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Abstract

hypotheses for further experimental studies.

Background: Interphase chromosomes adopt a hierarchical structure, and recent data have characterized their
chromatin organization at very different scales, from sub-genic regions associated with DNA-binding proteins at the
order of tens or hundreds of bases, through larger regions with active or repressed chromatin states, up to
multi-megabase-scale domains associated with nuclear positioning, replication timing and other qualities. However,
we have lacked detailed, quantitative models to understand the interactions between these different strata.

Results: Here we collate large collections of matched locus-level chromatin features and Hi-C interaction data,
representing higher-order organization, across three human cell types. We use quantitative modeling approaches to
assess whether locus-level features are sufficient to explain higher-order structure, and identify the most influential
underlying features. We identify structurally variable domains between cell types and examine the underlying features
to discover a general association with cell-type-specific enhancer activity. We also identify the most prominent
features marking the boundaries of two types of higher-order domains at different scales: topologically associating
domains and nuclear compartments. We find parallel enrichments of particular chromatin features for both types,
including features associated with active promoters and the architectural proteins CTCF and YY1.

Conclusions: We show that integrative modeling of large chromatin dataset collections using random forests can
generate useful insights into chromosome structure. The models produced recapitulate known biological features of
the cell types involved, allow exploration of the antecedents of higher-order structures and generate testable

Background

The chromatin structure of human interphase chromo-
somes plays critical roles in a wide range of cellular func-
tions and consists of many hierarchically arranged but
interconnected layers of structure. These range from the
three-dimensional arrangement of multi-megabase-scale
domains within the nucleus down to the chemical modifi-
cations carried by individual nucleosomes and nucleotides
at particular loci. A recurring question has been how these
many different levels of chromatin structure are related to
one another [1]. In the wake of recent efforts to compre-
hensively map the epigenomic landscape in human cells,
integrative approaches have suggested classifications of
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chromatin into distinct, functional states. The number of
chromatin states identified in these pioneering studies has
varied widely, from as few as 6 to as many as 51, using a
variety of locus-level features such as DNA methylation,
histone modifications and transcription factor binding
patterns [2-5]. These states usually encompass small, sub-
genic regions and have provided intriguing insights into
chromatin-mediated variation in promoter and enhancer
activity. At the same time technological developments
such as the Hi-C method have provided datasets describ-
ing the overall spatial organization of the human genome
[6], but the relationships between such datasets and the
wide spectrum of locus-level features are not well under-
stood. A recent study examining seven such features and
their relationships to the spatial organization of the mouse
genome in embryonic stem cells (ESCs) concluded that
chromosome architecture is largely determined by the
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binding patterns of particular transcription factors, and
that these cells have a unique higher-order chromatin
structure as a result [7]. Thus it is unclear whether such
results are relevant to other cell types and species, or
whether the inclusion of a broader range of features would
provide additional insights.

Many aspects of higher-order chromatin remain broadly
invariant between cell types, and genome-wide datasets
as diverse as replication timing domains, lamin associa-
tion domains and Hi-C interaction matrix eigenvectors
show strong correlations across many different human cell
lines [8]. Indeed, most measurable aspects of higher-order
structure have been conserved during evolution across
the majority of the mammalian genome [8-10]. How-
ever, a minority (perhaps 20% to 30%) of the genome is
within more labile structures, such that the behaviors of
many replication timing domains and lamin association
domains change significantly upon cellular differentiation
from ESCs, altering the transcriptional output of many
resident genes [10,11]. A large literature surrounds the
dynamics of locus-level chromatin during differentiation
and reprogramming, emphasizing the critical importance
of genomic patterns of DNA binding proteins, particular
histone modifications and DNA methylation (for exam-
ple, [12]). Yet we still lack an integrated view of chromatin
dynamics that details the dependencies between these
locus-level phenomena, the remodeling of large domains
and changes in nuclear organization. The extent to which
higher-order chromatin dynamics depends upon the spec-
tra of features occurring at these lower levels has not been
studied quantitatively.

Given the existence of neighboring chromatin domains
with distinct structures and activities, the boundaries
defining such domains have been a focus of particu-
lar interest. The topological domains (TADs) described
by Dixon et al. [9] were reported to be separated by
boundary regions showing pronounced peaks of the insu-
lator binding protein CTCE, although depletion of CTCF
appears to have little effect on TAD boundaries [13].
Similarly, deletion of a TAD boundary on the mouse X
chromosome resulted in many altered interactions, but
did not cause the two TADs separated by this bound-
ary to completely merge [14]. Thus there is much left to
learn about the basis of TAD boundaries. The scale of
TAD organization (median length 880 kb) is below that
of the multi-megabase chromatin domains delineating
occupancy of A and B nuclear compartments [15]. These
compartments constitute domains of transcriptionally
active, relatively centrally positioned chromatin, and rel-
atively inactive, peripheral chromatin respectively; conse-
quently compartment boundaries often mark a profound
divergence in functional state. It is not known whether
TAD boundaries coincide with compartment bound-
aries, and the similarities or differences in the features
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underlying these two boundary classes also remain
unstudied.

