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Abstract

Cancer has long been understood as a somatic evolutionary process, but many details of tumor progression remain
elusive. Here, we present BitPhylogeny, a probabilistic framework to reconstruct intra-tumor evolutionary
pathways. Using a full Bayesian approach, we jointly estimate the number and composition of clones in the sample as
well as the most likely tree connecting them. We validate our approach in the controlled setting of a simulation study
and compare it against several competing methods. In two case studies, we demonstrate how BitPhylogeny
reconstructs tumor phylogenies from methylation patterns in colon cancer and from single-cell exomes in
myeloproliferative neoplasm.

Background
Cancer is a somatic evolutionary process. Tumors are
complex mixtures of heterogeneous subclones, and the
genetic and epigenetic diversity within tumors can be
a major cause of drug resistance, treatment failure, and
tumor relapse [1,2]. Profiles of somatic mutations or DNA
methylation can reveal the structure of the tumor cell
population and contain traces of its past proliferative
history [3-8]. Tumor subclones often display a cellular dif-
ferentiation hierarchy inherited from their tissue of origin,
and epigenetic changes are particularly informative about
these relationships [9]. While tumor heterogeneity has
been observed widely [10], an in-depth understanding of
the underlying evolutionary and (perturbed) differentia-
tion processes is lagging behind since phylogenetic trees
describing the population structure of tumors are typically
constructed manually [6].
Rigorous and accurate phylogenetic methods to infer

automatically tumor ‘life histories’ and differentiation
hierarchies frommolecular profiles could have a profound
impact on cancer research. For example, such methods
would make it possible to infer early driver events on a
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large scale, to test whether evolutionary trajectories are
predictive of clinical outcomes, and to compare the mode
and speed of evolution between primary and metastatic
tumors. Many clinical studies are currently measuring
cancer heterogeneity, and robust intra-tumor phyloge-
netic methods are essential to interpret these data and to
allow for reliable conclusions.

The intra-tumor phylogeny problem
Single-cell studies offer the most direct evidence of tumor
heterogeneity, but are often limited to either a small num-
ber of genetic markers [11] and genes [12] or a small
number of sequenced cells [13] with generally high error
rates and high allelic dropout rates [14,15]. Thus, today,
the main data source for evolutionary inference is bulk
sequencing of mixed tumor samples [3,5,6], which is also
the most readily available type of data for clinical applica-
tions of evolutionary methods in translational medicine.
Whether obtained from single-cell or bulk sequencing, we
assume in the following that the sequencing reads pro-
vide a statistical sample of the genomes of the underlying
cell population. The intra-tumor phylogeny problem is
to reconstruct the population structure of a tumor from
these data. The problem consists of two tasks, namely (i)
identifying the tumor subclones and (ii) estimating their
evolutionary relationships (Figure 1).
Here, we present a unified approach to the intra-

tumor phylogeny problem, called BitPhylogeny, which
addresses both subproblems simultaneously. Instead of
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Figure 1 The intra-tumor phylogeny problem. (A)Molecular profiles obtained from a bulk sequenced heterogeneous tumor are shown. They
consist, in this example, of three clones (red squares, blue triangles, and green discs) and normal cells (small grey discs). The intra-tumor phylogeny
problem is to infer the population structure of the tumor, i.e., to identify the different clones and to elucidate how they relate to each other.
(B) Classical phylogenetic trees and hierarchical clustering methods place the observed molecular profiles at the leaf nodes of a tree, while the inner
nodes represent unobserved common ancestors. Here, leaf nodes are defined as the nodes without any child nodes and inner nodes as the nodes
that have at least one child node. (C) Unlike classical phylogenetic tree models, BitPhylogeny clusters molecular profiles to identify subclones
and places them as both inner (blue triangle) and leaf nodes (red square, green disc) of a tree describing the hierarchy of the tumor cell population.

