are otherwise healthy. Our analysis of the relation-
ship between lifestyle factors and the healthy ageing
gene score in the ULSAM cohort suggested that the
gene score was robust to confounding effects of lifestyle
disease. We next examined whether the healthy ageing

gene score (median rank sum of the 150 RNA markers)
was selectively useful in relation to identifying neurocog-
nitive disease over lifestyle disease. To support this ana-
lysis, we utilized a large publically available gene-chip
data set derived from healthy human brain samples of
various ages [52]. The BrainEac.org gene-chip resource
[52] [GEO:GSE60862] comprises ten post-mortem brain
regions from 134 subjects representing 1231 samples
(Additional file 1). Using the same ranking approach as
applied to the ULSAM cohort, the median sum of the
rank score was calculated for each anatomical brain re-
gion (Fig. 4a). As before, in healthy older individuals the
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Fig. 4 The healthy ageing RNA signature in healthy human brain tissue and blood of AD patients and controls. There was robust regulation of
the healthy ageing RNA signature in human brain with healthy ageing and between control subjects and subjects with AD or MCl. a The healthy
ageing RNA signature was studied across brain regions in healthy individuals using BrainEac.org gene-chip resource [GEO:GSE60862]. Ten brain
regions from 134 subjects representing 1231 samples were individually ranked (see “Materials and methods”) and the median sum of the ranked
scores calculated. Regulation of the healthy ageing genes differed across brain regions with age, as determined by a Kruskal Wallis Test (hippocampus
p = 0.00000002, putamen p = 0.00000004, thalamus p = 0.00004, temporal cortex p = 0.0001, substantia nigra p = 0.0002, frontal cortex
p = 0.001, occipital cortex p = 0.001, white matter p = 0.01, medulla p = 0.06 and cerebellar cortex p = 0.51). Post hoc Mann-Whitney test,
with correction for multiple comparisons (Holm), confirmed a striking ‘increase’ of the healthy ageing score in the healthy older samples
(hippocampus, putamen, thalamus, substantia nigra, and the occipital, frontal, and temporal cortex regions; at least p < 0.002). b The
healthy ageing RNA signature was studied in blood samples from two independently processed case—control studies of AD. In cohort 1
the control median gene score was greater (p = 0.004) than AD samples and greater (p = 0.00005) than that of the MCI samples (Wilcoxon
rank sum test). In cohort 2 the median gene score of control samples was greater than that of AD samples (p = 0.009) and that of MCI
samples (p = 0.003). Data are median gene score and standard error

‘age’ signature was ‘switched on’ (yielding a greater
ranking score) compared with younger subjects. Regu-
lation of the healthy ageing gene score increased in a
distinct manner across individual healthy brain regions
with chronological age, especially in the hippocampus
(p = 0.00000002), as well as other regions (putamen,
thalamus, substantia nigra, and the occipital, frontal,
and temporal cortex regions (all at least p < 0.002 by
Holm adjusted Mann—Whitney test).

Our primary hypothesis was that, compared with con-
trol subjects of similar chronological age and gender,

patients with AD would have a lower median healthy
ageing gene score, but the score would not distinguish
diabetes or vascular (i.e. lifestyle influenced) disease pa-
tients from matched controls. We used two independent
case—control studies of AD and two case—control studies
of lifestyle disease with RNA profiles derived from blood.
The first AD cohort has been previously used to study
disease pathway changes in blood [41, 53] and we have
deposited this data set (cohort 1 [GEO:GSE63060]) and
a second analysis (cohort 2 [GEO:GSE63061]) at the
GEO. We first used a maximum possible subset of
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subjects from each entire cohort, so that gender and
chronological age could be precisely balanced (~70
years) remove these as potentially confounding factors.
From cohort 1, 113 subjects were ranked for gene score,
while 111 subjects were ranked in cohort 2 (Table 1).
We checked for overlap between the 150 healthy ageing
gene markers and previous genomic and genetic disease
markers of AD (Additional file 1). Only three genes were
in common and none were from previously validated
AD diagnostics. Their inclusion or exclusion did not im-
pact our analyses.

Blood RNA from AD case—control cohort 1 was pro-
filed on Illumina HT-12 V3 bead-chips. We first mapped
the appropriate probes from Affymetrix to Illumina,
yielding 128 genes from the original 150-gene list. The
relative median rank score for AD patients was signifi-
cantly lower than for the age- and gender-matched con-
trols (p = 0.004; Fig. 4b) based on Wilcoxon rank sum
test. Blood RNA from the second AD case—control co-
hort was profiled on the Illumina HT-12 V4 platform
and in this case 122 genes were in common with the
150-gene healthy ageing gene signature. As before, the
median rank healthy ageing gene score for AD patients
in cohort 2 was significantly lower than in the control
group (p = 0.009; Fig. 4b). Furthermore, for both cohort
1 and cohort 2, the age-matched controls had a higher
median gene score than subjects diagnosed with MCI
(Fig. 4b; p = 0.00005 and p = 0.003 for cohorts 1 and 2,
respectively). It is important to note that the control
samples used for comparison with MCI overlapped with
those used for comparison with AD and that the MCI
analysis cannot, therefore, be considered a fully inde-
pendent observation. As expected from the ULSAM
analysis, the healthy ageing gene score was not related
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to diabetes or vascular disease status using blood profiles
from 366 individuals (Additional file 4).

