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Abstract

series of lung adenocarcinoma cell lines.

cellular reservoir for gene expression programs.

Background: To understand the heterogeneous behaviors of individual cancer cells, it is essential to investigate
gene expression levels as well as their divergence between different individual cells. Recent advances in
next-generation sequencing-related technologies have enabled us to conduct a single-cell RNA-Seq analysis of a

Results: We analyze a total of 336 single-cell RNA-Seq libraries from seven cell lines. The results are highly robust
regarding both average expression levels and the relative gene expression differences between individual cells.
Gene expression diversity is characteristic depending on genes and pathways. Analyses of individual cells treated
with the multi-tyrosine kinase inhibitor vandetanib reveal that, while the ribosomal genes and many other so-called
house-keeping genes reduce their relative expression diversity during the drug treatment, the genes that are
directly targeted by vandetanib, the EGFR and RET genes, remain constant. Rigid transcriptional control of these
genes may not allow plastic changes of their expression with the drug treatment or during the cellular acquisition
of drug resistance. Additionally, we find that the gene expression patterns of cancer-related genes are sometimes
more diverse than expected based on the founder cells. Furthermore, we find that this diversity is occasionally
latent in a normal state and initially becomes apparent after the drug treatment.

Conclusions: Characteristic patterns in gene expression divergence, which would not be revealed by transcriptome
analysis of bulk cells, may also play important roles when cells acquire drug resistance, perhaps by providing a

Background

Recent advances in next-generation sequencing analysis
have enabled genome and transcriptome analysis of a
large number of samples within a reasonable time and at
a reasonable cost. Particularly, whole-genome sequen-
cing and exome sequencing analyses have been con-
ducted intensively to characterize somatic mutations in
cancer. Recently, The Cancer Genome Atlas and the
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International Cancer Genome Consortium have reported
genome, RNA and DNA methylation patterns for thou-
sands of clinical samples for hundreds of diverse cancer
types [1,2].

Advances in next-generation sequencing are not lim-
ited to the throughput and cost of sequencing itself.
Technical innovations in the sample preparation steps
have also significantly improved, enabling us to con-
struct a sequencing library from a very small amount of
starting material. For the purpose of genome sequen-
cing, multiple displacement amplifications [3] are now
widely used to amplify sub-picogram genomic DNA to
prepare a sequencing template from a single cell [4].
Additionally, for the purpose of transcriptome analysis,
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several methods for whole transcriptome amplification,
including template switching-based cDNA amplification,
have been developed, enabling transcriptome analysis of
a single cell [5,6]. Although it has been thought that
amplification bias would introduce significant bias in the
expression information during the amplification step, it
is now possible to prepare an RNA-Seq library in a high-
throughput and reasonably reproducible manner [7]. At
the same time, methods to capture a single cell in a
high-throughput manner are also being rapidly devel-
oped. Using microfluidics technology or cell sorters,
commercial instruments now support automatic separ-
ation of cells, which are subsequently used for template
preparation for sequencing analysis in a seamless man-
ner [8]. Taken together, these methods have opened the
possibility to conduct genome or transcriptome analysis
of a single cell in various biological systems [9].

With the analytical methods for individual cells avail-
able, one of the most attractive objectives for their appli-
cation should be single-cell analysis of cancer cells. The
extent to which cancer cells are diverse within a given
population and how they respond to environmental
changes, particularly to an anti-cancer drug treatment,
are pressing research questions. Indeed, these questions
have been analyzed for a limited number of genes. For
example, the single-cell transcriptome of colon cancer
was described in a previous study, which reported the
results of quantitative PCR for a limited number of
cancer-related genes [10]. That study revealed that tran-
scriptional diversity of cancer tissues should be ex-
plained by multilineage differentiation of the individual
cancer cells and that such diversity is closely associated
with prognostic outcomes. However, comprehensive
knowledge of how individual cells change their tran-
scriptional programs in response to environmental
changes remains elusive.

In this study, we characterized the heterogeneity in
gene expression that exists within a given population of
cancer cells. We also attempted to investigate how the
transcriptome of each cell responds to a molecularly tar-
geted drug and how they differ between parental cells
and cells that have acquired drug resistance. For this
purpose, we used a series of lung adenocarcinoma-
derived cell lines. We constructed single-cell RNA-Seq
libraries and screened them for heterogeneous transcrip-
tome features. We characterized distinct transcriptome
features, separating individual cells in a particular cell
type and those in different cell types. We put particular
focus on the analysis of LC2/ad. This cell line expresses
a fusion gene transcript of a tyrosine kinase, RET, and
CCDC6, resulting in the aberrant activation of the kin-
ase activity of RET, which serves as a major driving force
for carcinogenesis (a cancer driver) [11,12]. Indeed, at
the clinical level, the RET fusion transcripts were found
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in 1 to 2% of lung adenocarcinomas. A multi-tyrosine
kinase inhibitor, vandetanib, which inhibits the tyrosine
kinase activity of RET, is expected to be effective in
treating patients expressing these fusion transcripts
[13-16]. Actually, several 'proof of concept’ clinical trials
are ongoing. However, acquiring drug resistance to van-
detanib will be unavoidable, as has occurred for other
tyrosine kinase inhibitors, including gefitinib for EGFR
and crizotinib for ALK. Indeed, we and others have iden-
tified a subclone of LC2/ad that has acquired resistance
to vandetanib (LC2/ad-R; see below). In this study, we
examined the gene expression patterns in individual cells
of LC2/ad and LC2/ad-R cells with or without vandeta-
nib treatment. Here, we describe our single-cell RNA-
Seq analysis using 336 single-cell RNA-Seq libraries con-
structed from seven types of lung adenocarcinoma cell
lines.

