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Abstract

Background: During spliceosome assembly, protein-protein interactions (PPI) are sequentially formed and disrupted
to accommodate the spatial requirements of pre-mRNA substrate recognition and catalysis. Splicing activators and
repressors, such as SR proteins and hnRNPs, modulate splicecosome assembly and regulate alternative splicing. However,

protein-RNA interactions.

it remains unclear how they differentially interact with the core spliceosome to perform their functions.

Results: Here, we investigate the protein connectivity of SR and hnRNP proteins to the core spliceosome using
probabilistic network reconstruction based on the integration of interactome and gene expression data. We validate
our model by immunoprecipitation and mass spectrometry of the prototypical splicing factors SRSF1 and hnRNPAT.
Network analysis reveals that a factor's properties as an activator or repressor can be predicted from its overall
connectivity to the rest of the spliceosome. In addition, we discover and experimentally validate PPIs between
the oncoprotein SRSF1 and members of the anti-tumor drug target SF3 complex. Our findings suggest that activators
promote the formation of PPIs between spliceosomal sub-complexes, whereas repressors mostly operate through

Conclusions: This study demonstrates that combining in-silico modeling with biochemistry can significantly advance
the understanding of structure and function relationships in the human spliceosome.

Background

The major spliceosome is a biological machine that
excises >99 % of human introns. It is composed of
approximately 150-300 proteins [1-3], depending on
the stage of the splicing reaction and the affinity of
proteins for their pre-mRNA substrates [2]. A subset of
proteins associate with small nuclear RNAs (snRNAs) to
form five small nuclear ribonucleoprotein complexes
(snRNPs): Ul, U2, U4, U5, and U6. The snRNPs,
together with other proteins, constitute the catalytic
core of the spliceosome [2, 3]. The spliceosome forms
step-wise on the pre-mRNA [2], through sequential
rearrangements in which various protein and RNP
complexes form and disassemble distinct protein-
protein interactions (PPIs), in addition to RNA-RNA
and RNA-protein interactions. These transformations,
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some of which require ATP hydrolysis, are the driving
force of splicing catalysis [2, 3].

The structural plasticity of the spliccosome makes it
susceptible to regulation, allowing for the skipping or in-
clusion of alternative exons or exon segments [2], known
as alternative splicing. More than 90 % of human pri-
mary transcripts undergo alternative splicing [4, 5]. Spli-
cing efficiency and alternative splicing regulation are
controlled by trans-acting splicing factors, which bind to
cis-acting elements on the pre-mRNA to either activate
or repress the selection of particular splice sites [6].

SR proteins [7] and hnRNPs [8] are two important
families of splicing factors. The SR proteins SRSF1-7
typically activate exon inclusion through sequence-
specific binding to exonic enhancers [7]. SRSF9-11 share
sequence and structure similarity with the rest of the SR
family, but they uncharacteristically act as repressors [7].
The hnRNPs are also diverse: a recent study [9] address-
ing the sequence specificity and splicing activity of five
hnRNPs using high-throughput techniques, concluded
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that hnRNPF, H1, M, and U are primarily activators,
whereas hnRNPA1 and A2B1 are primarily repressors.

The regulation of alternative splicing by activators and
repressors has been studied by a variety of methods,
revealing RNA-binding patterns, cooperative effects, and
regulatory targets of particular splicing factors. Although
the functions of these factors can be studied in isolation,
activators and repressors must work coordinately with
the core spliceosome machinery responsible for consti-
tutive and alternative splicing [9-14].

To understand the contextual differences shaping the
behavior of activators and repressors, we assembled and
studied the PPI networks of all SR proteins and hnRNPs.
We conducted a top-down study in three stages: first,
we predicted PPIs in the human spliceosome through a
probabilistic model that integrates annotated PPIs with
gene-expression microarray profiles; second, we imple-
mented the resulting interactome network to investigate
the connectivity of SR proteins and hnRNPs to the rest
of the spliceosome; and third, we validated the structure
of the network by performing immunoprecipitation and
mass spectrometry (IP-MS) of two prototypical splicing
factors: the activator SRSF1 and the repressor hnRNPA1.

By regarding spliceosomal PPIs as probabilistic (rather
than deterministic) events, our model uncovered novel
information about the involvement of SR proteins and
hnRNPs in splicing regulation. We found that a splicing
factor’s property as an activator or repressor can be
predicted from its overall connectivity to the spliceo-
some. Whereas activators (from either the SR or hnRNP
families) form several PPIs showing prominent central-
ity in the spliceosome, repressors are peripheral, and
therefore loosely connected to other spliceosomal pro-
teins. We confirmed these observations through IP-MS,
and demonstrated that many hnRNPA1 interactions are
RNA-dependent, whereas SRSF1 does not require RNA
to remain bound to spliceosomal proteins. We discov-
ered that SRSF1 forms multiple PPIs with the early-
acting U2-snRNP-specific SF3 complex, which we con-
firmed by in-vitro pull-down experiments. Finally, by
combining our data with previously reported co-
regulatory interactions, we demonstrate that hnRNPs
are distributed in at least two highly interconnected
clusters forming regulatory collaborations, consistent
with the large cooperativity and functional interchange-
ability among proteins of this family.

Results

A probabilistic model of the human spliceosome

The amount of high-quality yeast two-hybrid (Y2H) data
has grown remarkably in the last two decades [15],
as has the number of analytical methods to interpret
PPI networks. Probabilistic modeling is an increasingly
popular approach to interrogate PPI data, allowing the
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integration of diverse types of evidence to prioritize biological
associations and demote spurious PPIs [16—18]. To investi-
gate the differential connectivity and relative network occu-
pancy of spliceosomal proteins, we modeled PPIs in the
spliceosome as probabilistic events, and built a Bayesian prob-
ability model using transitivity and co-expression as support-
ing evidence (Fig. 1 and Additional file 1). In graph theory,
transitivity (also known as clustering coefficient) measures the
extent to which a pair of nodes in a network share common
interactions with other nodes [19]. This concept was
successfully applied to study the organization of other
biological networks, such as metabolic networks [20]. In a
PPI network, the existence or lack of third-party PPIs can
serve as evidence to predict new PPIs or reject false PPIs [21].

Transitivity is appropriate to study a macromolecular
complex like the spliceosome, because it rewires PPIs
within the boundaries of neighboring proteins. The
spliceosome’s structure and function are dictated by the
assembly and dissociation of sub-complex units, which
are necessary for accurate splicing [2, 3]. It is therefore
plausible that spliceosomal proteins remain within the
microenvironment of one or a few sub-complexes, so as
to maintain the integrity of the entire system.

We made the further assumption that a pair of proteins
has to be co-expressed in order to form a PPI. This should
ensure a reduction of the number of false positives while
emphasizing functionally related PPIs. To this end, we cal-
culated co-expression profiles from microarray data and
penalized protein pairs that showed poor co-expression.

To generate this probabilistic model of the spliceo-
some (Fig. 1 and Additional file 1), we calculated the
interaction probability (P;,) of 198,135 PPIs formed by
630 splicing-related proteins (Additional file 2: Table
S1A) using as evidence 37,231 PPIs and 31,363 co-
expression profiles (Additional file 2: Table S1B). We
collected these probabilities into an adjacency matrix,
showing relationships between all spliceosomal proteins
(Fig. 2a, Additional file 2: Table S1C). We used a similar
approach as Ravasz et al. [20] to visualize associations
between topological and functional modules through
hierarchical clustering, followed by functional enrich-
ment analysis. Accordingly, we used Pearson correlation
coefficients between the binding profiles of each protein
(based on P;, scores against the remaining 629 proteins)
as a distance metric for hierarchical clustering. We then
examined the resulting clusters against a custom list of
spliceosome-specific functions (Fig. 2c, Additional file 2:
Table S1D) using the hypergeometric test.