We formally evaluated whether the healthy ageing
signature could act as a diagnostic for AD using ROC
analysis and found that it had robust independent per-
formance (AUC = 0.66-0.73; Fig. 5). We have previ-
ously published a whole blood RNA-based prototype
AD diagnostic [41] consisting of 48 genes identified
using machine learning methods applied to cohort 1
samples. We demonstrated that this prototype ‘RNA
disease signature’ was independently validated in co-
hort 2 using LOOCV. Further, when we combined the
two independently produced and validated gene expres-
sion classifiers we yielded an improved AD diagnostic
(AUC = 0.73-0.86; Fig. 5) that matches best in class
[54] for blood-based AD diagnostics validated using in-
dependent data, while our RNA-based analysis uses a
technology platform more suited to reproducible high-
throughput diagnostics.

Biological features of the healthy ageing diagnostic

We were interested in whether the healthy ageing diag-
nostic identified any particular biological processes that
might be open to therapeutic targeting. The 150-gene
list (Additional file 1) was evaluated using both Ingenu-
ity pathway analysis and R-based gene ontology (GO)
analysis. Ingenuity analysis (where a total of 127 genes
were annotated in the database) revealed a few marginal
functional associations (e.g., nervous system develop-
ment genes) but these did not remain significant follow-
ing Benjamini and Hochberg correction. The top ranked
database network (genes with published interactions)
was defined as ‘cell death and survival’ and contained 31
molecules. In Fig. 6a the density curves of p values for

Table 1 Clinical characteristics of batch 1 and batch 2 of case-control subjects that contributed to the blood gene-chip profiles

analyzed and presented in Figs. 4 and 5

Gender and age-matched cohorts Age Gender (F/M) MMSE CDR-SOB
Batch 1

Controlyg (n = 67) 69.6 (+4.2) 41/26 (61 % F) 291 (£1.2) 0.07 (£0.18)
MCI (n = 39) 70.0 (£3.3) 24/15 (62 % F) 27.5 (£1.6) 1.24 (+£1.60)
Controlap (n = 64) 70.2 (£3.7) 41/23 (64 % F) 29.1 (£1.2) 0.08 (+0.18)
AD (n = 49) 69.8 (+44 34/15 (69 % F) 21.8 (£4.5) 544 (£2.95)
Batch 2

Controlyc (n = 71) 70.8 (£2.9) 44/27 (62 % F) 289 (£1.9) 0.15 (+0.57)
MCI (n = 31) 69.5 (+4.5) 23/8 (74 % F) 276 (£1.9) 1.34 (£1.86)
Controlap (n = 71) 70.8 (£2.9) 44/27 (62 % F) 289 (x£1.9) 0.15 (x0.57)
AD (n = 40) 69.9 (+4.3) 23/17 (58 % F) 21.0 (£5.6) 5.80 (+2.75)

The subjects are an age- and gender-balanced subset of the entire clinical cohort. MCI mild cognitive impairment, AD Alzheimer’s disease. Age is in years (+standard
deviation). Gender is ratio of females (F) to males (M). MMSE mini-mental state examination involving a 30-point questionnaire. CDR-SOB the Washington University
Clinical Dementia Rating Scale (CDR) global and Sum of Boxes (SOB) score. Application of the healthy gene ranking score provided, post hoc, similar separation of the

groups with similarly robust statistical significance
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Fig. 5 Validation of novel blood RNA classifiers as a diagnostic for Alzheimer's disease. We used the independent batch 2 AD data set (see
“Materials and methods”) to test the predictive performance of our healthy ageing classifier and our previously published AD prototype
diagnostic. The performance of each was evaluated using ROC curves. The healthy ageing gene classifier generated independent AUCs of 0.73
and 0.66 for AD in cohorts 1 and 2, respectively. For the combined ‘healthy ageing’ plus ‘AD disease’ RNA classifier (150 + 48 probe-sets) we
obtained AUCs of 0.86 and 0.73 for AD without any attempt at optimization. The AD disease RNA classifier probe-sets were selected using
cohort 1
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analysis is subjective and it cannot be concluded that
these biological functions appear in the ‘healthy ageing’
diagnostic more than by simple proportionality. We did
note that the 150 genes included some previously identi-
fied ‘ageing’ genes, for example, LMNA (linked with
Hutchinson-Gilford progeria syndrome), Unc-13 homo-
log (UNC13C; linked with beta-amyloid biology), as well
as COLIAI (thought to change in skin ageing).