Results and discussion

RNA-Seq analysis of individual cells of a lung
adenocarcinoma cell line, LC2/ad

To analyze gene expression levels and their variances be-
tween different individual cells, we constructed a series
of single-cell RNA-Seq libraries from a human lung
adenocarcinoma cell line, LC2/ad. To construct the li-
braries, we used the Fluidigm C1 platform (for details on
the procedure, see Figure S1 in Additional file 1) [8].
Using the constructed libraries, we generated RNA-Seq
tags by 97-base paired-end reads. We allocated a full
flow cell of HiSeq2500 with 12-plex samples to a single
lane, yielding 14 million tags, on average, for each library
(Additional file 2). For the purpose of the initial quality
check, we utilized three spike-in controls. Most of the
cells were within the range of standard deviations re-
garding the expected read counts for all of the spike-in
controls (Figure 1A). To further ensure the fidelity of
the data, we discarded libraries in which tag counts of
any of the spike-in controls deviated by more than two
standard deviations from the other cells. Forty-three li-
braries passed the filter and were used for the following
analyses (Table 1). RNA-Seq tags derived from these li-
braries were mapped to the reference human genome
allowing two base mismatches. Among the mapped
RNA-Seq tags, an average of 78% were mapped within
the RefSeq gene regions, which is comparable with nor-
mal RNA-Seq libraries. To measure the gene expression
levels, we counted the RNA-Seq tags that were mapped
to the RefSeq regions and calculated reads per million
tags per kilobase mRNA (rpkm) [17]. Further details of
the statistics are shown in Additional file 2.

For the obtained results, we conducted a series of val-
idation analyses. First, to estimate potential PCR dupli-
cates in the RNA-Seq tags, we counted the frequency of
the tags that had identical sequences (giving the same
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Figure 1 (See legend on next page.)
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Figure 1 Generation of the RNA-Seq data from single cells of LC2/ad. (A) Read counts of spike-in controls. The tag counts corresponding to the
indicated spike-ins are represented on the y-axis. The x-axis represents the copy numbers of the indicated spike-ins mixed in the sample. rpkm,
reads per million tags per kilobase mRNA. (B) Complexity of the sequence reads. The number of RNA-Seq tags mapped to the same genomic
position is shown. (C) Validation analysis using real-time PCR. Quantitative RT-PCR was conducted using first-strand cDNA for the genes listed in
Additional file 3. Ct values were compared between the average of individual cells and those of the bulk of 200 cells. (D) Comparison between
sequence duplicates (first panel), between biological duplicates (second panel) and between bulk and individual cells (third and fourth panels).
The relation between gene expression levels measured from the average of independent cells and bulk RNA-Seq analysis of 200 cells (third panel)
and >107 cells (fourth panel) are shown. Pearson’s correlation between two experiments is shown in the plot. (E) Identification of the fusion gene
transcript, CCDC6-RET, using the RNA-Seq tags of single cells. The number of tags that directly spanned the junction point of the gene fusion is
shown. In the upper panel, the densities of the RNA-Seq tags that were mapped to the indicated genomic positions (the RET gene region in the
right half and the CCDC6 gene region in the left half) are also shown (in blue and red letters, respectively). The results in LC2/ad cells are shown.
Note that even in the case where there was no RNA-Seq tag directly spanning the junction point, the distribution of the RNA-Seq tags were
significantly different between the 5" and 3’ halves of the RET gene, which indicates the discontinuity of this transcript.

start- and end-mapping coordinates). We found that, on
average, such tags appeared 2.6 times per genomic pos-
ition (Figure 1B), which is almost at a similar rate as usual
RNA-Seq libraries at this depth (Table S2 in Additional
file 1). Second, to validate equal amplification of cDNAs
between different cells, we performed quantitative RT-PCR
analysis of 85 genes (Additional file 3). As shown in
Figure 1C, the quantitative RT-PCR results were well-
correlated (r=0.94) between RNA-Seq tags from a
bulk library of 200 cells and an average of 43 single cell
libraries, although this experiment did not directly
support equal amplification between different cells.
Third, we examined the reproducibility of the data. We
repeated the sequencing using the same templates and
found that the correlation was almost perfect (r = 0.99;
the first panel in Figure 1D). We also analyzed and
found that the results are robust for the increasing se-
quence depth and the re-amplification of the same sin-
gle cell materials (Figure S2 in Additional file 1). To
further ensure the reproducibility between independ-
ent experiments, we repeated the library construction,
starting from independently cultured LC2/ad cells.
Again, we found that the results were highly reprodu-
cible (r=0.93; the second panel in Figure 1D). To
examine reproducibility with regard to dependence on
the number of starting cells and the library construc-
tion protocol, we compared the results of the single-
cell analysis with those obtained from the libraries

prepared from 200 cells and those from the libraries
constructed according to the usual RNA-Seq protocol
using 10 million cells. We observed reasonable reproduci-
bility with r=0.86 and r=0.82 (the third and fourth
panels in Figure 1D). Last, we examined whether the char-
acteristic fusion gene transcript CCDC6-RET can be de-
tected in the single-cell libraries. As shown in Figure 1E,
we searched and identified a total of 12 RNA-Seq tags that
spanned the junctions of the fusion gene (also see Figure
S3 in Additional file 1 for identification of the tags of the
fusion transcript from the increased sequence depth; iden-
tification of the tags spanning the driver mutation in the
EGER gene in a different cell line, PC-9, is also described
there). Taken together, these results demonstrate that the
single-cell data should be reproducible and can be used
similarly to usual RNA-Seq analyses.