We identified 10 different functional clusters (numbered
FC1-10) and determined the relative position of the
clusters in the spliceosome by scoring cluster-cluster inter-
actions among FCs (Fig. 2d). We refer to the resulting
model as the ‘probabilistic spliceosome’ or PS-network.
We used this PS-network as a contextual framework to
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Fig. 1 Workflow of the Bayesian probability model to predict protein-protein interactions. Example of how the probability of direct interaction
(Pi) between SRSF1 and TRA2B was calculated. a We first extracted all known PPIs formed by SRSF1 or TRA2B from a PPI database. b We used
the number of shared PPIs between both proteins (blue nodes) and exclusive PPIs (white nodes) to calculate the Transitivity (T). ¢ We then extracted
their co-expression profile from the BioGPS microarray database and computed the Pearson correlation coefficient (C). d By transforming the calculated
values of T and C through conditional-probability models, we estimated the probability that both T and C may occur in a true PPl network (e = 1, left
network) and a false (that is, shuffled) interactome (e = 0, right network). e Finally, the probability P;, was calculated using the Bayes rule, as the
posterior probability that SRSF1 and TRA2B directly bind each other, given T and C as evidence

investigate the differential connectivity and relative loca-
tion of spliceosomal proteins, with a focus on SR proteins
and hnRNPs.

Probabilistic vs. deterministic splicecosome
Y2H datasets are often applied to the construction of deter-
ministic PPI networks (DET), strictly based on direct

observations from the data. This approach is subject to mul-
tiple errors, due to stochastic undersampling or spurious in-
teractions [22]. One way to reduce false positives in DET
networks is to prioritize reproducible PPIs across Y2H ex-
periments [23]. However, among all spliceosomal proteins,
PPIs formed by SR proteins and hnRNPs are relatively hard
to reproduce (Additional file 3: Table S2A). These selective
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Fig. 2 Assembly of the PS network. The flowchart illustrates the identification of functional clusters (FC) of physically/functionally related proteins
within the PS network. a The adjacency matrix of P;, values for all possible protein pairs was processed with the Hierarchical Clustering algorithm,
using Pearson correlation as a distance metric. Clusters were automatically assigned using the Genesis program (every cluster is represented by a
different color). b Assembly of the PPI network, showing in this example PPIs with cutoff P, = 0.9. ¢ g-values resulting from the hypergeometric

test to assess the relationship between every cluster and each functional category. Only g <0.1 are shown. The size of the bubble is inversely

>0.2. ET. = Export and Turnover

proportional to the g-value (bottom right). Functional terms were divided into four categories, and represented as a tree structure. The asterisks
indicate groups of proteins that are exclusive to a particular category (for example, C-complex-specific proteins). The colored circles on the
right correspond to the clusters identified in A. d A network of FCs. FCs are represented as squares labeled with the most significantly enriched
functional categories. The square size is proportional to the number of proteins in the FC. Edges are shown for connections with C;; score

splicing regulators act by recruiting or blocking spliceosomal
sub-complexes (for example, snRNPs) via interactions with
proteins or RNA. They also participate in additional pro-
cesses, such as mRNA export and surveillance or translation
regulation [7, 8, 24], and thus they may form transient PPIs
with the spliceosome. To circumvent the barrier posed by
limited support from Y2H PPIs, we studied the SR protein
and hnRNP interactomes through probabilistic modeling.
We conducted a cross-validation analysis to compare
the predictability of the PS-network to that of a determin-
istic network (DET). We used the PPI network from [23]
as a test set, and the Human Protein Reference Database
(HPRD, [25]) as a training set (see Methods for details).
The PS-network was trained as tresholded at P;, >0.001,

p,, =0.01, P;,, =0.1, P;, 0.5, and P;, 20.9. Direct PPIs
present in the test set were removed from the training
set, leaving neighboring PPIs as the sole evidence
for probabilistic prediction. We quantified the effect of
ignoring direct PPIs for transitivity scoring, and ob-
served that their exclusion left 99.8 % of the estimated
P;,, probabilities unaffected; only 80/198,135 P;, scores
showed residuals =0.1 (Additional file 4: Figure S1).
Hence, in this work we treat direct and neighboring
PPIs equally. Finally, to predict DET PPIs, we counted
the net overlap between direct PPIs in the training and
test sets. The resulting networks are shown in Fig. 3a.
We tested the ability of the PS- and DET networks to
predict transient SR and hnRNP PPIs, as compared to the
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Fig. 3 Predictability of the probabilistic spliccosome. a PS-networks visualized at different cutoffs: P, 20.001, P,, 20.01, P, 20.1, P;, 0.5, and P;,, 209
along with a deterministic network of PPIs detected by Y2H. b-d Cross-validation results. b Predictability by protein family. The height of the column
indicates the percent of correctly predicted PPIs for SR proteins (red), hnRNPs (blue), snRNPs (purple), and LSm proteins (yellow). ¢ Sensitivity (dark gray)
and specificity (light gray). d Mathew's correlation coefficient. e Distribution of P;, values in the PS-network. Dark gray indicates values above the threshold
Py, 20.1. f Independent contribution of transitivity and co-expression. The plot shows the percent of correctly predicted PPIs for the full model, using: a
combination of transitivity and co-expression (black); transitivity only (dark gray); co-expression (light gray); and as predicted by chance (white)

constitutive interactions of core spliceosomal snRNP and
LSm family proteins. Interestingly, SR and hnRNP PPIs
could only be predicted using the PS-network. In contrast,
core spliceosomal PPIs were detected using either the
PS-network or DET network (Fig. 3b, Additional file 3:
Table S2B), probably because they are obligatory for spli-
ceosome assembly and therefore easier to detect.

When considering the spliceosome as a whole, prob-
abilistic modeling still outperformed the deterministic
approach. For example, the prediction sensitivity of the
PS-network was 0.55 using a moderate threshold (P;,
>0.1) and 0.22 with a stringent threshold (P;, =0.9). In
contrast, DET network predicted PPIs with sensitivity of
0.1 (Fig. 3c, Additional file 3: Table S2C). The PS-
Network predicted up to six times more true positives,
with half the number of false negatives compared to
DET network (Additional file 3: Table S2C).

For both PS-network and DET network, the prediction
specificity was very high (approximately 1), only

decreasing to 0.85 and 0.53 when using permissive
thresholds of P;, =0.01 and P;, =0.001, respectively
(Fig. 3¢, Additional file 3: Table S2C). High specificity is
indicative of a low number of false positives. This could
be due to the rigorous negative set used in this assay,
with pairs of proteins unreachable to each other in a
network (see Methods).

We estimated the correlation between the trained and
tested classifications using Matthew’s correlation coefficient
(MCC), a metric that varies between -1 and 1, 1 being
equivalent to a perfect prediction. The PS-network’s top
MCC was 0.65 for P;, 20.1, whereas DET’s MCC was only
0.25 (Fig. 3d, Additional file 3: Table S2C), demonstrating a
gain in predictability by using probabilistic modeling. Based
on these results, we set P;, >0.1 as the minimal threshold
for PPI probabilities, which retained a total of 30,065 PPIs,
accounting for less than 5 % of the data variance (Fig. 3e).