We also examined whether the 150 age-related genes
were over represented at genomic loci using positional
enrichment analysis [55] but found no significant associ-
ations. Using the top 670 genes from the first stage of
the project (>70 % success in the training model) there
were a number of significant findings (Additional file 1)
with three genes originating from the top 150. In this
analysis, 11q made a significantly greater contribution
(adjusted p value = 0.005-0.007) to the enlarged proto-
type classifier than would be expected by chance
(Fig. 6b), and there were a total of 15 genes from the
11q13 (ALDH3BI1, CAPNI, CDC42EP2, COROIB,
LTBP3, NRXN2, PPPIRI4B, RCEI, RCOR2, SARTI,
SYT12, and ZDHHC24; p = 0.0005) and 11q23 (FXYD2,
SCN2B, and TMPRSS13; p = 0.0009) over-represented
genomic locations. Interestingly, 11q23 is the location
for age-related genetic interactions, namely the apolipo-
protein A family [56, 57] as well as a region containing
genetic association single nucleotide polymorphisms
(SNPs) which modify the age of onset of colorectal can-
cer [58, 59]. Furthermore, 11q13 harbors SNPs associ-
ated with age of onset of renal cell carcinoma and
prostate cancer and modulating age-related disease
emergence by 5 years [60—62]. While the lack of an ap-
parent specific biological dialogue may be considered
disappointing, the extensive independent clinical results
strongly support that the novel 150-gene healthy ageing
signature is an important marker of healthy ageing in
humans. Therefore, regulation of this gene expression
program may in time reveal itself to be an important
mechanism for maintaining human health and thereby a
new opportunity for target development.

The molecular mechanisms that define healthy ageing
remain elusive in both human and animal models [63].
Many of the molecular mechanisms which extend the
lifespan of laboratory animals also appear to extend
health-span or disease-free ageing in these models [64].
However, it remains unclear whether any of these mech-
anisms are central to human ageing [8, 9, 65] or define
healthy ageing in humans. Our approach was novel be-
cause we first sought to define a set of genes associated
with healthy ageing in ‘normal’ 65-year-old subjects
rather than gene expression associated with disease or
extreme longevity. This is an important distinction —
ageing is thought to be a continuous physiological
process that could be expected to have a gene expression
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signature distinct from lifestyle related (e.g., type II dia-
betes) or mutation driven (e.g., cancer) pathologies, thus
explaining its independent prognostic rather than spe-
cific diagnostic capacity. It is however of potential im-
portance that regulation of the healthy ageing signature
in human brain is most evident in those regions associ-
ated with neurodegeneration. In contrast, it is thought
that the cerebellar cortex is not subject to substantial
age-related anatomical changes [66] and this was con-
sistent with our new model of human healthy ageing
(Fig. 4a).

The 65-year-old subjects used to build the RNA model
were in good health despite leading a normal sedentary
lifestyle. Rather than using individual differential expres-
sion values to define discriminatory genes, we selected a
group of genes that would act together to make a ‘major-
ity vote’. Indeed, we were able to demonstrate that the
150 healthy ageing genes are consistently modulated in
several tissue types, but to very differing degrees in
people of the same chronological age (e.g., Fig. 3a).
Thus, the healthy ageing gene score fulfilled the first
main criteria for being a novel diagnostic of healthy
(or biological) ageing. Including the ULSAM analysis
(males only), we have demonstrated in three independent
clinical cohorts that greater healthy ageing gene score as-
sociates with better health in men and women, suggesting
that promotion of this gene expression profile may be
beneficial and could reflect an adaptive compensatory
response. The present RNA diagnostic could be used to
facilitate the evaluation of anti-ageing-related treatments
in middle-aged humans, screen for long-term safety dur-
ing drug development, or augment clinical decision-
making that currently inputs chronological age rather than
‘biological’ age into treatment algorithms. Future efforts
should focus on discovering strategies to modulate the
healthy ageing gene signature to establish if it is causally
determining health or just acting as a robust biomarker of
a more complex set of molecular interactions.

The multi-tissue healthy ageing gene score is predictive
of health in older subjects

Exceptional longevity is driven by a measurable genetic
contribution [67, 68], while being active and healthy at
age 65 years is a more common occurrence, likely to
reflect complex molecular factors [64, 69], and is less
obviously linked to only variations in DNA sequence.
We profiled RNA from healthy members of the ULSAM
cohort at age 70 years and analyzed follow-up data over
two decades. In 1992, these 70-year-old Swedish men
had normal levels of physical activity ‘for their age’ and
most demonstrated longevity to 90 years, which is not
exceptional in the Swedish population [70]. The healthy
ageing score demonstrated a four-fold range (Fig. 3a)
while chronological age varied by no more than one year
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across the group. A greater gene score was associated
with better cognitive function, and better renal function
across a 12 year span and both cognitive decline and
renal function are important determinants of all-cause
mortality [71, 72]. A concurrent reduction in cognitive
and renal function is clinically observed, suggesting both
are subject to a general age-related decline in organ
function [73]. It is perceived that lifestyle-regulated dis-
eases, such as type II diabetes, causally increase AD [74].
This relationship did not appear causal when the rates of
emergence of diabetes (or not) and number of emerging
cases of AD were compared in the Framingham or Balti-
more Age studies [75, 76]. This suggests that risk of devel-
oping type II diabetes and AD may share some concurrent
risk factors, e.g., aerobic capacity [77]; a physiological cap-
acity defined by a large genetic and gene—environmental
interaction [78]. Additionally, type II diabetes and AD
may share epigenetic or genetic risk factors. Interpretation
of such associations is further complicated by the inter-
action between type II diabetes, vascular disease, and
other types of dementia (which complicate the diagnosis
of AD).