sequentially clustering and tree building, we combine both
steps into a single model. Our unified model jointly solves
both parts of the intra-tumor phylogeny problem and
automatically (i) estimates the number of clones and (ii)
places them at the leaves and inner nodes of a phylo-
genetic tree that reflects their evolutionary relationships.
Our approach is based on non-parametric Bayesian mix-
ture modeling using a tree-structured stick-breaking pro-
cess (TSSB) [16], similar to a previous model for somatic
mutations [17].
Our framework is very flexible and can be adapted to the

specific requirements of the data, as we demonstrate in
two case studies, one using methylation patterns and the
other whole-exome single-nucleotide variant (SNV) pat-
terns as markers of evolution. In the first case study, we
focus on patterns of CpG methylation, referred to here as
methyltypes, observed in read data obtained from bisulfite
sequencing of a mixed tumor sample. DNAmethylation is
a somatic change that accumulates in a clock-like fashion
during aging [18]. It is a particularly precise marker of cell
fate because the error rate is several orders of magnitude
higher than for nucleotide substitutions [19]. In neutral
genomic regions, the number of somatic errors increases
linearly with the number of cell divisions [9]. Neutral
methylation patterns thus act as a molecular clock [18].
In the context of cancer, such molecular clocks have been
used to study intra-tumor evolution in a wide range of
cancers, including lymphomas [20], brain cancer [21],
prostate cancer [22] and colon cancer [23-25]. Here, we
use data from Sottoriva et al. [9], who collected methy-
lation profiles of 40 glands from five colorectal tumors.
For each tumor, two regions were sectioned from oppo-
site sides of the tumor, and in each region, three to five
glands were microdissected. The authors analyzed these

data by a combination of spatial agentmodeling and statis-
tical analysis. They presented tumor-specific lineage trees,
in which the leaf nodes (i.e., the nodes without children)
are the individual methylation patterns, but they did not
identify clones. Our method differs from this approach in
two important aspects: BitPhylogeny identifies clonal
subpopulations from a mixture model and it organizes
them into leaf and inner nodes of an evolutionary tree,
which directly represents the differentiation hierarchy of
the tissue (Figure 1).
In the second case study, we applied BitPhylogeny

to SNVs called from whole-exome sequencing of single
cells. The mutational patterns from single cells, referred
to as genotypes, are used to identify clones. Therefore,
we directly define a clone as a set of cells sharing the
same genotype. This is a key difference to using allele fre-
quencies of SNVs from bulk-sequenced tumor samples
as we discuss below. We use data from Hou et al. [14],
which includes SNV genotypes of 58 single cancer cells
derived from one tumor of a patient with myeloprolifera-
tive neoplasm. In this case, the phylogeny was built based
on the accumulation of mutations in the entire exome,
demonstrating the scalability of BitPhylogeny to large
genomic regions.

Related work
The intra-tumor phylogeny problem involves subclone
identification and phylogeny reconstruction from noisy
observations. For short-read DNA sequencing data
obtained from mixed samples, inferring subclonal struc-
ture alone has been addressed by first calling SNVs and
then grouping the SNVs into clones according to their
estimated frequencies using mixture models. PyClone
[26] and THetA [27] both follow this strategy and also
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correct SNV frequencies for copy number variations. The
outcome of these analyses is the number of clones and
their frequencies, but the evolutionary history of the
clones remains unknown, such that some studies relied on
visual inspection and manual placement of the clones in a
phylogenetic tree [6].
A common approach to phylogenetic inference in

human genetics and also in cancer genomics is to use
a perfect phylogeny for the evolutionary relationships
among haplotypes, which assumes infinite sites and no
recombination. Efficient algorithms exist for computing
(approximate) perfect phylogenies [28-31]. In principle,
these methods can also be used for reconstructing intra-
tumor phylogenies. However, perfect phylogeny algo-
rithms typically lack a probabilistic interpretation and
they assume a given and fixed number of haplotypes.
For tumor phylogenies, these assumptions need to be
relaxed. In a recent attempt to achieve this goal, SNV
data were used iteratively to construct perfect phyloge-
nies, identify subclones and improve SNV calling [32].
Other recent applications of classical phylogenetic infer-
ence methods [33] place mutation patterns [14,15], copy-
number aberrations [34] or methylation profiles [9] at
the leaves of a tree, without clustering them into clones
or placing them at inner nodes (i.e., the nodes with
children).
Because tumor subclones may also occur at inner nodes