In summary, probabilistic modeling through the PS-
network is an effective way to predict spliceosomal PPIs.
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It surpasses deterministic modeling in sensitivity and
predictability, and performs with similar specificity.
Probabilistic modeling proved especially critical for the
study of SR proteins and hnRNPs, for which Y2H data
availability is limited.

Functional clusters represent topologic units

The proteins in the PS-network are not randomly distributed,
but instead are clustered in topological modules or FCs
(Fig. 2d, Additional file 2: Table S1C). A compacted version
of the PS-network (Fig. 2d) shows that early (3 and 8) and
late (4, 7, and 10) spliceosomal FCs, as well as pre- (1) and
post-splicing FCs (2, 6), are physically separated and resemble
functional modules. Of particular interest for this study,
FC5 comprises a mixture of nine splicing activators (SRSF1-7,
hnRNPU, and RBMX) and five splicing repressors
(hnRNAPA1, A2B1, C, H, and SRSF10). In addition FC9
contains a number of activators (hnRNPs E, K, and SRSF9)
and repressors (hnRNPL and PTBP1). The activator/repressor
activities were assigned based on comprehensive aggregation
of literature references derived from the RegRNA database
[26] (Additional file 5: Table S3). Although both SR proteins
and hnRNPs have been documented to function as activa-
tors or repressors depending upon the context, in each
individual case one of these two functions occurs much
more frequently, allowing for a clear cutoff to distinguish
between both groups (Additional file 6: Figure S2).

To examine the topology of the PS-network, we com-
puted the density, modularity, centralization, and aver-
age shortest-path length at different P;, thresholds
(Additional file 7: Table S4). As P;, increased, the PS
network became less dense, more modular, and decen-
tralized. The use of transitivity in our model helped
maintain the overall topology by rewiring PPIs only
among third-party PPIs. In addition, examination of the
independent contributions of transitivity and co-
expression to the model revealed that transitivity was
the most predictive feature (Fig. 3f). The PS-network at
P;, 20.9 was topologically identical to DET (Additional
file 7: Table S4), indicating that the predicted PPIs are not
promiscuous, but reflect selective rewiring of the network.
Altogether, we observed that regulatory splicing factors
are topologically independent from core spliceosomal pro-
teins, in agreement with the widely accepted notion that
the spliceosome is a modular system [2].

A splicing factor’s activity can be predicted from its
connectivity to the spliceosome

To identify regulators that play centralizing roles during
spliceosome assembly, we computed two standard cen-
trality metrics for every member of the PS-network:
‘Degree;, which is the number of interactions formed by
a protein; and ‘Betweenness, which reflects the extent to
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which a protein lies between other proteins, acting as a
‘bridge’ in the network. The balance between Degree
and Betweenness can shape the modularity of the net-
work, whereby high Degree tends to contribute to
intramodular interactions that define biological pro-
cesses, and high Betweenness contributes to intermod-
ular connections linking different processes [27]. In the
case of the spliceosome, we expect that proteins with
high Degree are important for complex formation and
stabilization, whereas those with high Betweenness control
interactions among spliceosomal sub-complexes. We used
the P;, values on the edges to compute probability-
weighted Degree and Betweenness for every protein in the
network. We refer to these as wDEG and wBET, respect-
ively (Fig. 4a, Additional file 8: Table S5).

A common property of biological (that is, scale-free)
networks is the presence of a few nodes with outstand-
ing Degree and/or Betweenness, called hubs, which
tend to be encoded by essential genes [28]. To identify
hubs that can potentially shape the spliceosome’s
modularity, we focused on the top 20 high-connectivity
proteins ranked by minimum (WDEG,wBET) g-values.
Interestingly, many of these proteins are known to play
central roles in splicing, and 8/20 have been implicated
in diseases, such as cancer (Additional file 9: Table S6).
We observed that 10/20 of these proteins were ranked
among the top 20 for both wDEG and wBET, 8/20 were
top 20 scorers for wBET but not wDEG, and only 2/20
scored with high wDEG and low wBET (Fig. 4b, ranks
in Additional file 8: Table S5). This result suggests that
spliceosomal hubs often play a dual role of bridging
among and within topological modules. For instance,
high connectivity proteins tend to form PPIs with
multiple FCs, including but not limited to their own
EC. Conversely, proteins which scored low in both
wDEG and wBET, such as hnRNP A1, showed skewed
interaction profiles: the vast majority of PPIs involving
hnRNPA1 were formed with proteins from its own FC
(Fig. 4c, Additional file 10: Figure S3).

Of note, seven of the top 20 high-connectivity proteins
were SR proteins or hnRNPs, including five known
splicing factors. When addressing their centrality, we
observed a clear trend: splicing factors labeled activa-
tors showed high wDEG and wBET, whereas repressors
scored very low for both (Fig. 4d). With the exception
of SRSF10 and hnRNPHI, no splicing repressor scored
higher than wDEG = 60 and wBET = 1,000. Conversely,
splicing activators were above these values, with the ex-
ception of SRSF7 and SRSF9. Thus, the connectivity of
splicing factors to the spliceosome is a strong predictor
of their regulatory activity. Moreover, these findings
suggest that activators and repressors communicate
with the spliceosome’s machinery with different levels
of closeness to perform their regulatory tasks.
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colors as in Fig. 2). The pie charts indicate the proportion of interactions at P;, 0.9 formed between each protein and members of its own cluster
(black), other clusters (white), and unclustered proteins (gray). For additional information, see Additional file 10: Figure S3. d wDEG and wBET for splicing
activators (red) and repressors (blue) of the SR and hnRNP families, according to annotations in the RegRNA database ([26], Additional file 5: Table S3).
The traced square indicates a speculative boundary separating activators from repressors

IP-MS preparations are enriched in high-probability
interactions

To validate the predictability of our model, we per-
formed IP-MS of the prototypical splicing activator
SRSF1 and splicing repressor hnRNPA1 (Additional file
11: Figure S4A, B), using T7-tagged constructs that ac-
curately replicate the activities of endogenous SRSF1
and hnRNPA1 (Additional file 11: Figure S4C-M). IP-

MS is a useful technique to identify large multimeric
protein assemblies. Unlike Y2H, which is designed to
capture direct PPIs, IP-MS identifies mixed populations
of proteins held in physical proximity through direct or
indirect interactions [29].

Because the spliceosome is a ribonucleoprotein complex,
we distinguished direct PPIs from PPIs stabilized or
mediated by RNA, using differential nuclease treatment
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[29], followed by IP-MS (Additional file 11: Figure S4N, O).
We then classified PPIs as nuclease-resistant (nuc®) or
nuclease-sensitive (nuc®).

We identified 203 significantly enriched proteins that
co-purified with SRSF1, and 152 with hnRNPA1 (114 and
60, respectively, were nuc®) (Additional file 12: Table S7).
In all cases, we detected a mixture of spliceosomal and
non-spliceosomal proteins, such as histones, ribosomal,
cytoskeletal, polynucleotide-binding, and other proteins
(Fig. 5a). However, high-probability PPIs where dominated
by spliceosomal proteins (Additional file 13: Figure S5A).