Neurological decline is predicted to contribute sub-
stantially to the economic burden of healthcare in the
coming decades. AD is a multi-factorial disease [79] with
around 22 genetic loci potentially associated with disease
risk or progression of symptoms. The strongest and
most reproducible genomic association, APOE-€4, is a
modifier of risk, contributing to the variance in age of
onset of the disease by 3.7 % [80]. The remaining
approximately nine reproducible risk loci for late-onset
AD (the most common form) contribute a further 2.2 %
of the variance in age of onset [80]. In short, these DNA
sequence variants will not be clinically useful for diag-
nosing or managing AD or even assessing risk in the
majority of people. Differential gene expression analysis
and molecular classification have found disease-related
RNA markers of AD, using patient materials to build the
model [35]. However, such diagnostics can be biased by
unknown features of the training data (the data used to
select the RNA markers). In contrast our healthy ageing
genes were selected via a hypothesis-driven strategy that
then relied on a validation process that included seven
independent tissue cohorts including multiple RNA
detection technologies (so ruling out some unknown
technology platform bias). Thus, our healthy ageing gene
expression signature has the key advantage of being a
signature built using a paradigm and samples entirely
distinct from AD case—control samples.

The healthy ageing gene score allowed us to demon-
strate that patients diagnosed with AD have an altered
healthy ageing RNA expression signature in blood that
demonstrates significant association with disease. Fur-
thermore, the muscle or blood gene score was unrelated
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to lifestyle diseases such as type II diabetes and thus
may be more clinically specific than earlier AD biomarkers
[20, 22-26, 41, 81], most of which did not replicate in in-
dependent clinical studies. We were able to provide inde-
pendent validation for our earlier AD-related ‘disease’
diagnostic [41]; like many AD disease biomarkers [35],
however, it includes pro-inflammatory markers and oxida-
tive stress, features that can be common to several dis-
eases and thus it may not be specific in clinical practice.
Nevertheless, when we combined the Lunnon et al. [41]
AD biomarker (even after removing the eight genes we
found to be regulated in blood by diabetes or vascular dis-
ease) with the healthy ageing genes we yielded an im-
proved diagnostic for AD over and above either diagnostic
alone (Fig. 5). Ultimately, formal diagnosis of AD will
continue to rely on a combination of diagnostics, in-
cluding invasive cerebrospinal fluid sampling, positron
emission tomography (PET) imaging and magnetic res-
onance imaging (MRI). However, given the scale of
screening required (e.g., more than 1 million people in
2015/2016 to deliver sufficient numbers of at-risk sub-
jects for AD clinical trials [82]) a blood-based diagnostic
will be extremely useful for pre-screening ahead of inva-
sive and costly follow-up analysis. Enrichment of pre-
vention trials with asymptomatic people most at risk for
AD is required to ensure that event rates are sufficiently
high to evaluate the multitude of drug trials being con-
sidered for AD [20].

Like many genomic diagnostics, the full clinical utility
of ours will only emerge when combined with add-
itional data and clinical insight. While we could also
demonstrate that patients with MCI had a significantly
lower healthy ageing gene score it remains to be shown
that this can be converted into a diagnostic for future
cognitive health (i.e., a blood sample from older healthy
subjects or those with recently diagnosed MCI com-
bined with 5-10 years of follow-up data to prove they
did or did not develop AD). Epidemiological efforts to
build long-range (~36 year) forecasting of dementia
risk (AD or vascular) using clinical demographics [83]
(CAIDE score) provide assessment of risk at middle-
age (~45 years and over) and can assign patients into a
low (9 %) or high (29 %) risk with un-validated ROC
AUC = 0.74. In diabetes patients, age is by far the more
powerful predictor of future dementia rather than
severity of the diabetes measured using glycosylated
hemoglobin A1 (HbA;) [84] and it will be informative
to replace age with our healthy ageing gene diagnostic
for many conditions. These examples highlight that,
clinically, various decision trees exist and our healthy
ageing score could be integrated to help decide which
middle-aged subjects could be offered entry into a pre-
ventative clinical trial many years before the clinical
expression of AD.
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As can be observed in Fig. 5, we obtained an inde-
pendently validated ROC AUC of 0.73 using default clas-
sification settings. This is not an optimized or over-fitted
model, in that it is most likely possible to tune ROC
parameters to yield an improved performance using the
same list of genes or a subset thereof. Some previous
authors have reported ROC AUC scores of >0.8, but as
mentioned these do not represent valid scores, being de-
rived from data over-fitted to a single data set [33—40].
High ‘scores’ encompass shared technical variance in the
‘test’ and ‘validation” data. For example, a microRNA de-
mentia diagnostic (relying on 2—17 microRNA real-time
PCR assays) was validated in samples used to build the
initial model, yielding inflated specificity and sensitivity
values [40]. Other practical factors must be considered,
such as the complexity of the laboratory test and costs.
Cheng et al. [39] used a complex process to isolate
serum exosome microRNAs and a split-cohort partial
validation approach. Their best AD model (16 micro-
RNAs) was 87 % sensitive and 77 % specific but could
not diagnose MCI. DiaMir Inc. claimed 95 % specificity
and sensitivity for MCI (their model did not work in
AD) but this failed to replicate in a second study [40].