Gene expression divergence between different individual cells
Using the generated RNA-Seq data, we first examined
the gene expression levels averaged for the individual
cells. As previously reported, expression levels showed a
distribution that roughly follows Zipf’s law (bold line in
Figure 2A) [18]. In addition to the average expression
levels, we also investigated divergence of the expression
levels among the individual cells (pale vertical lines in
Figure 2A). We calculated the standard deviation of the
rpkm for each gene and divided it by the average rpkm
(called 'relative divergence' hereafter). We found that a

Table 1 Statistics of the RNA-Seq tag data used for the present study

Number of libraries

Average mapped tags

Average mapped in RefSeq regions Average complexity

LC2/ad 43 4,567,666
LC2/ad (replicate) 45 8,909,696
LC2/ad-R 70 9,456,920
LC2/ad +van 28 7,949,208
LC2/ad-R + van 58 4,324,350
PC9 46 7409611
VMRC-LCD 46 6,825,661

3,581,044 (78%) 23
7,190,460 (81%) 26
7,052,916 (75%) 37
6,408,497 (81%) 23
2,926,954 (68%) 2.7
5,726,548 (77%) 24
5,059,441 (74%) 25
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Figure 2 Diversity in the expression levels between different individual cells and different genes. (A) Distribution of the average gene expression
levels (solid line) and the relative standard deviations (vertical lines). (B) Relation between average expression levels and the relative divergence.
Statistical significance calculated by Fisher's exact test (f-test) is shown in the margin. (C) Dependency of the calculated relative divergence on
the varying sequence depth per cell. Average values for the indicated populations are shown. A total of 2,370, 1,014, 3,489, 541 and 429 genes
were used for genes with average expression levels of 1to 5, 5 to 10, 10 to 50, 50 to 100, and 100 to 500 rpkm, respectively. The inset represents
magnification of the main plot at the region of small values on the x-axis. (D) Reproducibility of the experiments with regard to expression variation.
Relative expression variation obtained from two independent experiments is shown. Pearson’s correlation is shown in the plot. (E,F) Validation analysis
using real time RT-PCR assays in individual cells of LC2/ad. A total of 13 genes were analyzed. Pearson’s correlation coefficients are shown in the plot.
(E) Relation between Ct values of real time RT-PCR assays and the results of single-cell RNA-Seq analyses. Each dot represents the average of triplicate
experiments. (F) Relation between the relative divergence calculated based on the real time RT-PCR analyses and the single-cell RNA-Seq
analyses. (G) Relative divergence in different genes. Genes were sorted according to their relative divergence and genes that were ranked at 1,
10, 100, 1,000 and 5,000 are shown. The horizontal bar represents the average expression level. The EGFR gene, which was ranked 2830, is also
shown. CV, coefficient of variation. (H) Gene Ontology terms (upper panel) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways

(lower panel) for genes that showed highly diverse expression between individual cells.

gene with a higher expression level tends to have a lower
relative divergence (Figure 2B). This may have been
caused by insufficient coverage of RNA-Seq tags, par-
ticularly for lowly expressed genes. However, at least for
the genes with >5 rpkm, they were represented by ap-
proximately >50 RNA-Seq tags at this sequence depth;
thus, the depth seemed to be sufficient to represent the
truly divergent gene expression in cells (see Figure S5,
S6 and S7 in Additional file 1 for further detailed ana-
lysis on the dependency of the sequence depth and the
detected relative divergence; also see the relation be-
tween the sequence depth and the number of tags in
each gene in Figure S8 in Additional file 1).

To further ensure the correct measurement of the
relative divergence depending on the sequence coverage,
we examined the dependency of the calculated relative
divergence on varying sequencing depth. As shown in
Figure 2C, calculated relative divergence plateaued when
the sequence depth exceeded two million tags per cell,
especially for genes with expression levels >5 rpkm.
Additionally, it was unlikely that the observed diver-
gences were derived from typical technical errors be-
cause they were reproducible between the independent
experiments (r = 0.82; Figure 2D). Lastly, we conducted
real time RT-PCR assays for 13 genes for each of the sin-
gle cells (total data point n=560) using the remaining
aliquots of the amplified cDNAs (Figure 2E,F; see Table
S4 in Additional file 1 for primers). We confirmed that,
generally, the expression levels detected by real time RT-
PCR were consistent with the results of RNA-Seq. We
further compared the relative divergence between that
calculated from the real time RT-PCR and that from the
RNA-Seq and found that they are reasonably consistent
(r=0.84; also see Figure S4 in Additional file 1 for the
case of PC-9, where r=0.92 when calculated using total
data points n = 630). Also, we examined the dependency
of the observed relative divergence on the number of the
cells used for the analysis. For this purpose, we used the
dataset of LC2/ad cells (a total of 88 cells; LC2/ad (43

cells) + LC2/ad replicate (45 cells)). As shown in Figure
S9 in Additional file 1, we found approximately 30 cells
should be the minimum number of cells to estimate the
relative divergence in gene expression, although even
with 88 cells the plots did not seem to always reach a
complete plateau. Based on these results, we concluded
that the observed diversities in gene expressions were
not derived merely from technical errors or insufficient
sequence depth or inadequate data size but represent
real biological phenomena.