We computed the probability P;, that every identified
ligand forms a binary PPI with the baits SRSF1 or
hnRNPA1. We observed that IP-MS experiments vali-
dated the overall structure of the PS-network, based on
the following lines of evidence. First, both nuc® fractions
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were enriched with high-probability PPIs, as opposed to
nuc® fractions that did not show significant deviation
from spliceosomal proteins undetectable by IP-MS
(Fig. 5b and Additional file 13: Figure S5B). This
suggests that nuclease treatment increased the relative
proportion of direct PPIs in IP-MS preparations. Second,
the average P;, between baits (SRSF1 or hnRNPA1) and
ligands (any other protein) was significantly higher than
the average P;, between pairs of co-purified ligands
(Fig. 5¢ and Additional file 13: Figure S5C), as expected
due to antibody-mediated selective enrichment for bait-
ligand PPIs. Third, linear regression between predicted
(PS-network) and observed (IP-MS) PPIs in each FC
yielded R? scores in the range of 0.45 to 0.99, depending
on the bait and the use of nuclease (Fig. 5d). Fourth,
co-purified proteins were not scattered throughout the
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Fig. 5 High-probability PPIs enriched by IP-MS. Two splicing factors, SRSF1 and hnRNPA1, were used as baits for IP-MS. The identified proteins
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for every Py, interval, the proportion of IP-MS ligands recovered with (blue) or without (green) nuclease versus the remaining spliceosomal proteins not
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about this figure is presented in Additional file 13: Figure S5
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PS-network, but tended to be located in the vicinity of
their respective baits (Fig. 6a, b). The average shortest
path length between nuc® ligands and the baits was
significantly lower compared to IP-MS-undetectable
proteins (Additional file 13: Figure S5D). This was not
the case for nuc® ligands, implying that only nuc®
ligands were predicted by the PS-network as being
physically close to the baits SRSF1 and HNRNPAI.
Taken together, these results demonstrate that the PS-
network can identify biologically relevant PPIs and
categorize spliceosomal proteins. By overlaying the PS-
network onto IP-MS data, we uncovered the most plaus-
ible interactions, while eliminating contaminants and
unspecific PPIs. Thus, we narrowed down SRSF1 and
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hnRNPA1 IP-MS outputs to generate more specific lists
of proteins with high interaction probability. Below we
discuss the characteristics of the SRSF1 (Fig. 6a, c) and
hnRNPA1 (Fig. 6b, d) interactomes.

The SRSF1 and hnRNPA1 interactomes

SR proteins and hnRNPs regulate splicing coopera-
tively or antagonistically, as in the case of the splicing
activator SRSF1 and the repressor hnRNPA1 [10, 14].
Here we found that the connectivities of these two
proteins to the spliceosome are substantially different.
Whereas SRSF1 shows high connectivity to multiple spli-
ceosomal subgroups, the hnRNPA1 interactome is largely
restricted (that is, it is mostly composed of additional
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members of the hnRNP superfamily). In addition, we
found that the SRSF1 interactome is rich in direct and
RNA-independent PPIs (Fig. 6a, c). In contrast, the
hnRNPA1 interactome is smaller and more RNA-
dependent (Fig. 6b, d).

Multiple connections of SRSF1 to the spliceosome

The largest proportion of SRSF1 ligands detected by IP-
MS was, as predicted, dominated by members of FC5 (rich
in SR proteins and hnRNPs). Other members of the SRSF1
interactome were previously described, such as the EJC in
FC4 [30]. In addition, both IP-MS and our PS-network
identified novel interactions of SRSF1 with spliceosomal
proteins and complexes. Of particular interest are the
SF3a/b proteins, which are components of the U2 snRNP
required for early steps in spliceosome assembly. The
SF3a/b complex is also the target of many anti-tumor
drugs, and among the most highly mutated in various
hematological malignancies such as chronic lymphocytic
leukemia and myelodysplastic syndromes [31].

We screened the HPRD database for protein complexes
containing at least one spliceosomal protein, and counted
bait-to-ligand PPIs at P;,, >0.1 (Additional file 14: Figure
S6A). This revealed that out of 144 possible complexes,
the SF3a/b complex was the only one predicted to interact
with SRSF1 through all of its seven members (0.29 > P;,, >
to 0.99). In addition, 4/7 members of the SF3a/b complex
(SF3A1, SF3A3, SF3B1, SE3B2) were enriched through
nuc® IP-MS of SRSF1.

To rigorously validate the direct interaction of SRSF1
with the SF3a/b complex, we tested the binding of three
of the IP-MS identified SF3A subunits (SF3A1, SF3A2
and SF3A3) to glutathione-S-transferase (GST)-tagged
SRSF1 in vitro. GST-SRSF1 interacted efficiently with
purified recombinant His-tagged SF3A2 and SF3A3 in
the presence of RNase, indicating RNA-independent,
direct PPI (Fig. 7). Our predictions were further verified
by the absence of interaction between GST-SRSF1 and
another splicing regulator, FOX1, which scored very low
as an SRSF1-interacting partner (P;, = 0.0002). Although
SF3A1 was predicted to interact with SRSF1 and detected
as an SRSF1-binding partner in our IP-MS analysis, it did
not bind to GST-tagged SRSF1 in vitro. Though this indi-
cates an absence of a robust direct interaction between the
two proteins, it is also possible that SRSF1 and SF3A1 are
weak interactors and require other members of the com-
plex for PPI stability.

In summary, our results indicate that SRSF1 physically
interacts with several spliceosomal sub-complexes through
RNA-independent interactions. PPIs formed with com-
plexes such as SF3a/b and the EJC are consistent with the
fact that SRSF1 is recruited early in spliceosome assembly,
yet remains bound throughout the splicing reaction, even
after the mRNA is released [2].
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hnRNPA1 forms RNA-dependent regulatory interactions
Most PPIs formed by hnRNPA1 were with other hnRNP
proteins (Fig. 6d, Additional file 14: Figure S6B). A minor-
ity of PPIs were nuck, mostly from FC5 (hnRNPs A2B1,
A3, C, U, and RBMX) which also contains hnRNPA1
itself. In contrast, nuc® PPIs localized mostly to FC9
(hnRNPs A0, F, H3, K, L, and UL1), suggesting that within
FCs, hnRNPs are physically bound, whereas across FCs,
they interact through binding the same mRNA.

To investigate the interplay between PPIs and regula-
tory interactions among hnRNPs, we utilized a list of
frequently co-occurring hnRNP binding sites in pairs of
intronic regions associated with alternative splicing [32].
Strikingly, we observed that the vast majority of regula-
tory interactions among hnRNPs involved members
across different clusters, rather than members of the
same cluster (Additional file 15: Figure S7A). Using
Fisher’s test, we estimated that the probability of such a
distribution to occur by chance is approximately 107",
Taking into consideration the information about nucle-
ase sensitivity obtained by IP-MS, we then generated a
combined picture of PPIs, regulatory interactions, and
RNA dependence (Additional file 15: Figure S7B). We
observed a clear pattern in which hnRNPA1 interacted
with proteins from its own group (FC5) through physical
contact in an RNA-independent way, albeit without
forming regulatory collaborations. Conversely, hnRNPA1
connected with members of another group (FC9) by form-
ing multiple co-regulatory interactions, but no direct,
RNA-independent physical contact.

These results suggest that the partition of hnRNPs
into two separate domains of the spliceosome may be
important for their function in splicing regulation
(Additional file 15: Figure S7C). Furthermore, our data
on hnRNPA1 support a previously suggested regulatory
mechanism of hnRNP-mediated bridging, and helps to
explain why hnRNPs are so highly cooperative and
often interchangeable [9, 11].

Discussion

The mechanism of splicing has been extensively studied;
previous work has largely focused on constitutive elements
necessary for precise splicing [1, 23, 33, 34] or on the dis-
covery of alternative exons regulated by individual splicing
factors [9-12, 14]. Here we emphasized the contextual
connectivity of splicing factors in the spliceosome, and
their relationships with other spliceosomal proteins.