During the past 5 years several projects have worked
with whole-blood mRNA and produced 20-225-gene as-
says to classify samples during the training phase, com-
paring controls with patients (MCI or AD). The RNA
classifier from DiaGenic A/S used TagMan assays and
this remains the only replicated blood-based AD diag-
nostic performing to a similar level as the present study
[33], while there were no genes in common with our
own ‘AD disease’ or ‘healthy ageing’ RNA signatures. To
date, few blood-based protein and metabolite diagnostics
have been replicated using a fully independent process.
Doecke et al. [27] combined a panel of eight protein
markers with age, gender, and APOE genotype in the
Australian Imaging, Biomarkers and Lifestyle (AIBL) co-
hort and found an AUC of 0.84 using a subset of the
Alzheimer's Disease Neuroimaging Initiative (ADNI) co-
hort. However, their protein markers were a priori
known to be regulated in the ADNI cohort, and it re-
mains unclear how many of the eight protein markers
contribute to the model, including age, gender, and
genotype, in the validation process.

Comparison with known markers of human ageing or
longevity

Other approaches have been utilized in humans to
understand the molecular determinants of human age-
ing, but not ‘healthy’ ageing. Genome-wide association
analysis has shown 281 DNA variants linked with excep-
tional longevity, and collectively explaining 17 % vari-
ance in humans [68] with an AUC value of 0.6. This
remains to be replicated and this list of genes did not
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overlap with our healthy ageing gene list. In addition,
long-lived humans appear to have a similar genetic bur-
den for common DNA disease variants, suggesting the
human exceptional longevity model may not be reflect-
ive of the processes that determine average longevity
[63]. There have been several linear molecular models of
chronological age [5, 8, 11, 14] but the variance captured
by these across chronological age is limited and the dis-
ease status of samples used to build or validate the
model unclear; thus, it is uncertain if such models reflect
ageing or age-related disease and drug treatment. There
was no overlap between the genes in our healthy ageing
RNA classifier and the quasi-linear methylation model
derived by Horvath et al. [13].

Conclusion

We found four genes in common between our healthy
ageing RNA classifier and the two gene lists identified by
Hannum et al. in separate DNA methylation models of
ageing (n = 94 and n = 326): one gene from their pri-
mary model (PKM?2) and three genes from their RNA
methylation association analysis (ANKRDI13B, RUNX3,
and TCF3) [14]. Neither the Horvath nor the Hannum
models generate sufficient distinction from chrono-
logical age to provide a useable ‘size effect’ when consid-
ering longevity [15]. Passtoors et al. [5] reported that a
set of 21 RNA molecules ‘marked out’ familial longevity
in blood RNA, but this was a weak correlation with no
discriminatory capacity as a diagnostic, possibly because
it reflects a mixture of ageing, disease, and drug therapy.
Furthermore, none of those age-related blood RNA
changes were consistently correlated with age in human
brain or muscle [8, 85], indicating that these 21 RNAs
do not represent universal markers of human ageing
(they were also not part of our 150 healthy ageing gene
list). We did not note any significant ontology pathway
enrichment within our healthy ageing diagnostic gene
lists (Fig. 6a). Thus, we cannot neatly place the genes
that contribute to the healthy physiological age diagnos-
tic into a convenient canonical signaling pathway.

Materials and methods

Informed consent was obtained from all volunteers and
ethical approval received from Institutional Research
Ethics Committee as reported in primary clinical publi-
cations [8, 9, 31, 44, 46-50, 52] and all studies included
in this work were conducted under the auspices of the
declaration of Helsinki. For new gene-chip tissue profiles
and hence new GEO deposits, the Institutional Research
Ethics Committee approvals were as follows: ULSAM
(Regional Ethical Review Boards Uppsala Ethical applica-
tions 09-154M/2010/400), STRRIDE (Duke Medical
School IRB, Pro00012628) and AddNeuroMed/DCR
(SLaM/IOP 30/07/2006/SLaM/IOP 30/04/2008).
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A summary of the analysis strategy was as follows.
The first aim was to generate a reliable RNA classifier of
healthy older muscle tissue (healthy ageing gene score).
We utilized k-nearest neighbor (KNN) classification
methods because they capture data features that share
non-linear interactions and have robust performance
using methods consistent with the Microarray Quality
Control Consortium [43]. The probe-set level intensities
of each set of independent microarrays were normalized
using the Robust Multi-array Analysis (RMA) method
implemented within the R statistical software environ-
ment using the ‘affy’ package, and then scaled and cen-
tered (Bioconductor project [86, 87]). When Affymetrix
gene-chips originated from independent laboratories,
we used Frozen Robust Multi-array Analysis (fRMA)
[88, 89]. Having identified a healthy ageing gene score
comprising 150 RNA markers (probe-sets), we estab-
lished that these 150 RNAs could reliably classify mul-
tiple independent sets of human muscle and brain
tissue using external validation. External validation uses
independent training and validation data sets. Finally,
we examined if the healthy ageing gene score in blood
was related to cognitive health, alone or in combination
with our prototype blood marker of early AD. Figure 1
presents the project analysis scheme.