We found that the divergences were frequently unique
to genes, even between genes with similar expression
levels (see below). For example, the relative divergences
of the GRB14, EMP3 and EGFR genes (relative diver-
gence ranks of 181, 6,849 and 2,830, respectively) were
significantly different in spite of their similar average ex-
pression levels (Figure 2G). In this study, we evaluated
the diversity in gene expression by considering their
standard deviations. It should be noted, however, that
the 'relative divergence' may not correctly reflect the
overall divergence, particularly when there is a certain
population of individual cells giving extremely high or
low expression values. Indeed, the high relative divergence
observed for EMP3 gene expression was accounted for by
the fact that the expression of this gene was 0 in about
half of the cells.

Then, we examined how many genes had diverse or
less diverse expression patterns compared with genes
with similar expression levels because the relative diver-
gence showed some dependency on the average gene
expression level. For this purpose, we matched the ex-
pression levels of the control genes: they were selected
so that their average expression levels fell within two-
fold of the expression levels of the original genes
(though their relative divergence may vary). We selected
1,000 genes (or all of the genes satistying the criterion)
for each gene and selected the genes giving P <0.05
(f-test) compared with the background distribution of
the relative divergence at similar expression levels in the
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tests (see Materials and methods). We found a total of
305 and 596 genes that showed more or less diverse ex-
pression patterns, respectively (see Additional file 4 for a
full list). Next, we examined whether the genes with high
or low relative divergence were enriched in particular
pathways. Genes of characteristic KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways [19]
were identified. In particular, those pathways related to
cancers, such as the p53 signaling pathway (KEGG
pathway ID: hsa04115; average P = 3e-6) and the ErbB
signaling pathway (KEGG pathway ID: hsa04012; aver-
age P=2e-2), were identified as pathways in which
genes with expression patterns that had high and low
diversity, respectively, were enriched (Figure 2H). Relative
divergence may reflect the intrinsic properties of tran-
scriptional regulatory machineries, which are characteris-
tic depending on genes and pathways.

Gene expression patterns in different lung
adenocarcinoma cell lines

To characterize relative divergences in different cell
lines, we conducted a similar single-cell RNA-Seq ana-
lysis for two additional lung adenocarcinoma cell lines,
PC-9 and VMRC-LCD (Table 1). At the same time, we
conducted whole-genome sequencing for LC2/ad, PC-9
and VMRC-LCD as bulk samples [20] (Figure S10 in
Additional file 1). Consistent with previous studies, we
detected the RET fusion gene as a driver mutation in
LC2/ad (Figure S10B in Additional file 1). We also found
PC-9 carries a known driver mutation in the EGFR gene
(E746_A750del; Figure S10C in Additional file 1), while
no driver was identified for VMRC-LCD. Similar to the
case of LC2/ad, validation analyses of the RNA-Seq are
shown in Figure S11 in Additional file 1.

Using the obtained data, we compared the gene expres-
sion levels averaged for different individual cells. We found
that they are generally similar between the cell lines, per-
haps reflecting the fact that they were all established from
lung adenocarcinomas (upper panels in Figure 3A). We
also examined the distribution of the average gene expres-
sion levels. Again, we found that they are similar between
cell lines (left panel in Figure 3B). However, the relative di-
vergences were more distinct between cell types (lower
panels in Figure 3A). For example, PC-9 gave the smallest
expression variation between individual cells, followed
by VMRC-LCD and LC2/ad (right panel in Figure 3B).
Those differences were statistically significant (insets in
Figure 3B).

As for LC2/ad, we conducted KEGG pathway enrich-
ment analysis of the genes with high relative divergences
in these cell lines. Again, we found that cancer-related
genes and pathways were enriched (Table S6 in Additional
file 1). However, we also found that each cell type had
partly common and partly unique enrichment patterns

Page 7 of 17

(see below). Notably, we compared the gene expression
patterns of the EGFR pathway genes, which are supposed
to play pivotal roles in carcinogenesis of lung cancers
[19,21], between cell lines (Figure 3C). We found that this
pathway was, indeed, enriched for diversely or less di-
versely expressed genes in general, but different gene
components contributed to the overall high divergence
depending on the cell line (Figure 3C; Additional file 5).
These divergences may contribute to the characteristic
cellular behavior of each cell line in addition to their
average expression levels.

Gene expression patterns in cancer-related genes

We further examined the expression patterns of the 25
representative cancer-driver or tumor-suppressor genes,
which were selected from recent papers on clinical gen-
ome sequencing of lung cancers (we call them 'cancer-
related genes' hereafter; the expression patterns of five
representative cancer-related genes are shown in Table 2)
[21-23]. Additionally, for these genes, the relative diver-
gences converged to 1.0 for the genes with expression
levels >5 rpkm (Additional file 6). Again, we observed
that each cell had unique expression patterns not only
for average expression levels but also for relative diver-
gences for functionally important genes (Figure 4A).