We used Bayesian probability to predict PPIs by interro-
gating different data types (for example, Spliceosome DB,
KEGG, regRNA) and many literature resources to con-
struct a probabilistic model of the human spliceosome.
The posterior probability of true PPIs was computed using
the connectivity of PPI modules as evidence, and fine-
tuned by orthogonal information obtained from gene-
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expression microarrays. The resulting PS-network was
essential to uncover a large number of novel PPIs
among SR proteins and hnRNPs (Fig. 3b). In contrast,
the number of newly discovered PPIs in the subset of
core spliceosomal proteins was small. This distinction
between selective and core spliceosomal proteins may
be due to differences in their functional properties. For
instance, Papasaikas et al. [35] recently reported a
functional splicing network integrating knockdown
profiles for all spliceosomal proteins. A key observation
in this study was that core spliceosomal proteins show
outstanding functional connectivity, compared to se-
lective splicing regulators, including SR proteins and
hnRNPs. This finding reinforces the notion that the
functional selectivity of regulatory splicing factors may
negatively affect the reproducibility of PPI detection
through Y2H.

Analysis of the PS-network revealed a trend whereby
splicing activators engage in a relatively large number of
PPIs with other proteins in the spliceosome, perhaps
playing an active role in recruiting spliceosomal proteins.
In contrast, repressors display fewer PPIs (as was the

case for hnRNPA1), suggesting that they predominantly
affect splicing by steric interference through RNA bind-
ing. IP-MS experiments confirmed these rules for the
prototypical splicing factors SRSF1 and hnRNPAI. In
both cases, IP-MS fractions were enriched in high-
probability interactions, as predicted by our model. This
was especially noticeable for the samples treated with
nuclease.

SRSF1 formed multiple nuc® PPIs with multiple FCs.
Among the top-scoring ones, we observed components of
the SF3a/b complexes, which are essential for spliceosome
assembly, and tether the U2 snRNP to the pre-mRNA,
contributing to branch-site recognition [33]. Interestingly,
SR proteins were previously observed to promote the
recruitment of U2 snRNP to the pre-mRNA branch site
[36]. In addition, a study of the protein composition of the
17§ U2 snRNP revealed that SRSF1 is present in immuno-
purified complexes containing SF3a66 [34]. Our analysis
here predicted that all members of the SF3a/b complex
bind SRSF1, with probabilities in the range of 0.29 to 0.99.
The fact that all SF3 subunits are predicted to bind to
SRSF1 with high probability is not surprising, given that
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interactions among the SF3 subunits are strong, not only
physically, but also functionally [35]. We validated these
interactions in cells (SF3A1, SF3A3, SF3B1, and SF3B2
were significantly enriched by IP-MS with nuclease treat-
ment), and in vitro (SF3A2 and SF3A3 were validated
through GST-pull-downs). These results indicate that our
Bayesian model faithfully predicts PPIs that can be experi-
mentally validated. In addition, these novel PPIs are inter-
esting for their potential implications in cancer. As both
SRSF1 and SF3B1 are misregulated in various human
tumors [31, 37], and as SRSF1 can transform epithelial
cells in vivo [38], it would be of interest to determine if al-
tering the SRSF1 and SF3-mediated recruitment of the U2
snRNP plays a role in tumorigenesis.

In contrast to SRSF1, hnRNPA1 displays weaker and less
widespread interactions with the spliceosome. Most high-
probability hnRNPA1 PPIs were nuclease-sensitive, and as
predicted, most IP-MS-confirmed PPIs involved additional
members of the hnRNP superfamily. Combining our data
with previously reported regulatory interactions [32], we
demonstrate that hnRNPs are distributed in at least two
highly interconnected clusters, forming regulatory collabo-
rations. Our data strengthen the notion that hnRNPs col-
laborate through RNA binding. A recent study [9] showed
that a group of six hnRNPs (A1, A2B1, H1, E, M, and U)
are highly cooperative in regulating alternative splicing.
Using CLIP-seq and microarray analyses, the authors
observed robust co-regulation between pairs of hnRNPs.
Our analysis not only supports this observation, but
further indicates that many of these interactions occur
between hnRNPs that belong to different clusters, such as
hnRNPs A1l (FC5) and M (FC4) or hnRNPs F (FC9) and U
or A2/B1 (FC5).

One possible reason for this disparity stems from the
inherent differences between activators and repressors as
biochemical entities. Splicing activators may modulate
spliceosome assembly through the formation of multiple
PPIs, and in this way ensure bona-fide splice site recog-
nition and exon inclusion. In contrast, repressors may
form fewer interactions to block the spliceosome’s at-
tempts to recognize and eventually include an exon.
Hence, whereas activators may coordinate and enhance
the connectivity of spliceosomal sub-complexes, in the
case of repressors it may be sufficient to bind specifically
to cognate motifs on the RNA and block spliceosome as-
sembly or activity. The functionality of SR proteins and
hnRNPs is evolutionarily conserved [39] and their
selective roles as activators or repressors has been
documented in numerous studies, ranging from cell-free
splicing to minigene transfection experiments to high-
throughput analyses (Additional file 5: Table S3 and
Additional file 6: Figure S2). Some of these proteins, like
SRSF1 and hnRNPA1, have been intensely studied,
whereas others have only recently been functionally
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characterized (for example, SRSF10 and hnRNPU). Pre-
vious work has demonstrated the complexity of splicing
regulation by showing that a given SR protein or hnRNP
can function as both activator and repressor, depending
on the sequence-specific and positional context [40, 41].
In these studies, tethering SR proteins (or hnRNPs) up-
stream or downstream of the 5'SS [40], or changing the
position of an SR protein binding motif along the exon
[41] resulted in alteration of the regulatory activity of spli-
cing activators to repressors or vice versa. Thus, consistent
with annotations in RegRNA, under certain conditions
splicing activators and repressors can switch their activ-
ities. The generality of this duality remains to be deter-
mined, for example, by integrating multiple RNA-seq
datasets to assess the reproducibility of effects on specific
splicing targets, while neutralizing indirect or sporadic
splicing changes.

Conclusion

This work summarizes our initial attempt to combine
public data with our own IP-MS data to understand struc-
ture/function relationships in the human spliceosome.
Our network-based approach utilized data integration to
understand the contribution of individual proteins to the
spliceosome as a whole. We characterized key splicing fac-
tors, expanding the knowledge about their regulatory
mechanisms and discovering new PPIs with therapeutic
potential. Altogether, this demonstrates the usefulness of
our approach to explore and characterize the mechanistic
principles governing complex biological machines.

Methods

Datasets

A total of 630 spliceosomal and splicing-related proteins
were collected from the Spliceosome DB [42], KEGG [43],
and other literature references [1, 23] (Additional file 2:
Table S1A). This compendium comprises functionally
confirmed spliceosomal proteins, but also proteins related
to other RNA-maturation processes, such as mRNA
surveillance, export, capping, and polyadenylation. We in-
cluded the latter proteins because they typically co-purify
with the spliceosome [1, 23] and are functionally associ-
ated or coupled with splicing [7, 8, 44]. Throughout the
manuscript, we consider this extended set of proteins as
‘spliceosomal proteins’. A total of 37,231 PPIs formed by
these proteins were extracted from HPRD [25] and Hegele
et al. [23]. In total, 31,363 co-expression profiles between
mRNAs coding for these proteins and PPI partners were
collected from the Human U133A/GNF1H microarray
dataset [45] (Additional file 2: Table S1B).