Production and independent external validation of the
healthy ageing gene score

We identified 150 RNA markers of muscle ageing using
samples [31, 44] and gene-chip profiles [GEO:GSE59880]
from 15 young (aged 19-28 years) and 15 older subjects
(aged 59-77 years) free from metabolic and signs of car-
diovascular disease and validated this observation in more
than 500 independent samples. The older subjects were
sedentary (did not do any regular sport/exercise) but
nevertheless were free of diabetes and had good levels of
aerobic capacity, a marker of general health into older age
[90]. The RNA markers were selected using a nested-loop,
holding out two arrays at any one time to estimate two pa-
rameters from the data. The first of these was the conven-
tional classification result; i.e., was the ‘unknown’ sample
correctly classified, yes or no? The second parameter was
used to calculate the performance of the probe-sets
contributing to the decision. We selected 200 probe-sets
during each of the inner-most loops by ranking gene
expression differences using an empirical Bayesian statistic
(implemented as eBayes in the ‘limma’ package) [91]. Fol-
lowing iterative assessment of all probe-sets and all sam-
ples, involving ~180,000 permutations, a list of ~800
probe-sets was identified as having good performance
(>70 % correct). We removed probe-sets that targeted
multiple genomic loci and selected the top ranked 150
probe-sets (involved in >90 % correct decisions) for
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further study. Classifier performance was assessed using
ROC analysis and the R package ROCR [92].

We implemented fully independent external validation
of the 150-probe-set healthy ageing classifier, a process
that requires both independent ‘known samples’ to de-
fine the expression space and independent test gene-
chips [93]. When combined with LOOCV methods, this
represents a gold standard approach to validation of a
classification model. A new set of young and old muscle
profiles (selected from the Campbell data set; n = 66
chips [47]; [GEO:GSE9419]) was used to represent the
new expression space of known samples. We then car-
ried out evaluation of sets of independent gene-chip pro-
files from young and old human muscle (all Affymetrix
U133+2) normalized using fRMA. The various fully
independent samples were obtained from GEO or pro-
duced from our own clinical samples [94]. For each
dataset a subset of samples were selected to belong to
either the young (~25 years) or older group (~65 years)
from a larger collection of samples. The sets of young
and older samples were selected from the Trappe [48]
[GEO:GSE28422]; n = 48), Hoffman [49] [GEO:GSE38718];
n = 22), Derby [8] [GEO:GSE47881]; n = 26) and Kraus
[GEO:GSE47969]; n = 33) data sets. For the Kraus data set
total RNA was extracted from frozen muscle biopsy
samples (vastas lateralis) using TRIzol reagent and
in vitro transcription was performed using the Bioarray
high yield RNA transcript labeling kit (P/N 900182,
Affymetrix, Inc.) as previously described [95]. For all
data sets, arrays were examined using hierarchical clus-
tering and normalized unscaled standard error (NUSE).
In cases where we identified a small number of gene-
chips (two to three) that had evidence of technical
defects, these were removed prior to any analysis.

To assess if human brain and skin also demonstrated
the same 150 age-related gene expression signature as
healthy older muscle, we used young and old samples
from the brain-bank array source (n = 120; [GEO:
GSE11882]) and the MuTHER cohort skin data set
(n = 279, which includes a subset of three replicates,
n = 131, n = 124, and n = 24). The skin data were
produced using the Illumina Human HT-12 V3 Bead
chip (Array-express: E-TABM-1140) and log-2 trans-
formed signals were normalized using quantile
normalization. The 150 Affymetrix probe-sets were
mapped to the Illumina platform (giving 129 probes).
Due to differences in gene-chip technology, a LOOCYV ap-
proach was used to classify the age of each skin sample,
using only the 150 probes selected at the start of the pro-
ject. For skin, individuals aged 45 years or less were de-
fined as young, and those aged 70 years or older as old to
ensure balanced numbers of young and old samples
existed to fairly assess the classifier performance. The
three sets of technical replicates were analyzed separately
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and confirmed the intra-study technical reproducibility of
the classifier using repeated RNA profiles of a single clin-
ical sample (data not shown).

The healthy muscle ageing gene score differs
substantially from chronological age

We used a set of tissue samples from a birth cohort of
men, such that the same chronological age (~70 years)
could be contrasted with the variation in healthy ageing
gene score. The ULSAM cohort comprises men born in
1920-1924 and living in Uppsala, Sweden and was used
to compare a constant chronological age (and similar en-
vironment) with the healthy muscle age gene score
across individuals [51]. Dual-energy X-ray absorpti-
ometry (DXA) scan measurements were performed during
the last decade of the study and muscle mass status varied
between -15 % to +10 % between age 70 years and
88 years and was unrelated to physical activity scores
(recorded at 82 years and 88 years of age, with 80 %
being recorded as being moderately active). Renal
function was estimated using cystatin C, which is a
marker of glomerular filtration rate [4]. We had access to
129 skeletal muscle biopsies taken at age 70 years
(in 1992) and we processed these in 2012 with the
majority having excellent NUSE plot profiles. Total
RNA was extracted from frozen muscle biopsy samples
(vastas lateralis) using TRIzol reagent as previously de-
scribed [95]. A total of 113 samples provided sufficient
RNA and 50 ng total RNA was amplified using Ambion’s
WT expression kit to produce cDNA. The ¢cDNA was
fragmented and labeled with GeneChip WT Terminal
labeling kit (Affymetrix, Inc.). Unincorporated nucleotides
from the in vitro transcription reaction were removed
using an RNeasy column (QIAGEN Inc.). Hybridization,
washing, staining, and scanning of the arrays were per-
formed according to the manufacturer’s instructions
(Affymetrix, Inc. Santa Clara, USA).