Here we exploit the unprecedented volumes of data
produced recently [4] to provide an integrated and rigor-
ously quantitative view of locus-level chromatin features,
higher-order chromatin structure and nuclear organiza-
tion across three cell types. We use integrative model-
ing approaches to directly study the contribution of 35
locus-level chromatin features to chromosome architec-
ture across three human cell types as measured by Hi-C.
These data are relevant to the quantitative, molecular
basis of higher-order chromatin, the dominant determi-
nants of chromatin dynamics, and prominent features
conferring the structure of domain boundaries.

Results

Higher-order chromatin organization is largely concordant
and predictable across cell types

In common with previous studies of higher-order chro-
matin structure [8-11], there was evidence for good con-
cordance of Hi-C data between different cell types. Hi-C
eigenvectors were calculated for three human cell types
(GM12878, H1 hESC and K562 cell lines) using the
same analysis protocols, and were found to be strongly
and significantly correlated (Figure 1; Additional file 1:
Figure S1). Most 1-Mb regions appear to be constitutively
present (that is, across cell types) in either the A or B
compartments, corresponding to relatively centrally posi-
tioned, transcriptionally active or more peripheral repres-
sive chromatin, respectively [15]. Strong correspondence
across cell types was also observed for TAD bound-
aries, and for the positioning of compartment bound-
aries, separating A and B compartments (Additional file 1:
Figure S2).

Although it is often assumed that higher-order
chromatin domain organization (at the megabase scale)
across the genome is to some degree dependent upon
lower-level features (at the scale of tens or hundreds of
base pairs), the identity and independent contributions of
these features are unknown. Beyond this it has also been
unclear whether there are strong enough dependencies
to allow accurate prediction of higher-order structure.
For each of the three Hi-C eigenvector datasets corre-
sponding to the Tier 1 ENCODE cell lines (GM12878, H1
hESC and K562) we assembled datasets of 35 matched
locus-level chromatin features, including sites bound
by 21 DNA binding proteins, and 11 histone modifica-
tions/variants and DNase hypersensitive sites (see Materials
and methods). The GC content of each 1-Mb region,
which is known to be correlated with higher-order struc-
ture (for example, [8]), was also included as an additional
feature in each model for comparison with chromatin
features. Importantly, each Hi-C dataset was re-analyzed
to provide comparable identically processed data, which
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Figure 1 Concordance of chromatin structure at multiple scales over three human cell types. The eigenvector compartment profile is shown for
chromosome 2 for three human cell types (left). Genome-wide Pearson correlation coefficients between eigenvectors at 1-Mb resolution are in the
range 0.75 to 0.80 (Additional file 1: Figure S2B). At higher resolution, the zoomed region illustrates conservation of topological domains (TADs) over
20 Mb of the same chromosome. Genome-wide, 33% of all H1 TAD boundaries have a matching boundary in GM12878 in the same or an adjacent
40-kb bin (K562: 31%, null model: 18%; Kolmogorov-Smirnov test: D = 0.26, p & 0). Similarly, for H1 compartment boundaries, 37% have a
matching boundary in the same or an adjacent 100-kb bin in GM12878 (K562: 35%, null model: 7%; Kolmogorov-Smirnov test: D = 047, p & 0,
Additional file 1: Figure S2A). Mb, megabases; TAD, topological domain.

was complementary to the identically processed, locus-
level ENCODE data. It was possible to construct random
forest models with good predictive accuracy, and strong
and significant correlations were seen between predicted
and empirically measured eigenvector values for each cell
type (Figure 2). The models show high predictive power,
particularly for GM12878 where the model achieved a
Pearson correlation coefficient (PCC) of 0.805 between
predicted and measured values. These levels of accuracy
are similar to those reported (median PCC = 0.83 over
seven cell types) for strikingly successful models of the
transcriptional output of promoters using locus-level
chromatin features [16]. Other evaluation metrics also
suggested successful models, such as the ability to cor-
rectly assign 1-Mb regions to compartments A and B (see
area under the receiver operating characteristic data in
Figure 2). It would be feasible to construct similar, but
more comprehensive models using all ENCODE chro-
matin features for a given cell type, although the resulting
models would not be comparable between cell types.
However, the high accuracy of the current models sug-
gests there is limited potential for improvement by adding
further features. Also, even the most comprehensive
models that could be constructed, using all currently

available data, inevitably represent a minority of the
features actually present in chromatin [1].