Probabilistic reconstruction of the spliceosome
We developed a Bayesian model to estimate the poster-
ior probability that any given pair of proteins in the
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spliceosome forms a binary PPI. Our model is based on
the principle of transitivity (T), which states that a binary
interaction between two proteins is more likely if they
share a substantial number of interacting partners [19].
The model also incorporates microarray co-expression
profiles (C), to prioritize genuine from spurious PPIs.

We treated T and C as two independent variables,
and computed conditional probabilities using HPRD
data to represent binding instances in a true PPI net-
work (e = 1), (Additional file 16: Figure S8A, C) and a
‘decoy’ PPI network to represent non-binding instances
(e = 0) (Additional file 16: Figure S8B, D). The model is
fully explained in Additional file 1.

Data clustering

Pearson correlation coefficients between all pairs of pro-
teins in the PS-network were calculated using as an input
the adjacency matrix of PPI probabilities (P;,) (Additional
file 2: Table S1C). As a result a second matrix (distance
matrix) was obtained, describing the extent of similarity
between protein pairs in terms of their binding prefer-
ences. Subsequently, this matrix was clustered using aver-
aged hierarchical clustering on both columns and rows.
All the clusters and distance matrices were derived using
the Genesis program [46, 47].

Hypergeometric test

To dissect the functionality of every cluster, we per-
formed enrichment analysis using the hypergeometric
test. We tested every cluster against a custom list of
spliceosome-specific functions, similar to gene ontol-
ogies or gene lists (Additional file 2: Table S1D). This
list was constructed based on information from Spli-
ceosome DB [42] and KEGG [43], allowing us to ex-
plore splicing-related functions in greater detail than
offered by standard tools.

This test attempts to reject the null hypothesis that
the overlap between two categorical groups (a cluster
and a biological function) is due to chance. We used the
hypergeometric test to compute exact P values for the
enrichment of functional terms (that is, ontologies) in
the network clusters, according to the formula:

HG(b;N,B,n) = M

(3)

Where ‘N’ is the total number proteins in the network,
‘B’ is the number of proteins that belong to a given func-
tional term, ‘b’ is the number of proteins that belong to a
certain cluster, and %’ is the number of proteins that be-
long both to a cluster and a functional term. Finally, we
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applied the false discovery rate (FDR) procedure to
adjust the resulting P values.

Network layout

Network topologies were generated using Cytoscape [48].
This implements a force-directed algorithm that sets the
positions of the nodes by minimizing a function that
mimics physical repulsion between nodes. Accordingly,
the positions of the nodes depend on the length and num-
ber of edges. The edge length is inversely proportional to
the value of P,,; as a result, the layout of the network is
such that densely connected proteins appear in the center,
whereas low-degree proteins are more peripheral. We
used P;, >0.1, P;, 0.5, and P;, >0.9 for visualization. The
corresponding thresholds are stated in each figure legend.

Cluster-cluster interactions

The connectivity Cy; between two clusters I and ] was
calculated as the sum of the interaction probabilities be-
tween all protein pairs spanning FCs I and ], normalized
by the sum of probabilities connecting I and J to all pos-
sible FCs in the network.

Zie],jejplj
Zie[,neNPm + Zje],ne}\zpf”_zz‘el,jejpif

C[] =

Cross-validation assay

We tested the predictability of our model using the net-
work derived from [23] (test set). As a training set we
used PPIs from HPRD. To train the PS-network, we
omitted PPIs in HPRD that were also present in [23].
These were set aside and used for deterministic predic-
tions. We considered as positive PPIs any pair of pro-
teins i and j from the test set with evidence of forming
direct PPIs. The total number of positive PPIs was 601.
Negative PPIs were protein pairs from the test network
whose shortest path length was L(i,j) = oo. In this way,
both proteins are unreachable through any path in the
network, and are not expected to interact directly or
indirectly. The number of negative PPIs was 1524. Con-
sequently, true positives (TP) were defined as all suc-
cessfully predicted PPIs using the training set, whereas
false negatives (FN) were PPIs that failed to be predicted.
Similarly, false positives (FP) were positively predicted
PPIs from the negative set, and finally, true negatives (TN)
were undetected protein pairs from the negative set.

To quantify the predictive performance we computed the
following metrics: (1) sensitivity (also known as true posi-
tive rate) and (2) specificity (also known as true negative
rate), both of which return values between 0 and 1. A value
of 1 means that there are no false positives/negatives; 0.5
means that there are as many false positives/negatives as
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true positives/negatives; 0 means that no true positives/
negatives were detected. In addition, we reported (3)
Matthew’s Correlation Coefficient, which measure the ex-
tent of agreement between observed and predicted binary
classifications. It returns values between -1 and +1. A co-
efficient of +1 represents a perfect prediction, 0 no better
than random prediction, and -1 indicates total disagree-
ment between prediction and observation:

1. sensitivity = TP/
2. specificity = TN
3. Mathew's CC =

TP+FN)

(TNHFP) (1p,TN)—(EP+EN)

\/(TP+FP)(TP+FN)(TN+FP)(TN+EN)

Topological network measures

Density

The ratio between existing and potential edges. It is a
measure of how heavily interconnected the nodes in a
network are.

Average shortest path length

The average number of steps along the shortest path, for
all possible pairs of network nodes. It is a measure of
the closeness between the nodes.

Modularity

A measure of how strongly the network is divided into
communities of highly interconnected nodes. It is mea-
sured as the fraction of edges that fall within given
communities minus the expected fraction if the edges
were distributed at random.

Centralization

Networks whose topologies resemble a star have centralization
close to 1, whereas decentralized networks are characterized
by having centralization close to 0. This is a measure of how
evenly distributed the edge density of the network is.

Network analysis

Network density, shortest path length, and modularity
were calculated using the iGraph R package ([49]).
Weighted Degree (wDEG) and Betweenness (WBET) were
calculated using the Tnet R Package [50]. Briefly, the
wDEG was calculated as the sum of the probability of the
edges connecting protein i to any protein j.

WDEGL' = ZPU

i#zjeN

WBET of protein i in a network N is defined as:

wWBET; = Z

szizteN

WLy (i)
WL

Where WL is the probability-weighted path length
from node s to node ¢, and WL(i) is the number of
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those paths passing through i. The minimal WL, for
every protein pair is considered as the weighted shortest
path length.

To identify proteins with statistically significant wDEG
or wBET, we estimated g-values by comparing wDEG or
wBET scores to the distribution of 1,000 randomized
networks generated through the Erdds—Rényi procedure
[51], followed by FDR correction.

Complex analysis

Annotated protein complexes were downloaded from
HPRD and searched against our list of 630 spliceosomal
proteins. A total of 144 complexes containing spliceoso-
mal proteins were selected and tested for whether they
form P;, >0.1 PPIs with either SRSF1 or hnRNPA1, were
detected by IP-MS, and survived nuclease treatment.

Plasmids

Construction of MSCV-TT-T7SRSF1 was previously
described [52]. MSCV-TT-T7hnRNP A1l was generated by
subcloning the hnRNPA1 open reading frame (ORF) from
pCG-hnRNPA1 [53] downstream of the tetracycline-
responsive promoter (TRE-tight) in the retroviral MSCV
vector (kindly provided by Scott Lowe). The GST-SRSF1
bacterial expression plasmid was generated by subcloning
the SRSF1 open reading frame from pCG-SRSF1 in the
pGEX-3X vector (GE Lifesciences). His-tagged recombin-
ant SF3A (SF3A1, SF3A2, SF3A3) plasmids were gener-
ated by sub-cloning the SF3A ORFs from pBLUESCRIPT
plasmids generously provided by Robin Reed into the
pET28a (+) vector. His-tagged FOX1 was generated by
sub-cloning the FOX1 ORF [54] into the pET28a (+)
vector.