One hundred and eight samples passed gene-chip
quality control procedures (see above). A cumulative
gene ranking-based score was calculated using each of
the 150 gene expression values for each of the 108 male
subjects and the final score was compared in a linear
fashion with a number of clinical parameters. For an
RNA down-regulated in the original training classifica-
tion data set (i.e, down-regulated between 25 years to
65 years) the ULSAM subject with the highest expres-
sion was assigned a score of 1 and the subject with the
lowest expression 108. For genes up-regulated in the ori-
ginal age classification model, the opposite strategy was
used. Thus, both feature selection (genes) and direction
of regulation were taken from the original model. The
median sum of these rank scores (reflecting the 150
probe-sets) was calculated and that represented the
healthy ageing gene score for each individual in the
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ULSAM cohort. Median rank ensured each gene pro-
vided equal weighting and regression analysis was used
to study the variation in gene score in these men, all of
who had approximately the same chronological age.

The relationship between the gene score at age 70
years and a number of clinical features was carried out
using multi-factor models. Model selection was executed
using a forward selection approach, with p > 0.1 as stop
criterion (backwards elimination yielded identical re-
sults). Clinical variables, previously reported [51], were
added to the baseline model one at a time, and selected
based on p value [96] (Additional file 2). Over the obser-
vation period mortality rate was 18 % (19 events) and
the relationship between mortality and gene score was
analyzed as a continuous variable. Both the Cox-
regression and the logistic regression model were im-
plemented in R. For the Cox model we used the latest
‘survival package’ whereas the logistic regression model
was estimated using the glm (generalized linear model)
function and ‘logit’ model, which models the log odds
of the outcome as a linear combination of the predictor
variables. For the Kaplan—Meier plots, gene score was
divided into quartiles and the plot was produced using
the plot-survfit function in the survival package. All
three approaches yielded consistent results.

Relationship between the healthy ageing gene score in
blood and disease status using age- and gender-matched
case—control analysis
Demonstration that the healthy ageing gene score was
clearly demonstrable in neuro-muscular tissue suggested
that it might also relate to cognitive health. Indeed, to
provide additional support for the observations in human
brain, we used the BrainEac.org gene-chip resource [52],
which comprises ten post-mortem brain regions from 134
subjects representing 1,231 samples [GEO:GSE60862]
(Additional file 1). For each brain region, and for a down-
regulated gene in the original model, the subject with
highest expression was assigned a score of 1 and the sub-
ject with the lowest expression was assigned a score of
134 (upper and lower score depends on total number of
samples; Additional file 1). The median sum of the rank
score was calculated for each anatomical brain region in
the same manner as described above, with the ULSAM
cohort. The healthy ageing gene score differed across the
brain regions with chronological age, as determined by a
Kruskal-Wallis test. A Kruskal-Wallis test was used as
we were comparing unequal observations per age group
(Additional file 1). Post hoc Mann—Whitney test with cor-
rection for multiple comparisons (Holm) was used to con-
firm regulation of the ageing signature genes in each
region.

We used blood RNA profiles from subjects from the
AddNeuroMed consortium, a large cross-European AD
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biomarker study and a follow-on Dementia Case Register
(DCR) cohort in London. Patient selection, design, and
clinical data have been reported previously [53, 97]. AD
data sets have been deposited under accessions
[GEO:GSE63060] and [GEO:GSE63061]. A summary of
the cohort characteristics can be found in Table 1.
Briefly, subjects were excluded from the study if they
had neurological or psychiatric illness other than AD,
unstable systematic illness or organ failure, or a geriat-
ric depression rating scale score > 4/5. AD was diag-
nosed using the National Institute of Neurological and
Communicative Disease and Stroke and Alzheimer’s
disease (NINCDS-ADRDA) and Diagnostic and Statis-
tical Manual of Mental Disorders (DSM-IV) criteria for
possible or probable AD. All MCI subjects reported
problems with memory, corroborated by an informant,
but had normal activities of daily living as specified in
the Petersen’s criteria for amnestic MCI [41, 97]. All
subjects underwent a structured interview and a battery
of neuropsychological assessments, including the mini-
mental state examination (MMSE). Control and MCI
subjects were further assessed using the CERAD bat-
tery and detailed information on subject recruitment
and assessments can be found in other published stud-
ies describing the AddNeuroMed consortium [54, 97].
RNA was obtained from whole venous blood and it was
collected from the subjects who had fasted 2 hours
prior to collection into a PAXgene™ Blood RNA tube
(Becton & Dickenson, QIAGEN Inc., Valencia, CA,
USA). The tubes were frozen at —20 °C overnight prior
to long-term storage at —-80 °C. RNA was extracted
using PAXgene™ Blood RNA Kit (QIAGEN) according
to the manufacturer’s instructions.