While 1-Mb compartment eigenvectors are low res-
olution relative to that typically employed for chro-
matin immunoprecipitation sequencing (ChIP-seq) data,
megabase bins are a suitable choice for analyzing large
chromosomal compartments [15,17]. To confirm our
modeling accuracy is not sensitive to resolution, we
applied models trained with 1 Mb to 100 kb resolution
datasets and saw similarly high levels of accuracy (88% to
95%, as accurate as 1-Mb models in terms of predicted and
empirical PCC, Additional file 1: Figure S3).

Influential features underlying higher-order structure
differ between cell types

Given the correlations seen between Hi-C eigenvec-
tors from different cell types (Figure 1) and the similar
predictive power of cell-type-specific models (Figure 2A),
one might assume that a similar combination of informa-
tive variables appears in each of the models. The broad
trends in relative variable importance (see Materials and
methods) do indeed suggest that many features have a
similar influence in each of the three models (Additional
file 1: Figure S4A). For example the genomic distributions
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Figure 2 Accurate models of higher-order chromatin state built from locus-level features. (A) Model predictions (Predicted eig) are compared to
observed values (Empirical eig). Various metrics are used to measure the accuracy of regression modeling — the Pearson correlation coefficient (PCC)
and root mean-squared error (RMSE) — and to evaluate classification accuracy (for A eig > 0 and B eig < 0) — accuracy (percentage of true positives,
Acc.) and area under the receiver operating characteristic curve (AUROC). (B) Variable importance (shown for the ten most informative features per
model) is calculated as the decrease in the accuracy of predictions for the permuted variable relative to observed (in units of percentage increase in
MSE), averaged over the forest (see Materials and methods). Acc., accuracy; AUROC, area under the receiver operating characteristic curve; eig,
eigenvector; MSE, mean-squared error; PCC, Pearson correlation coefficient; RMSE, root mean-squared error.

of CTCF binding patterns, H3K36me3, H3K27ac and
GC content maintain very similar influence across all
three models, while certain variables depart from this
trend and show a notably higher variable importance in
a particular model. Thus substantial levels of variation
between cell types are seen for the top ten most influ-
ential variables across models (Figure 2B), such that the
repressive histone modification H3K9me3 is the only fea-
ture, among the ten most influential, shared between all
three cell-type models. This is expected since H3k9me3
is anticorrelated or uncorrelated with most other input
features (Additional file 1: Figure S5), and is therefore a
relatively information-rich variable. Overall, more highly
ranked features are shared between the two relatively
differentiated, hematopoietic cell lines (GM12878 and
K562), with the pluripotent ESC line (H1 hESC) show-
ing more distinct characteristics. The EGR1 transcription
factor plays critical roles in cellular differentiation and
shows markedly higher variable importance in the H1
hESC model. While the P300 transcriptional co-activator

protein, which controls the proliferation and differentia-
tion of hematopoietic progenitor cells, ranks more highly
in the two hematopoietic cell line models (Figure 2B,
Additional file 1: Figure S4).

Many of the variables examined here are heavily inter-
dependent, and for example co-occur in clusters denoting
functional chromatin states [4]. Care must be taken not
to over-interpret the differences in variable importance
between models, given the pervasive multi-collinearity
and clustering between variables in the input locus-level
feature set (Additional file 1: Figure S5). For instance,
MXI1 is an influential feature in both the hematopoi-
etic models, while MYC and MAX are among the high-
est ranked features in the H1 hESC model. This is in
keeping with recent results suggesting MYC binds open
chromatin as a transcriptional amplifier in ESCs [18,19],
with MAX and MXI1 long being known as antagonistic
co-regulators of MYC [20]. Thus, in identifying nomi-
nally different informative variables for each model we
will, to some extent, select different representatives of
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the same cluster (Additional file 1: Figure S5). It follows
that we would expect a large number of different fea-
ture combinations to have similar predictive power in
broadly equivalent random forest models. With a broader
perspective, there are general similarities across all three
models, in that all derive much of their predictive power
from indicators of transcriptional activity, markers of het-
erochromatin and the binding levels of combinations of
broadly expressed transcription factors (Additional file 1:
Figure S6).
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Consistent with the presence of broad commonali-
ties among the three models, cross-application of mod-
els showed that models trained in one cell type often
performed well in another (Figure 3). In each instance
of cross-application, predictive accuracy declined by no
more than 21% relative to the model’s native cell type.
In reciprocal crosses between the two hematopoietic cell
lines (K562 and GM12878), this loss of accuracy was
between 5.9% and 7.8% (Figure 3A), but was 20.2% to
20.4% when these models were applied to H1 hESC data.
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This again highlights the relatively unusual structural fea-
tures of the pluripotent state.

We compared the performance of our random for-
est approach with two other regression methods: sim-
ple multiple linear regression and partial least squares
regression, a method particularly well suited to highly
correlated inputs [21]. While cell-type-specific predic-
tion accuracy remained high for each method, cross-
application between cell types confirmed our random
forest approach as that most capable of learning general-
izable rules of compartment prediction (Additional file 1:
Figure S7).