To further investigate the biological meaning of the
observed unique patterns of relative divergences based
on genes and cell lines, we considered whether each line
carries any known driver mutations in the corresponding
genes. Whole-genome sequencing of these cell lines
showed that neither LC2/ad, PC-9 nor VMRC-LCD is
known to carry any driver mutations in the KRAS gene
(Figure S10D in Additional file 1). The expression levels
of the KRAS gene and their variation were almost simi-
lar between the cell lines (Figure 4B). However, for the
EGEFR gene, the average gene expression levels were 4.4
times and >1,000 times higher in PC-9, which carries a
driver mutation, than in LC2/ad and VMRC-LCD, re-
spectively, both of which do not possess such a driver
mutation. In PC-9, the relative divergence of the EGFR
gene was 1.8 times and 5 times narrower than in LC2/ad
and VMRC-LCD, respectively (see Figure S4C in Additional
file 1 for the validation analysis). In the case of the RET
gene, however, for which LC2/ad carries a gene fusion, the
highest expression level and the narrowest divergence
were observed in LC2/ad. It is tempting to speculate that
the EGFR gene in PC-9 and the RET gene in LC2/ad may
be under stricter selection pressures. Thus, the increased
expression levels and the narrow divergence for the corre-
sponding genes would be natural consequences in these
cell lines.

The MYC gene provides another unique example. The
average expression level of this gene was highest in LC2/
ad, 4.4 times higher than in PC-9; however, the relative
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are shown.

Figure 3 Expression diversity in different cell types. (A) Difference in the average gene expression levels (upper panels) and the relative
divergences (lower panels) between LC2/ad and PC-9 cells (left panels), LC2/ad and VMRC-LCD cells (middle panels) and PC-9 and VMRC-LCD cells
(right panels). Pearson’s correlation co-efficient is also shown in the plots. (B) Range of the average expression levels (left panel) and their relative
divergences (right panel) in the indicated cell types (LC2/ad, red; PC-9, green; VMRC-LCD, purple). Statistical significance of the difference between
the indicated cell lines and the average values are shown in the insets. (C) Expression pattern of the EGFR pathway genes. The color density of
each circle represents the average expression level and the radius the relative deviation. Expression patterns of the indicated cell types

divergence was almost equivalent between them (less than
1.2-fold difference). In LC2/ad, the MYC gene was found to
be genomically amplified (Figure S12 in Additional file 1).
Similarly, in the case of the CCNC gene, for which gen-
ome amplification was observed solely in VMRC-LCD,
expression levels were 6.0 and 4.9 times higher but with
similar levels of relative divergence (1.4- and 1.9-fold
difference) compared with PC-9 and LC2/ad, respect-
ively. Relative divergences may reflect distinct mecha-
nisms of up-regulation of gene expression. In either
case, it should be particularly important to further in-
vestigate how the observed divergence in gene expres-
sion is realized through transcriptional mechanisms and
to what extent these mechanisms contribute to charac-
teristic phenotypic differences in each cell line.

Changes in gene expression patterns in response to
vandetanib stimulation
To examine how gene expression divergences vary in re-
sponse to a molecular target drug, we conducted a similar
single-cell RNA-Seq analysis using LC2/ad treated with
vandetanib (1 pM for 6 hours; IC50 = 0.32 uM; Figure S13
in Additional file 1). We also utilized an LC2/ad-derived
cell line, LC2/ad-R, which has acquired resistance to
vandetanib (IC50 =1.13 puM; Figure S13 in Additional
file 1), in a similar analysis (Table 1; statistics and valid-
ation analyses of the RNA-Seq are shown in Figure S11D
in Additional file 1 and in Additional file 2). Whole-
genome sequencing of LC2/ad-R showed that essentially
no driver mutations in cancer-related genes, such as those
in the EGFR and KRAS genes, were newly acquired in
LC2/ad-R (Figure S10E in Additional file 1).

First, we compared the expression patterns between
LC2/ad and LC2/ad-R without stimulation. We found

Table 2 Gene expression variations for representative
cancer-related genes in single cells of different cell lines

LC2/ad LC2/ad (rep) LC2/ad-R PC-9 VMRC-LCD
EGFR 13£14 1715 12+14 56+ 34 0.03£0.1
RET 19«5 20+4 16+5 0.005+0015 10£7
MYC  99+117 84+95 179+123 23+£23 0.05+0.2
KRAS 29+17 2719 17+14 21+15 26+19
TP53 22415 25+14 105+94  126+43 1449

Expression level is presented as average + standard deviation.

that the average expression levels of many of the so-called
house-keeping genes [19,24], represented by ribosomal
protein genes (right panels in Figure 5A; see Figure S14 in
Additional file 1 for further details; see Figure S15 in
Additional file 1 and Additional file 7 for changes in
relative divergence in other house-keeping genes), were
similar between them. However, their relative divergences
were significantly lower in the LC2/ad-R cells. Because
LC2/ad-R cells were derived from a subpopulation of
parental LC2/ad cells, their expression patterns may be
originally more homogeneous than parental cells. Unlike
the case of ribosomal protein genes, both the expression
levels and the relative divergences of the EGFR pathway
genes and cancer-related genes were similar between these
cell lines (left panels in Figure 5A).

Next, we compared the fold changes of the average
expression levels in response to vandetanib treatment.
We selected the genes for which average expression
levels changed more than two-fold in response to the
vandetanib treatment. We identified 1,202 such genes
(457 genes that were induced and 745 genes that were
repressed) in LC2/ad and 2,037 such genes (539 genes
that were induced and 1,498 genes that were repressed)
in LC2/ad-R (Figure S16 in Additional file 1). A wide
variety of genes were included, likely reflecting the fact
that the anti-cancer drug treatment affected various
signaling pathways in both LC2/ad and LC2/ad-R (Table
S10 in Additional file 1). Additionally, distinct patterns
of alternations in gene expression were observed be-
tween LC2/ad and LC2/ad-R (Figure S16 in Additional
file 1), likely reflecting diverse responses in these cell
lines to the vandetanib treatment.