We used two independently produced gene-chip data
sets from the AddNeuroMed/DCR consortia, one data-
set produced in a UK gene-chip facility and another pro-
duced in the USA. Gene expression data was produced
using Illumina Human HT-12 v.3 Expression BeadChips
for the first case—control study (USA; cohort 1) and Illu-
mina Human HT-12 v4 Expression BeadChips for the
second case—control study (UK; cohort 2). cDNA was
synthesized from 200 ng total RNA using the TotalPrep™
RNA Amplification Kit (Ambion), which was followed
by amplification and biotinylation of cRNA and
hybridization. The expression data were first trans-
formed using variance stabilization and then quantile
normalized using the LUMI package in R. The 150
probe-sets were mapped from the Affymetrix platform
to the Illumina platform. For our primary analysis, con-
trol subjects were matched in a manner that created the
largest possible group with the same chronological age
and gender balance as the AD or MCI groups. Thus, our
analysis was carried out on a subset of subjects depos-
ited at the GEO, with each case—control group having a
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similar median chronological age as the ULSAM cohort.
In total 297 samples were utilized (batch 1 Control = 67,
MCI = 39, AD = 49; batch 2 Control = 72, MCI = 30,
AD = 40). Retrospective inclusion of the entire cohort
(n = 717) did not alter the outcome of our analysis.

We also utilized two additional large gene-chip clinical
studies; one comparing blood RNA in type II diabetes
with control [98] and the other from our laboratory
comparing blood RNA in people with and without cor-
onary artery disease [99]. For each case—control com-
parison the ranking metric was computed in the exact
same manner as for the ULSAM subjects and AD pa-
tients (see above). A Wilcoxon rank sum test from the R
stats package was used to test if the median gene score
ranks between groups were significantly different or not.
For data presentation, ranking scores were scaled to the
total number of samples being ranked to ensure each
data plot was on the same scale.

The bioinformatics tool Ingenuity Pathway Analysis
(IPA) [100] was used to explore the biology of the age
classifier genes. HUGO gene name identifiers were
uploaded into IPA and queried against the verified IPA
knowledge database. To establish the GO profile of the
150 genes, we generated a null distribution of GO en-
richment p values by randomly sampling 10,000 lists of
150 probe-sets from the hgul33plus2 chip and testing
each list for the GO term molecular function using the
GOstats package in R. The entire population of probe-
sets on the hgul33plus2 microarray was used as the
background population for these tests. The resulting
p values for each tested probe-set list were corrected
using the method of Benjamini and Hochberg. The
150 healthy ageing genes were then tested for GO
term molecular function and the p values Benjamini
and Hochberg corrected. Positional gene enrichment
analysis was used to identify whether the classification
genes (or the classifier network genes) were significantly
enriched within given chromosomal regions [55] as previ-
ously implemented [8].

Additional files

<
Additional file 1: An Excel spreadsheet containing data related to
our study with six tabs: 1) analysis of the top 150 genes from age
prototype classifier in PUBMED; 2) the top 670 genes from the first
stage of the project; 3) phenodata for the training data set and
validation data sets in our study; 4) a list of prior markers in the
literature for Alzheimer’s disease; 5) positional gene enrichment
analysis; 6) sample information for the BrainEac study. (XLSX 221 kb)

Additional file 2: Table S1. Clinical regression data from the ULSAM
cohort. (DOCX 127 kb)

Additional file 3: Figure S1. A cumulative ranking metric of the healthy
ageing metric was prognostic for mortality over a 20-year follow-up
period. One-hundred and eight subjects provided a healthy tissue biopsy
in 1992 that was suitable for RNA profiling and the fully annotated
mortality data, covering 2009-2011, was retrieved from the Swedish
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national health registry. a The rank score for healthy ageing gene expression
was calculated from the top 150 genes of the healthy ageing prototype
classifier (n = 108, male subjects all ~70 years of age). Logistic regression
analysis performed using the cumulative ranking metric of the top 150
genes from original prototype was prognostic for mortality. It showed that
those subjects with the lowest median healthy ageing gene score had a
much higher probability of death during the 20-year follow-up period
(p = 0.0295). In contrast, members of the inflammatory response
(GO:0006954) and mitochondrion (GO:0005739) gene ontology families -
selected from ENSEMBL (BioMart) - showed no significant relationship with
health during the 20-year follow-up period (p = 034 and p = 0.17). b The
rank score for healthy ageing gene expression was calculated from the top
150 genes of the healthy ageing prototype classifier (n = 108, male subjects
all ~70 years of age) and Kaplan-Meier plots were used to illustrate the
temporal pattern of survival. Gene score was divided into quartiles and the
plot was produced using the plot-survfit function in the R survival package.
The plot allows us to compare overall survival rates between the four quartiles
for gene score. The third and fourth quartiles differed from the first
quartile (p < 0.04). (PDF 46 kb)

Additional file 4: Figure S2. Diabetes and vascular disease plots. The
healthy aging signature activation was studied in blood samples from
two independent large case—control studies of diabetes and vascular
disease. Applying a Wilcoxon rank sum test, neither diabetes nor vascular
disease was related to the healthy ageing gene score. This is consistent
with our original hypothesis, and methods, that the healthy ageing gene
score is not related to lifestyle factors and it is also consistent with the
results observed in the ULSAM cohort (Fig. 3). a The diabetes data (94
controls versus 50 cases, group mean age = 66 years) originates from
Tabassum et al. [98] (using lllumina Human HT.12.V4 arrays). b The
vascular disease data (112 controls and 110 cases, group age = 53.3
years) originates from Sinnaeve et al. [99] (using Affymetrix HG-U133A
arrays). (PDF 44 kb)
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