Regions of variable structure are enriched for
cell-type-specific enhancers

Although the chromatin organization of much of the
genome appears to be invariant between cell types
(Figure 1), some regions are more dynamic. There is a
clear relationship between modeling accuracy and struc-
tural stability between cell types such that the structures
of more variable regions are more challenging to predict.
This is evident even with the most liberal definitions of
variability; for instance, if we calculate the median abso-
lute deviation between eigenvectors across all three cell
types and simply trisect the distribution, we found that
the most structurally variable regions between cell types
were significantly less accurately modeled in each case
(Figure 4A). This could indicate the cell-type-specific fea-
tures responsible for organizing these regions are largely
missing from our training set, which undoubtedly rep-
resents a tiny minority of all the actual components of
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chromatin in real human cells. However, it is unclear
whether structural variability defined so broadly reflects
altered biological function or is dominated by stochastic
variations in structure among cells [22].

A more conservative definition of structurally variable
regions is that they are regions altering their compart-
ment state (between A and B compartments) in one
cell type relative to the other two. Such regions will
often undergo dramatic changes between transcription-
ally permissive and repressive environments and might
be expected to be associated with cell-type-specific biol-
ogy, such as functional chromatin states [4]. This indeed
seems to be the case, with regions occupying altered com-
partments showing corresponding changes in enhancer
activity. Regions undergoing a B to A compartment tran-
sition, to a relatively transcriptionally permissive struc-
ture, were enriched for cell-type-specific enhancers in the
two derived cell types used in this study but not in the
ESC line, which would not be expected to have lineage-
specific enhancer contacts active in its pluripotent state
(Figure 4B). The same pattern was not seen for enhancers
shared between two or more of the cell types under study.
We observed a similar enrichment for cell-type-specific
transcription (Additional file 1: Figure S8) but not for sev-
eral other chromatin states including promoter activity
(Additional file 1: Figure S9).

For each cell line, we identified all regions showing
cell-type-specific occupancy of the active A compart-
ment and ranked these regions according to the den-
sity of predicted active enhancers. Close examination
of these regions reveals many examples of enhancer
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activity nucleated upon genes associated with cell-type-
specific biology (Figure 5A, Additional file 1: Figure S10).
For the GM12878 (B-cell derived) cell line, an active
region of variable structure rich in active enhancers was
found to contain the EBF1 (early B-cell factor 1) gene
(Figure 5A). The transcription factor encoded by this gene
has been identified as essential in maintaining B-cell iden-
tity and establishing early lineage commitment [23,24].
Similarly a variable region active in H1 hESC (Additional
file 1: Figure S10B.1) harbors the PAX1 regulator of
patterning during embryogenesis [25], while a K562-
specific active region (Additional file 1: Figure S10C.3)
contains a gene encoding a regulator of hematopoiesis
(ZFPM2/FOG2 [26]). Each example is concordant with
the known biology of the cell type concerned, and each
is illustrative of the genome-wide relationship between
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higher-order structural variability and cell-type-specific
enhancer activity (Figure 4B). We explored the func-
tional annotations of genes in regions of cell-type-specific
structure (Additional file 2: Tables S1, S2 and S3), and
although we observed some artifactual enrichments (gen-
erated by duplicated gene clusters within some of these 1-
Mb regions), no significant enrichments were seen across
regions.

A defining characteristic of active A compartment
regions is a preferential bias in contacting other A
compartment regions [15]. However, it is not clear
whether cell-type-specific transitions in higher-order
structure are solely compartment-level phenomena, or
involve other structural strata. We therefore examined the
genome-wide contact profiles of each region of variable
cell-type-specific chromatin structure in detail. If these
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cell-type-specific structures are mediated by finer-scale
structural levels (such as TADs) we might expect to see
predominantly short-range contacts in their underlying
contact profile. Instead, we found that variable regions
preferentially interact with other A compartment regions
in the cell types in which they are active (Figure 5B,
Additional file 1: Figure S11), but not in the other
cell types in which they are inactive. This supports the
idea that these cell-type-specific regions are undergoing
compartment-level transitions, disproportionately medi-
ated by the formation of long-range contacts, while also
not precluding additional changes at lower levels such as
TADs.

TAD boundaries and compartment boundaries possess
similar features

The mammalian genome is organized into TADs, pre-
dominantly self-interacting chromatin domains, with
boundary regions reportedly associated with pronounced
peaks and troughs of particular features within 500 kb
of the predicted boundary [9]. Exploration of this phe-
nomenon using a set of 24 mouse ESC chromatin features
(and a smaller number of human ESC features) report-
edly revealed enrichment peaks of CTCF, H3K4me3 and
H3K36me3, as well as a pronounced dip in H3K9me3, sug-
gesting that high levels of transcription may contribute to
boundary formation [9]. However, it was unclear whether
other features show unusual patterns in TAD boundary
regions, and whether the constellation of features involved
changes between cell types. The features associated with
boundaries separating A and B compartments calculated
from Hi-C eigenvectors have not been studied to our
knowledge. The datasets assembled here, consisting of
35 matched chromatin features across three cell types,
allow us to conduct the first comparative study of the
constituents of human TAD and compartment boundary
regions.