We found that, compared with the parental cells, aver-
age expression levels generally changed more in LC2/
ad-R (Figure 5B; Figure S16 in Additional file 1). LC2/
ad-R cells may have acquired the ability to plastically
change their transcriptome regulation in response to the
vandetanib treatment. We also examined fold changes of
the relative divergences. We found that changes in the
relative divergences were more significant in the parental
LC2/ad line. In this case, for many of the house-keeping
genes, as exemplified by the ribosomal protein genes
(upper panel in Figure 5B), the relative divergences were
greatly reduced in LC2/ad, as if the cells lose diversity
in response to the drug treatment. However, such
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reductions in relative divergences were not observed in
LC2/ad-R. Rather, changes were sometimes slightly
induced even when the average expression levels were
unchanged (lower panel in Figure 5B). In summary,
LC2/ad-R showed reduced average gene expression and
LC2/ad showed reduced relative divergence (upper panel
in Figure 5C; note that the dots are enriched in the
upper left part of the plots).

In particular, for EGFR pathway genes and cancer-
related genes, typical alterations in average expression
levels or relative divergences in response to vandetanib
were not significant (right panels in Figure 5B; lower
panel in Figure 5C). Expression levels and relative diver-
gences of the EGFR and RET genes, which are direct
targets of vandetanib [25], remained unchanged both in
LC2/ad and LC2/ad-R. Cellular survival of parental LC2/
ad should be heavily dependent on these genes. There-
fore, their expression may have been robustly regulated,
even with some allowance for diversity among different

cells, but could not be altered by the drug treatment.
Although LC2/ad-R is not dependent on these genes,
and vandetanib inhibited their activities as tyrosine
kinases, such changes were not reflected as a change in
the transcriptional program due to their rigid transcrip-
tional regulation, which may be due to the inherent
nature of this cell type. For genes directly related to
cancers, such as cancer drivers, distinct types of selective
pressure may have been exerted by other genes.

Gene expression patterns of single cells

In addition to investigating gene expression diversity be-
tween individual cells, we wished to analyze the expres-
sion levels of genes and their mutual relations within an
individual cell. We plotted individual cells of each cell type
according to the expression levels of the EGFR, MYC and
RET genes, using 205 cells (43, 70, 46 and 46 cells from
LC2/ad, LC2/ad-R, PC-9 and VMRC-LCD, respectively).
As expected, individual cells formed clusters depending
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genes and the cancer-related genes. The color key is as in (A).

Figure 5 Expression changes in response to anti-cancer drug stimulation. (A) Correlation of the average expression levels and the relative
divergences between LC2/ad and LC2/ad-R cells for EGFR pathway genes (blue), caner-related genes (red) and ribosomal protein genes (green).
Pearson'’s correlation coefficients are shown in the plots. The plots of the EGFR and RET genes are highlighted by red and blue boxes, respectively.
(B) Gene expression changes in response to vandetanib treatment in LC2/ad (upper panel) and LC2/ad-R (lower panel) cells. Each gene, plots
show fold changes in the average expression levels (x-axis) and the relative divergence. The dotted lines represent the values that were unchanged
(fold = 1). Right panels show plots for ribosomal protein genes, the EGFR pathway genes and the cancer-related genes. The color key is as in
(A). (C) Relative fold changes in average expression levels (x-axis) and relative divergences (y-axis) for LC2/ad and LC2/ad-R cells. The dotted
lines indicate the values that were unchanged between these cell lines. The lower panel shows ribosomal protein genes, the EGFR pathway

on parent cell types (Figure 6A). However, we also
observed that a number of cells deviated from the cen-
ter of each cluster, suggesting heterogeneity within the
populations. We also conducted similar analysis using
vandetanib-treated cells, with a total of 199 cells (43,
70, 28 and 58 cells from LC2/ad, LC2/ad-R, LC2/ad +
vandetanib and LC2/ad-R + vandetanib, respectively). We
observed that heterogeneity was more prominent for LC2/
ad-R cells than for the parental LC2/ad cells (Figure 6B).
Particularly, those differences were most significant for
the expression level of MYC, suggesting that MYC may
play a pivotal role in differentiating these cell lines.

We also conducted a global clustering analysis of gene
expression using 205 cells. As expected, when we used
all genes for the clustering, we found that individual
cells formed clusters depending on their parent cell
types (vertical color bar in Figure 6C). Similar results
were obtained when we used the 88 ribosomal protein
genes to perform the clustering. By contrast, when we
examined the cancer-related genes or the EGFR pathway
genes, the individual cells of different cell types did not
form significant clusters, suggesting that the expression
patterns of these groups of genes were intrinsically
heterogeneous even in the untreated state. Interestingly,
when we used the 'Cancer Gene Census' genes [26],
which is a catalogue of genes associated with carcino-
genesis in various cancer types, the clusters were still
clear between the different cell lines. However, when we
considered the data for LC2/ad and LC2/ad-R cells
treated with vandetanib, we found that the clusters were
occasionally disordered across their originating cell types
(Figure 6D; see Figure S17 in Additional file 1 for gene
expression changes based on drug treatment). Interest-
ingly, while the LC2/ad + vandetanib cells overlapped
with LC2/ad cells, LC2/ad-R + vandetanib cells tended to
form distinct clusters from LC2/ad-R cells, as if the
parental cells responded in a random manner, while the
response of the derivative cells was deterministic to
some extent (see Figure S18 in Additional file 1 for
distributions of cluster sizes and statistical significance
of the difference between LC2/ad and LC2/ad-R).