Cell culture and cell lines

All cells were grown in DMEM-Complete (Gibco) sup-
plemented with 10 % (v/v) fetal bovine serum (FBS,
Thermo), 100 U/mL penicillin (Gibco), and 1,000 pg/
mL streptomycin (Gibco). Lentiviruses were generated
as described [37]. To generate Doxycycline-inducible
cell lines, HeLa Tet-on Advanced cells (Clontech) were
infected for 48 h, allowed to recover for an additional
24 h, and selected with the appropriate antibiotic.

To induce HeLa TT-T7SRSF1 and TT-T7hnRNPA1
cells, doxycycline was added to the cells at a concentration
in the range of 0.01 to 10 pg/mL for 24 to 48 h, depending
on the assay. For affinity purifications and immunofluores-
cence, TT-T7SRSF1 cells were induced with 0.1 pg/mL,
and TT-T7hnRNPA1 cells with 0.5 pg/mL doxycycline for
36 h. These values were determined by western blotting
(Additional file 11: Figure S4A, B) as resulting in overex-
pression of the T7-tagged protein within two-fold com-
pared to the endogenous counterpart, and at the same
time not resulting in any visible cell death.
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Gel electrophoresis and immunoblotting

Lysates were separated by SDS-PAGE and probed with
the indicated antibodies. Primary antibodies against the
following proteins/epitopes were used: T7 (1:500), SRSF1
(AK-96, 1:500), hnRNPA1 (AK-55, 1:50). HRP-conjugated
goat anti-mouse or anti-rabbit (Biorad, 1:10,000) anti-
bodies were used for chemiluminescent detection [52].
AK-96 and AK-55 were previously described [55].
Silver-stained gels were stained with a SilverQuest kit
(Invitrogen), following the manufacturer’s instructions.

Fluorescence microscopy and immunolocalization

Cells were plated in Fisher 6-well chamber slides at a dens-
ity of 20,000 cells/well. Twenty-four hours later, doxycycline
was added and the cells were incubated for an additional 36
h. Indirect immunofluorescence was modified from [56].
Cells were incubated with the appropriate fluorescence-
conjugated secondary antibody (Invitrogen). 4’',6-diami-
dino-2-phenylindole (DAPI; Boehringer-Mannheim) was
used to stain the nuclei. Microscopy was performed on a
Zeiss Axiovert 200 M, using Axiovision 4.4 and the
ApoTome imaging system.

Preparation of cell extracts

For general protein analysis of whole-cell lysates, cells
were lysed in RIPA Buffer (150 mM NaCl, 1 % (v/v)
NP-40, 0.5 % (w/v) deoxycholic acid, 0.1 % (w/v) so-
dium dodecyl sulfate (SDS), 50 mM Tris pH 8.0) plus
Roche Protease Inhibitor Cocktail EDTA-free. Cell lysis
followed by immunoprecipitation was performed as in
[52]. Four 15-cm plates were used for each condition.
Where appropriate, nuclease was added (1 U/mL RNase
A, 40 U/mL RNase T1, 500 U/mL Benzonase, plus 2 mM
MgCl,) for 30 min, prior to immunoprecipitation.

Immunoprecipitation of protein complexes

Dynabeads Protein G (Invitrogen) was used for all IPs, ac-
cording to the manufacturer’s instructions. For all immu-
noprecipitations, lysates were incubated with immobilized
antibodies while rotating for 1 h at 4 °C and washed five
times with 1 mL of Lysis Buffer (0.05-0.5 % (v/v) NP-40,
100-500 mM NaCl, 50 mM Tris, pH 7.4, 1 mM DTT).
For mass spectrometry, peptides were eluted by on-bead
digestion [57] and samples were prepared as in [52].

Multidimensional chromatography and tandem mass
spectrometry

Following immunoprecipitation and on-bead trypsin
digestion, samples were analyzed by on-line 7-step
MudPIT HPLC, and LTQ mass spectrometry.

Briefly, peptide mixtures were analyzed by MudPIT
through a protocol adapted from [58] using a two-
dimensional vented volume setup with a Proxeon nano-
flow HPLC pump [59]. Triphasic MudPIT columns were
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packed in-house with alternating Aqua C-18 reverse phase
material and Luna strong cation exchange material
(Phenomenex). HPLC runs were automated following a
protocol adapted from [60] with a constant flow-rate of
300 nL/min. Following separation on the MudPIT column,
peptides eluted from the microcapillary fritless column
were directly electrosprayed into a linear ion trap (LTQ)
mass spectrometer (Thermo Finnigan). A cycle of one
full-scan mass spectrum (400-1700 m/z) was acquired
with enhanced scan rate, followed by six data-dependent
MS/MS spectra at a 35 % normalized collision energy.
Dynamic exclusion lists of 500 spectra were set to exclude
peptides for a duration of 90 s. Mass-spectrometer scan
functions were controlled by the Xcalibur data system
(Thermo Finnigan) and data were processed with
MASCOT Distiller (Matrix Science) using the default
parameters for ion-trap data analysis. LTQ MS/MS
spectra were searched with MASCOT version 2.2.04
against the human IPI non-redundant database (version
3.35). The number of hits identified by Mascot in every
replicate is shown in Additional file 17: Table S8. The
MS dataset is available at [61].

Identification of proteins over-represented upon doxycyc-
line treatment
Each IP-MS experiment was carried out in duplicate
(Additional file 17: Table S8). The overlap between the
duplicates was approximately 50 % for the Dox" and ap-
proximately 30 % for the Dox~, for both SRSF1 and
hnRNPA1 with nuclease versus without nuclease.

The enrichment of every protein identified upon IP-
MS of SRSF1 or hnRNPA1 was calculated as follows:

(Ppox+)
IOgE = 10g2 <ﬁ

Where Ppoy, was the number of unique peptide
counts per protein identified at >95 % confidence in
the IP experiment, and Pp,,. was the corresponding
number of peptides identified without doxycycline in-
duction. To account for cases in which the protein was
below the detection sensibility in Dox™ but not Dox",
we added a pseudo-count to the denominator. We set a
cutoff at logE = 1 as a threshold. In this way, we en-
sured that all the selected proteins would be repre-
sented by a two-fold ratio and at least three peptides.

Purification of recombinant proteins

GST-SRSF1 was expressed in E. coli BL21(DE3)pLysS
strain by induction with 0.5 mM IPTG overnight at 18 °C
and purified using glutathione-Sepharose beads (GE
Healthcare). His-tagged SF3A1, SF3A2, SF3A3, and FOX1
were similarly expressed and induced, but purified using
Ni-NTA Agarose (Qiagen).
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GST pulldown

Purified GST-SRSF1 (200 pM) was incubated with His-
tagged recombinant proteins (200 pM) (His-SF3Al,
His-SF3A2, His-SF3A3, His-FOX1) and 50 pL glutathione-
Sepharose beads in 300 pL of pull-down buffer (20 mM
HEPES, pH 7.5, 100-500 mM NaCl, 0.5 mM EDTA and
0.1-0.5 % (v/v) NP-40) for 2 h at 4 °C in the presence of
nuclease (1 U/mL RNase A, 40 U/mL RNase T1). The
resin was washed three times with 500 pL of pull-down
buffer. Proteins were eluted with 40 puL 1X Laemmli buffer,
resolved by SDS-PAGE probed with anti-GST and anti-His
antibodies and analyzed on an Odyssey infrared-imaging
system (LI-COR Biosciences).

Additional files

Additional file 1: Supplementary Methods section.