We derived TAD boundaries according to established
methods [9] for all three cell types under study. We then
sought evidence for significantly enriched or depleted
features at TAD boundary regions using a conservative
approach (a nonparametric statistical test and Bonferroni
multiple testing correction, see Materials and methods),
and confirmed the previously reported peaks (CTCF and
POL2) and dip (H3K9me3) in ESC data, but also revealed
substantial heterogeneity between cell types. CTCF bind-
ing was found enriched at TAD boundaries across all
cell types, but other features, including H3K36me3 and
H3K4me3, show dramatic peaks of enrichment in H1
hESC cells that are not seen consistently in other cell types
(Figure 6, Additional file 1: Figure S12). Although the dip
in H3K9me3 at TAD boundaries is seen in all cell types,
the extent of the depletion varies and is weakest in H1
hESC cells. Many other features show significant, though
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often modest, enrichments in a particular cell type. How-
ever, overall the complexity of TAD boundaries (measured
as the number of strongly enriched features) is notably
higher in H1 hESC than in the other two, more differen-
tiated, cell types (Figure 6), involving large increases in
the binding of sequence specific factors such as SP1 and
JUND.

Across all three cell types, several features demon-
strate consistent and statistically significant patterns at
TAD boundaries (Figure 6, Additional file 1: Figure S12),
including peaks associated with active transcription of
genes (POL2 and H3K9ac) and dips in H3K9me3, as pre-
viously reported [9]. However, other novel feature peaks
of interest emerge across cell types, such as peaks of
H4K20mel, a modification previously implicated in chro-
matin compaction [27]. Significant peaks in YY1 are evi-
dent in all cell types, which is intriguing given the evidence
that YY1 and CTCF cooperate to affect long-distance
interactions [28]. Co-binding of CTCF with YY1 has also
been shown to identify a subset of highly conserved CTCF
sites [29]. Co-binding of CTCF and YY1 may also there-
fore be a contributing factor in the establishment of TAD
boundaries, which appear to be broadly conserved across
mammals [9]. To test this, we split our sets of TAD bound-
aries into those possessing ChiP-seq peaks (region peaks
called by ENCODE [4]) for CTCF, YY1, both CTCF and
YY1 (overlapping peaks) and neither. We then tested each
boundary subset for genome-wide enrichments of the
other features in our dataset (Additional file 1: Figure
S14). Unexpectedly, we found that boundaries marked by
YY1 (without overlapping CTCF peaks) were generally
most strongly enriched for other features in our dataset.
We also found that boundaries lacking both CTCF and
YY1 peaks showed instead the strongest enrichments for
RAD?21 in each cell type (Additional file 1: Figure S14),
reinforcing previous findings that describe the distinct
influences of CTCF and cohesin in organizing chromatin
structure [13,30,31]. We also observe consistent increases
in GC content at TAD boundaries, at a scale that is dif-
ficult to reconcile with the presence of smaller-scale fea-
tures such as repeat elements or CpG islands (Additional
file 1: Figure S12).

Where neighboring genomic regions occupy contrast-
ing A and B nuclear compartments, the disparity implies
the presence of a boundary region. Putative compartment
boundaries were identified by using a hidden Markov
model to infer the state sequence of A/B compartments
across the genome based on observed principal com-
ponent eigenvectors. Analogously to the TAD boundary
analysis, we then sought significant enrichments or deple-
tions in 36 chromatin features over these compartment
boundaries (Figure 6, Additional file 1: Figure S13). Com-
partment boundaries display similar spectra of enrich-
ments to previously studied TAD boundaries [9] but at
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Figure 6 Chromatin features underlying TAD and compartment boundaries. (A) Selected profiles for locus-level features are shown for TAD
boundaries (CTCF, H3K9me3 and POL2) and compartment boundaries (H2A.Z, H3K4me2 and YY1), as a mean normalized ChIP-seq signal relative to
input chromatin per bin (1 standard error). TAD boundaries were examined over 40-kb bins over the 1 Mb flanking each boundary; compartment
boundaries were examined over 100-kb bins over 3 Mb. (B) The significance of enrichment or depletion (—log P two-tailed Mann-Whitney test)

topological domain.

of a feature was calculated as the boundary bin relative to the ten most peripheral bins (five either side). Points are scaled by the absolute mean
difference in signal over the boundary relative to the mean of peripheral bins. ChIP-seq, chromatin immunoprecipitation sequencing; TAD,

lower resolution, reflecting the different scales of these
levels of organization (Figure 6B, Additional file 1: Figure
S13). Peaks associated with active promoters (POL2,
TAF1 and H3K9ac) are again evident. Parallel enrich-
ments of CTCF, YY1 and H4K20mel are also seen at
compartment boundaries, as they were for TAD bound-
aries, in each cell type under study. In addition, com-
partment boundaries show enrichments of H3K79me?2,
which is known to play critical roles in cellular reprogram-
ming [32]. Remarkably, H3K79me2 has also recently been
shown to mark the borders of small regions of open chro-
matin (hundreds of base pairs) [33]. Thus, there may be
similarities in chromatin compaction boundaries at very
different scales.