Furthermore, in the case of the Cancer Gene Census
genes, we conducted a principle component analysis
(Figure 6E). We found that the LC2/ad-R cells, rather

than parental LC2/ad cells, formed relatively tight clus-
ters in both the untreated and the vandetanib-treated
states. Interestingly, some of the cell clusters of LC2/
ad-R + vandetanib came closer to or partially overlapped
clusters of PC-9. These genes may have evolved expres-
sion patterns resembling those of PC-9 to avoid the
effect of vandetanib on LC2/ad cells. Various patterns of
gene expression diversity, some of which are apparent
and some of which are latent, may collectively provide a
versatile base from which drug resistance could emerge.

Conclusions

In this study, we show gene expression diversity in lung
adenocarcinoma cell lines by employing single-cell
RNA-Seq analysis. To our knowledge, this is the first
study that has described the heterogeneity of cancer cells
at the transcriptome level.

We believe that it is unlikely that the results obtained
in this study derive from typical technical errors. How-
ever, we could not exclude all of the possibilities of false
observations. First, we did not use cells that were syn-
chronized for the cell cycle. Perhaps consistently, cell
cycle-related genes were enriched in the pathways with
diverse expression patterns (Figure 2H). Neither could
we completely control the micro-environment for each
cell. Therefore, the observed differences in the gene ex-
pression patterns may reflect the differential representa-
tion of the population of cells with regard to these
factors. Second, we could not evaluate the influence of
the systematic bias that was imposed during library con-
struction. Inevitably, heavy amplification of the templates
was performed for this analysis (also see Figure 1D for a
comparison between the average of the single cells and
the bulk cells). Noise could also be induced at the initial
step, including reverse-transcription, which is particularly
difficult to evaluate in the present system. Once harvested,
the same cell cannot be used for any validation analyses.
In this study, we evaluated variation in the spike-in
controls, which were added as RNA at the cell lysis step
(Figure 1A). We excluded cells where the tag counts of
any of three spike-in controls deviated by more than
two standard deviations from the average values from
the following analyses. Also, we examined and found
the observed average expression levels and relative
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Figure 6 Gene expression patterns in a given cell. (A) Individual single cells of different cell lines are plotted according to expression levels of the
EGFR, MYC and RET genes. The color key for the cell lines is shown to the right. (B) Results of a similar analysis as in (A) but for LC2/ad and LC2/
ad-R cells treated with or vandetanib or not. Notable expression changes observed for LC2/ad-R cells are indicated by pink circles. (C) Hierarchal
clustering analyses were conducted using the indicated groups of genes. Clusters of individual cells are represented in the left margin of the heat
maps. The color key for the cells is shown to the right. (D) Results of a similar analysis as (C) but for Cancer Gene Census genes. The color key for
the cell lines is shown to the right of the heat maps. (E) Results of the principle component analysis for Cancer Gene Census genes in LC2/ad
(left panel) and LC2/ad-R (right panel) cells. Color keys for the cell lines are shown to the right.

divergences were reasonably reproducible between two
independent experiments (r=0.93 and 0.82, respect-
ively; Figures 1D (second panel) and 2D). These results
should account for overall technical errors, including
those induced during the reverse transcription stage.
Nevertheless, it remains unclear to what extent they
truly represent the collective information within a cell
in vivo, even though they were reproducible (Figure S2B
in Additional file 1). Lastly, but no less importantly, we
could not attribute the cause of the observed divergences
to newly acquired novel genomic mutations or other
epigenomic alterations. For each of these issues, fur-
ther extensive analyses are required.

In spite of several drawbacks, we believe that this
study should lay the foundations for single-cell analysis
of cancer cells. Indeed, we have found that gene expres-
sion was highly diverse between individual cells, which is
characteristic of the genes, pathways and cell lines. We
also observed that there is a general tendency that lowly
expressed genes show high divergence. This tendency
was not systematic, however, since we observed that the
degree of divergence varied between genes even when
their average expression levels were almost the same.
We were not able to identify molecular mechanisms
underlying these characteristic divergences, though it is
tempting to speculate that there are distinctive determi-
nants depending on the involved signaling pathways or
gene expression regulatory mechanisms. It is also pos-
sible that high relative divergences in lowly expressed
genes derived from the inevitably stochastic nature of
the transcriptional machineries. Additionally, we exam-
ined and found that not only average gene expression
levels but also their relative divergences were changed in
response to drug treatment. Furthermore, we unexpect-
edly found that the expression patterns of several cancer-
related genes within a single cell are occasionally more
diverse beyond the borders of its originating cell type. In
particular, Cancer Gene Census genes showed a unique
pattern; such divergence initially became apparent when
the cells were treated with a molecular target drug.

Various types of potential divergence in transcriptome
regulation may collectively serve as a reservoir for cells
to eventually acquire drug resistance. To further clarify
this possibility, it is necessary to investigate not only
average gene expression levels and their fold changes in

response to anti-cancer drug treatment but also the vari-
ance of these genes between individual cells. We believe
that further extensive single-cell transcriptome analysis
using more cell types in various environmental condi-
tions will bring invaluable insight for understanding how
diverse phenotypes of cancer cells emerge from a given
population of cancer cells.