Additional file 2: Table S1. Components of the PS-network. (A) Proteins
that constitute the nodes in the PS-network and sources linking them to the
spliceosome. (B) PPIs used to train the Bayesian model with their
corresponding co-expression levels (Pearson correlation). (C) PPI probability
adjacency matrix representing the edges of the PS-network. The colors
correspond to the clusters in Fig. 2. (D) Functional categories of spliceosomal
and splicing-related proteins.

Additional file 3: Table S2. Annotated spliceosomal PPIs and
predictability of the PS-network. (A) Reproducibility of PPIs annotated
in HPRD and Hegele et al. for each functional category of spliceosomal
proteins. The column “#proteins’ indicates the total number of proteins
in every group. ‘Intersection’ is the number of overlapping PPIs between
both datasets, and ‘ratio’ is the ‘intersection’ normalized by “#proteins’. The
functional groups are ranked by their ratio’. SR proteins and hnRNPs are
highlighted in gray. (B) Number of PPIs per protein predicted by the
PS-network versus deterministic modeling. The left side of the table
shows the absolute number of PPI predicted for every protein in the
test set. The right side shows the percent of the total PPIs per protein.
(C) Predictability metrics of the PS-network and deterministic network.

Additional file 4: Figure S1. Effect of direct PPIs on the PS-network.
The effect of excluding direct PPl annotations, as opposed to treating them
equally to neighboring interactions, for transitivity estimation based on Y2H
data. We computed Py, scores with direct PPIs (Full model) or without (Partial
model). (A) Correlation between P, using vs. ignoring direct PPIs. (B)
Residual P;, between Full vs. Partial models. (C) Histogram of the
distribution of residual scores.

Additional file 5: Table S3. References for splicing activator or
repressor activities of SR proteins and hnRNPs . Following annotations in
RegRNA [26] and additional literature sources ESE (exonic splicing
enhancer), ESS (exonic splicing silencer), ISE (intronic splicing enhancer),
ISS (intronic splicing silencer).

Additional file 6: Figure S2. Classification of SR proteins and hnRNPs
into activators and repressors. Based on annotations from RegRNA ([26],
Additional file 5: Table S3). The bar plot shows the number of literature
references supporting a splicing factor's activity as activator (red) or repressor
(blue). The labels activator or repressors were assigned based on the best
supported function of each protein. Labels are shown on the left side of the
chart.

Additional file 7: Table S4. Topological metrics of the PS-network and
deterministic network.

Additional file 8: Table S5. Centrality metrics of spliceosomal proteins.
Additional file 9: Table S6. Involvement of high-connectivity
spliceosomal proteins in human disease.

Additional file 10: Figure S3. PPIs formed by top-centrality spliccosomal
proteins. See legend from Fig. 4b.
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Additional file 11: Figure S4. Immunoprecipitation of SRSF1 and
hnRPAT1. (A, B) Induced expression of SRSF1 and hnRNPAT in Hela cells.
(A) Hela T7-SRSF1 and (B) HelLa T7-hnRNPA1 cells were induced for 36 h
with increasing Dox concentrations (from 0.01 to 10.0 ug/mL). Whole-cell
lysates were analyzed by western blotting. T7-tagged proteins are marked
with an arrow to distinguish them from endogenous proteins. 3-catenin
was used as a loading control. All cell lines showed a linear response to
Dox when probed with endogenous-protein and T7-tag antibodies, although
the levels of the T7-tagged splicing factors varied between cell lines. We used
36 h of induction at 0.1 pg/mL Dox for T7-SRSF1, and 0.5 pg/mL Dox for
hnRNPA1. (C-M) Cellular localization of induced HelLa TT-SRSF1 and hnRNP

A1 is consistent with expression of the endogenous proteins. (C) Indirect
immunofluorescence of endogenous (uninduced) SRSF1, (D-F) induced
T7-tagged SRSF1 and (G-1) hnRNP A1. (J-M) Co-staining of endogenous
SRSF1 (AK-96) and induced T7-SRSF1. Cells were induced with Dox for
36 h at 0.1 pg/mL (SRSF1) and 0.5 pg/mL (hnRNP A1). DNA was stained
with DAPI. (N, O) T7-SRSF1 immunoprecipitation (IP) with nuclease
treatment: (N) Whole-cell lysates of Hela TT-SRSF1 cells, with and
without nuclease treatment. Cells were induced with Dox for 36 h at 0.1 pg/
mL. Nuclease consists of RNases A and T1, plus Benzonase. (Middle) Co-IP of
T7-SRSF1 in the presence or absence of nuclease. Co-IP was performed in
the presence of 200 mM NaCl. (O) Silver stain of immunoprecipitates.

Additional file 12: Table S7. PPIs detected by IP-MS and estimated
through the PS-network. For (A) SRSF1 and (B) hnRNPAT against other
proteins.

Additional file 13: Figure S5. High-probability PPIs enriched by IP-MS
(continued from Fig. 5). (A) The colored tables show the distribution of P,
scores for SRSF1 and hnRNPAT co-purified proteins. These were divided into
three categories, depending on whether they are spliceosomal proteins
assigned to specific FCs (spliceosomal, clustered) unassigned to FCs (spliceosomal,
non-clustered) or non-spliceosomal. The average P;, scores for each
category are shown at the bottom. (B) Beanplot showing P;, distribution of
bait-ligand interactions for SRSF1 and hnRNPA1 for IP-MS with (blue) or
without (green) nuclease, and for the remaining spliceosomal proteins not
identified by IP-MS (gray). Red lines indicate mean values. (C) Similar to B,
comparing Py, values from nuclease resistant bait-ligand interactions (blue)
to those of ligand-ligand interactions (black). (D) Boxplot showing the
distribution of weighted shortest path lengths for either SRSF1 or hnRNPA1
co-purified proteins with (blue) or without (green) nuclease treatment. The
remaining spliceosomal proteins that failed to be purified are marked in
gray. Wilcoxon test P values are shown in B-D represented by stars as
follows: *P <0.05, **P <0.01, **P <1072, and ***P <10,

Additional file 14: Figure S6. Complex-composition analysis.
Distribution of predicted and co-purified PPIs for (A) SRSF1 and (B)
hnRNPAT among protein complexes annotated in HPRD.

Additional file 15: Figure S7. Physical and regulatory interactions
among hnRNPs are mutually exclusive. (A) Regulatory interactions among
hnRNPs. The node color indicates the cluster to which each protein belongs,
according to the code in Fig. 3d. The edges represent regulatory
interactions, as reported by Ke and Chasin [32]. (B) Patterns of interaction
between hnRNPAT1 and other members of the hnRNP superfamily. Solid
edges denote PPIs resistant to nuclease treatment. Dashed edges indicate
nuclease-sensitive PPIs. Red edges denote regulatory interactions. The
numbers along the edges indicate P/ values. (C) Model summarizing
co-regulation among hnRNPs. hnRNP pairs from different spliceosomal
blocks usually cooperate to regulate alternative splicing. In particular,
most proteins belong either to FC5 (blue) or FC9 (gray).

Additional file 16: Figure S8. Conditional probability models. Cumulative
distributions for transitivity (A) were calculated using HPRD to represent true
binding instances. (B) A similar distribution was derived from a ‘decoy’ HPRD
(dHPRD), to represent non-binding instances. In the same way, we generated
true (O) and decoy (D) co-expression distributions, by combining both HPRD
and dHPRD with the Human U133A/GNFTH microarray dataset.

Additional file 17: Table S8 Summary of MASCOT results. Number of
significant peptides detected.
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