Certain features show intriguing contrasts between
cell types. The histone variant H2A.Z lacks any trace

of enrichment at H1 hESC compartment boundaries,
but is significantly enriched in the other two cell types
(Figure 6A), consistent with reports describing H2A.Z
relocation during cellular differentiation [34]. Compart-
ment boundaries also show enrichment for the cohesin
complex subunit RAD21 in the two hematopoietic cell
types (Additional file 1: Figure S12), and cohesin is
another factor implicated in modulating nuclear archi-
tecture in partnership with CTCF [13]. Various other
enrichments with very modest effect sizes are also evi-
dent at compartment boundaries (Figure 6B, Additional
file 1: Figure S13). In contrast to TAD boundaries, the
composition of compartment boundaries appears least
complex in H1 hESC, relative to the other two cell types.
Overall compartment and TAD boundaries are associated
with overlapping spectra of chromatin features across cell
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types. These involve DNA-binding proteins implicated in
chromosome architecture (CTCF, YY1 and RAD21), but
also implicate the initiation and repression of transcrip-
tion as critical to boundary formation. However, these
two boundary classes occur at different scales, with pat-
terns of informative features typically spanning regions
up to 500 kb for TAD boundaries, and patterns associ-
ated with compartment boundaries often spanning more
than 1 Mb (Additional file 1: Figure S12, Additional file 1:
Figure S13).

Topological domains cluster by epigenetic enrichments
Sexton et al. [35] showed that, in the Drosophila genome,
topological structures termed physical domains could
observably be clustered into distinct functional groups
based on their average feature enrichments. It is of inter-
est to repeat this experiment with our human datasets
and across multiple cell types to detect finer delineation
of chromatin state beyond A and B compartmentaliza-
tion. We found that TADs called across the three cell
types used in this work could be clustered into tran-
scriptionally active (active), repressed heterochromatin
(null) and polycomb-associated (PcG) domains, based on
the patterns of DNase hypersensitivity, H3k9me3 and
H3k27me3, respectively (Additional file 1: Figure S15).
This analysis reveals that active compartments typically
cover both active and PcG-associated TADs, while B com-
partments appear more homogeneous and are composed
mostly of H3k9me3-enriched heterochromatin even when
considering fine-grained TAD structures rather than
megabase-sized genomic blocks.

Discussion

The recent abundance of epigenomic data for model cell
types has enabled accurate modeling of the transcriptional
output of human promoters, and a rigorously quantita-
tive assessment of the most influential chromatin features
underlying gene expression [16]. We have shown that it
is possible to construct comparable models describing the
features underlying higher-order chromatin structure, and
that their predictive accuracy can be high. Our analysis
exploits Hi-C datasets that have been re-analyzed, from
the initial sequence read mapping onwards, identically
for three different cell types. These data were collated
with 35 locus-level ENCODE chromatin datasets, also
processed identically, and matched across the same cell
types. In common with previous studies [8,9], we observed
good concordance of higher-order chromatin structure,
reflected in Hi-C data, between different cell types. Ran-
dom forest models summarized the important relation-
ships among these many variables, providing insights
into the quantitative contributions of locus-level chro-
matin features to higher-order structures. Although cer-
tain features were notably more influential in a particular
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cell type, the models shared overlapping constellations
of informative features, allowing the cross-application of
models between cell types.

Integrative analyses of locus-level chromatin data have
allowed the prediction of functional chromatin states
[2-5] but these states typically encompass small regions
such as the enhancers examined here. The prediction of
higher-order chromatin domains has received much less
attention, and it was not clear until now that sufficient
data existed to allow accurate predictions. Our data show
that accurate predictions of Hi-C-derived eigenvector val-
ues, and the nuclear compartment domains based upon
them, are entirely feasible. Strong and significant correla-
tions are seen between cell types for a variety of human
higher-order domains, delineating variation in replica-
tion timing, lamin association and nuclear compartments
derived from Hi-C eigenvectors [8]. The data presented
here therefore suggest that a variety of such domains
could be successfully modeled. Given that the binding pat-
terns of most human chromatin components have not yet
been mapped, the models presented here are remarkably
successful, though will undoubtedly improve with fur-
ther data and algorithm development. These models also
allowed us to probe the features underlying regions with
variable higher-order structure between cell types, reveal-
ing enrichments of cell-type-specific enhancer activity,
and suggesting links between functional chromatin states
and higher-order domain dynamics. It is not possible to
distinguish cause and effect using the current data, but it
seems likely that the alterations in domain organization
occur prior to enhancer activity.