Materials and methods

Data availability

All of the sequence data used in the present study have
been registered in the DNA Data Bank of Japan under
accession numbers DRA001287 and DRA002730. The
graphical view for each gene is also available from our
web site at [27].

Cell culture and sequencing

The LC2/ad and PC-9 cell lines were acquired from the
RIKEN Bio Resource Center (catalogue numbers
RCB0440 and RCB4455, respectively). The VMRC-LCD
cell line was provided by the Japanese Collection of Re-
search Bioresources (catalogue number JCRB0814). The
LC2/ad-R cell line was provided on request. Cell culture
mediums were prepared using Dulbecco’s modified Eagle’s
medium (DMEM 2, Nissui Pharmaceutical, Tokyo, Japan)
for LC2/ad and LC2/ad-R, RPMI medium (RPMI 1640 2,
Nissui Pharmaceutical) for PC-9 or Eagle’s minimal es-
sential medium (EMEM 1, Nissui Pharmaceutical) for
VMRC-LCD, supplemented with 10% fetal bovine
serum, MEM Non-essential Amino acid solution (cata-
logue number M7145, Sigma-Aldrich, St Louis, MO,
USA) and Antibiotic-Antimycotic (catalogue number
15240-062, Gibco/Life Technologies, Carlsbad, CA,
USA). The LC2/ad and LC2/ad-R cell lines were cul-
tured in collagen type I-coated dishes (IWAKI, AGC
Techno Glass, Tokyo, Japan). For vandetanib (catalogue
number S1046, Selleck Chemicals, Houston, TX, USA)
treatment, vandetanib was administered to the culture
medium at a final concentration of 1 uM. Six hours after
the drug treatment, cells were harvested. For each experi-
ment, 10° cells were harvested and used for the single-cell
RNA-Seq analyses using the C1 system (Fluidigm, South
San Francisco, CA, USA). RNA-Seq libraries were con-
structed according to manufacturers' instructions as
follows. Briefly, 96 cells were captured in the flow cells
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and separated into independent chambers. First-strand
c¢DNA was synthesized and further amplified using the
SMARTer system (Clontech, Mountain View, CA, USA).
[lumina sequencing libraries were constructed using Nex-
tera XT DNA Sample Preparation kit (Illumina, San
Diego, CA, USA). After evaluation of the quality and
quantity of the constructed RNA-Seq libraries using a
BioAnalyzer (Agilent Technologies, Santa Clara, CA,
USA), sequencing was performed on the HiSeq2500 plat-
form with a 97-base paired-end read. Generated RNA-Seq
tags were mapped to the reference human genome (hg19;
UCSC) using ELAND. Sequences that mapped to the
unique genomic positions allowing two base mismatches
were used. RNA-Seq tags that spanned the known splice
junctions were also considered. The number of RNA-Seq
libraries and RNA-Seq tags used for the analyses are
shown in Table 1. The primers for quantitative RT-PCR
validation analyses of 85 genes (a standard validation
dataset from Fluidigm) were provided as the Human Gx
performance panel (P/N 100-5396) and the raw data for
individual genes are shown in Additional file 3. These 85
genes were selected from the genes having diverse expres-
sion levels and are likely to be expressed in a wide range
of cell types [24,28].

Computational procedures

RNA-Seq tag counts were calculated as parts per million
mapped tags per kilobase RNA (rpkm). The average
expression level of a given gene was calculated as an
average of the population of cells. Relative divergence
was calculated as standard deviation divided by average
gene expression level. The statistical significance of the
differences was evaluated by the indicated methods. To
select genes showing diverse gene expression, the genes
were ordered according to their relative divergences. To
select KEGG pathways for which the genes with diverse
expression were enriched, a gene with a similar expres-
sion level (a less than two-fold difference) was randomly
selected for each of the genes. One thousand genes were
randomly selected when the genes satisfying this criter-
ion exceeded 1,000 genes. Relative divergences between
individual cells were compared between the examined
gene and the control genes. Statistical deviation of the
relative divergence of the examined gene against the
background distribution of the control genes was evalu-
ated by f-test and genes giving P<0.05 were selected.
Enrichment of the selected more or less diverse genes in
a particular KEGG pathway was evaluated by Fisher’s test.
The cases were selected when the calculated P < 0.05. To
calculate the fold changes in average gene expression
levels and their relative standard deviations, genes show-
ing average expression levels of >5 rpkm were used, unless
noted otherwise. For clustering, a hierarchal clustering
program in the bioconductor package of R [29] was used.
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Cancer-related genes were selected manually based on
[21-23]. The list of Cancer Gene Census genes were
obtained from the Cancer Gene Census [26].

To investigate the genomic status of the cancer cell
lines, whole-genome sequences (registered in the DNA
Data Bank of Japan under accession number DRA001859)
[20] were mapped to a human reference genome (hgl9,
UCSC) using BWA [30] and SAMtools [31] and visualized
by IGV [32,33]. To compare mutations in the LC2/ad and
LC2/ad-R cell lines, single nucleotide variants (SN'Vs) and
insertion/deletions (indels) were detected using GATK
[34,35] and annotated using Polyphen-2 [36,37] and in-
house Perl scripts. To remove germline variants and select
somatic mutations, we used information provided from
the 1000 Genomes Project, the NHLBI Exome Sequencing
Project, NCBI dbSNP build 137, COSMIC (v59) and in-
house Japanese normal tissues [38-42].
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