The current data suggest that the contributions of cer-
tain locus-level chromatin features to higher-order struc-
tures vary between cell types. Striking examples include
the strong influence of H3K9me3 in K562 leukemia cells,
and EGR1 binding in H1 hESC. EGR1 is a pivotal reg-
ulator of cell fate and mitogenesis with critical roles in
development and cancer [36]. The patterns of repres-
sive H3K9me3 accumulation have been a focus in the
cancer literature and have been proposed as a diagnos-
tic marker in leukemia [37]. Similarly, the model for
GM12878 (Epstein—Barr virus transformed lymphoblas-
toid) cells shows a disproportionate influence of ATF3
binding patterns, and ATF3 induction is a known con-
sequence of virus-transformed cells [38]. Thus, the most
cell-type-specific features in these models may be impor-
tant indicators of cell-type-specific functions. These cell-
type-specific features present a paradox, in view of the
strong correlations in organization genome-wide across
different cell types [8,9], and the demonstration that mod-
els trained in one cell type often perform well with data
from other cell types. These contradictory observations
are reconciled by the presence of inter-correlated clus-
ters of features underlying A and B compartments. The
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shifting membership of these clusters evidently retains
enough similarity between cell types to enable the cross-
application of models.

Chromatin boundaries, separating TADs and nuclear
compartments at different scales, also showed cell-type-
specific enrichments of various locus-level chromatin
features. Across cell types, the complexity of boundary
composition varies considerably so that only a few features
were seen consistently enriched or depleted at bound-
aries. Peaks associated with active promoters were notable
for both TAD and compartment boundaries in all cell
types. Among the most influential variables for the ran-
dom forest models constructed for the two hematopoietic
cell lines was the ubiquitous transcription factor YY1,
which reappeared in the analysis of chromatin bound-
ary regions. Significant enrichments of YY1 were seen at
TAD and nuclear compartment boundaries in all three
cell types. Thus, the same protein was implicated at the
level of broad genomic binding patterns (over 1-Mb inter-
vals) and at the level of locally enriched peaks at boundary
regions (spanning 100 to 500 kb). This is intriguing as YY1
has recently been shown to co-localize with the architec-
tural protein CTCF [39] and suggests that these proteins
cooperate in the establishment of domain boundaries. The
identification of such features, significantly enriched at
boundary regions, provides potential targets for deletion
in experimental studies further exploring the structure
and function of domains (for example, [14]). Both cell-
type-specific and general constituents of boundaries may
have utility in the biomedical interpretation of genomic
variation in noncoding regions of the genome.

Conclusions

It has become commonplace to discuss the multi-layered,
hierarchical organization of interphase chromosomes
across strata ranging from nuclear compartments, down
to the spectra of histone modifications and bound pro-
teins at individual sub-genic regions. However, we lack a
detailed understanding of how these strata interact. We
have shown that our perspectives of features occurring at
different strata can be bridged by modeling approaches,
and the models produced can be used to explore the
interrelationships between these different features quan-
titatively.

We constructed cell-type-specific models of nuclear
organization, as reflected in Hi-C-derived eigenvector
profiles, to discover the most influential features under-
lying higher-order structures. We found open and closed
compartments to be well correlated with combinato-
rial patterns of histone modifications and DNA bind-
ing proteins, enabling accurate predictive models. These
models could be cross-applied successfully between cell
types highlighting constellations of common structural
features associated with different nuclear compartments
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as expected. Dissection of the most influential variables
also revealed important differences between models, con-
sistent with the known biological contrasts among these
cell types, such as the prominence of EGR1 in ESCs
and H3K9me3 in the leukemia cell line. Investigation of
regions showing variable nuclear organization across the
three cell types under study, revealed enrichments for cell-
type-specific enhancer activity, often nucleated at genes
with known roles in cell-type-specific functions. Finally
we used model predictions to examine boundary com-
position between higher-order domains across cell types.
Among enrichments of a large number of factors observed
at different boundaries in different cell types, CTCF and
YY1 were found consistently and may cooperate to estab-
lish domain boundaries. In summary, we show that inte-
grative modeling of large chromatin dataset collections
using random forests can generate useful insights into
chromosome structure and seed testable hypotheses for
further experimental studies.

Materials and methods

Hi-C data and locus-level chromatin features

Hi-C datasets for human cell types H1 hESC [9], K562
[15] and GM12878 [40] were retrieved (Gene Expres-
sion Omnibus accession numbers: [GEO:GSE35156],
[GEO:GSE18199] and [GEO:SRX030113]) and mapped to
the genome (hgl9/GRCh37). Iterative mapping was per-
formed using the hiclib software package [41] and
bowtie2 [42] with the very-sensitive flag. Mapped
reads were then binned into contact maps and iteratively
corrected [41]. The hiclib software was also used for
eigenvector expansion of each intrachromosomal con-
tact map, performed independently for each chromosome
arm.

Genome-wide ChIP-seq datasets for 22 DNA binding
proteins (ATF3, CEBPB, CHD1, CHD2, CMYC, CTCF,
EGR1, EZH2, GABP, JUND, MAX, MXI1, NRSF, POL2,
P300, RAD21, SIX5, SP1, TAF1, TBP, YY1 and ZNF143)
and ten histone modifications (H3K27ac, H3K27me3,
H3K36me3, H3K4mel, H3K4me2, H3K4me3, H3K79me2,
H3K9ac, H3K9me3 and H4K20mel) were produced by
ENCODE (July 2012 data freeze, used in [43,44]), in addi-
tion to DNase I hypersensitivity data and H2A.Z occu-
pancy (Additional file 1: Figure S5), for each of the Tier 1
ENCODE cell lines used in this work: H1 hESC, K562 and
GM12878 [4]. These data were processed using MACSv2
[45] to produce a fold-change signal relative to input chro-
matin and the data are available from [43]. Regional GC
content was also calculated for each 1-Mb region and used
in the feature modeling set (Additional file 3).

Structural modeling and variability
Random forest regression [46] was used as implemented
in the R package randomForest [47]. Parameters of
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mtry = n/3 = 12 and ntrees = 200 were assumed as
the algorithm is known to be largely insensitive [48]. Vari-
able importance within random forest regression models
was measured using the mean decrease in accuracy in the
out-of-bag sample. This represents the average difference
(over the forest) between the accuracy of a tree with per-
muted and unpermuted versions of a given variable in
units of percentage mean-squared error [49]. The effec-
tiveness of the modeling approach was measured by four
different metrics. Prediction accuracy was assessed by the
PCC between the predicted and observed eigenvectors
(out-of-bag estimate), and the root mean-squared error
of the same data. Classification error, when predictions
were thresholded into A > 0 and B < 0, was also calcu-
lated using accuracy (percentage correct classifications or
true positives) and the area under the receiver operating
characteristic (AUROC) curve. Together these give a com-
prehensive overview of model performance, both in terms
of regression accuracy of the continuous eigenvector, and
in how that same model could be used to label discrete
chromatin compartments.

For cross-application of cell-type-specific models, a sin-
gle random forest regression model was learned from all
1-Mb bins for a given cell type. This was then used to pre-
dict all bins from each of the other two cell types. The
median absolute deviation was chosen as a robust mea-
sure of the variability in a given 1-Mb block between the
three cell types. Blocks were ranked by this measure and
the distribution was split into thirds that represented low
variability (the third of blocks with the lowest median
absolute deviation), and mid and high variability. Each
subgroup was then independently modeled using the ran-
dom forest approach described above. For each cell type
we identified 1-Mb regions whose compartment state was
altered relative to the other two. For example, if a 1-Mb
bin was classified as occupying compartment A in H1
hESC and B in both K562 and GM12878, it is said to
occupy an altered open compartment in H1 hESC. Chro-
matin state annotations were calculated from ENCODE
ChromHMM/SegWay combined annotations for each cell
type [5]. Annotated features were considered shared if
there was an overlapping annotation in either of the two
other cell types, and labeled as specific to a cell type
otherwise.

Chromatin boundaries

TAD boundaries were called using software provided
by Dixon et al. [9] with recommended parameters.
For the generation of locus-level feature profiles over
TAD boundaries, input features were averaged into
40-kb bins spanning +500 kb from the boundary cen-
ter. For compartment boundaries, a two-state hidden
Markov model was trained on the compartment eigen-
vector data and the Viterbi algorithm was used to infer
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the most likely underlying state sequence that generated
the observed compartment eigenvectors. Compartment
boundaries were then defined as the point of transi-
tion between different compartment types. To generate
boundary profiles, locus-level features were averaged into
100-kb windows extending +1.5 Mb either side of the
boundary center.

To test for the enrichment or depletion of a chro-
matin feature over a given boundary, a two-tailed Mann—
Whitney test was used to compare the boundary bin
with the ten outermost bins of the window (five from
either side). The significance level at « = 0.01 was
then Bonferroni-adjusted for multiple testing correction,
and results with P values exceeding this threshold were
deemed significantly enriched or depleted at a given
boundary.

Scripts to reproduce the analyses and generate
manuscripts figures are available at [50].

Additional files

Additional file 1: Figures S1 to S15. Collection of supplementary figures
(S1to S15) with captions.

Additional file 2: Tables S1 to S3. Functional enrichments of genes
located within structurally variable regions in each cell type.

Additional file 3: cellTypeFeatureSets. Archive containing
comma-separated value (CSV) files of binned input features and
compartment eigenvectors used for modeling, for each of the three cell
types used in this study.
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