of phylogenetic trees [2,6], the applicability of classi-
cal phylogenetic methods is limited. A recent approach,
called TrAp [35], addresses subclonal deconvolution and
phylogenetic inference jointly by solving a highly con-
strained matrix inversion problem. It takes as input the
population frequencies of a limited number of aberra-
tions (up to 25) and deconvolves them in a linear com-
bination of subclones that are connected in a tree. In
principle, TrAP could be used as a follow-up step to
clustering SNVs with an approach like PyClone. How-
ever, the clustering and tree-building steps are not inde-
pendent and decoupling them may result in suboptimal
performance if initially established clusters need to be
spread out over different parts of the tree [6]. Addition-
ally, TrAP cannot be easily applied to methylation data, as
we use here, because it does not take back-mutations into
account.
A first unified approach to combine clustering and

tree inference with clones at inner nodes is PhyloSub
[17], which is based on non-parametric Bayesian mix-
ture modeling using a TSSB [16]. PhyloSub uses SNV
frequency data to inform the tree topology and is thus
subject to the limitations that this type of data exhibits.
For example, clusters with few observations, i.e., small
subclones, are difficult to identify and their placement in
the tree topology is highly uncertain if only frequency
constraints are used for tree construction. For example,

in Nik-Zainal et al. [6], one of the clusters was spread
over three branches of the tree after manual construction
of the tree and refinement by incorporating informa-
tion from the few reads which covered more than one
SNV.
The inherent limitation of using SNV data for phylo-

genetic inference is that the phasing of mutations relies
only on their frequencies. SNV frequencies are difficult
to estimate from noisy sequencing data, especially if the
coverage is low, and in general different clones may have
identical or very similar frequencies. The phasing of SNVs
can be improved with longer reads, such that multiple co-
occurring SNVs are observed on the same read. For exam-
ple, for RNA viruses, which display much more genetic
diversity than tumors, overlapping reads have been used
successfully to reconstruct long-range haplotypes from
mixed samples [36]. With constantly improving sequenc-
ing technologies, including increasing read length and
single-cell approaches, we expect that more data with
these characteristics will be widely available in the near
future.
For methylation patterns in cancer, computational mod-

eling dates back at least to Siegmund et al. [37], who
assumed that unique methylation patterns are gener-
ated from a hidden phylogenetic tree. Such trees were
reconstructed from data using approximate Bayesian
computation. A recently proposed strategy [38] uses a
given phylogenetic tree structure to estimate the true
methylation patterns under the assumption that observed
methylation patterns are noisy and sometimes completely
missing.
In addition to SNV and methylation data, gene expres-

sion profiles have been used to reconstruct phylogenies
of tumor samples [39,40]. In particular, Desper et al. [39]
regard tumor samples as representing different stages in
the progression of the disease, and reconstruct the history
of these stages using phylogenetic approaches. Riester
et al. [40] built phylogenies based on gene expression pro-
files from cancer subtypes. Along this line of research,
attempts have been made to cluster samples together
and to build phylogenies based on the clusters. Hier-
archical clustering [41], the Dirichlet process [42] and
matrix factorization [43] have been proposed for cluster-
ing. To arrange clusters into a tree, all of these methods
constructed minimum spanning trees.
At the single-cell level, Pennington et al. [44] employed

fluorescent in situ hybridization (FISH) data for phyloge-
netic inference. Their tree-building method allows inter-
nal (so-called Steiner) nodes. Finally, copy number data
from single cells were employed to construct phylogenies
using the neighbor-joining method [45]. Both approaches
built phylogenetic trees for single cells, whereas here, we
focus on building such trees for clones, i.e., for collections
of cells.
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Results and discussion
We have developed BitPhylogeny (Bayesian inference
of intra-tumor phylogenies), an integrated approach to
address the intra-tumor phylogeny problem. The statisti-
cal model is based on simultaneously assigning markers
of evolution to clones, which are represented as both
inner nodes and leaves of a phylogenetic tree, and on
learning the topology and the parameters of the tree.
We use a TSSB to construct a prior probability of trees
and a Markov chain Monte Carlo (MCMC) inference
scheme for sampling from the joint posterior. The rela-
tionships between parent and child nodes are derived
from a classical phylogeny model. The model is for-
mally defined in Materials and methods and depicted
as a graphical model in Figure 2. In the following,
we benchmark BitPhylogeny in simulation studies

and discuss its application to colon cancer methylation
data.

Validation in simulation studies
We have assessed the performance of BitPhylogeny
in the controlled settings of five simulation studies.
Based on the review article by Navin and Hicks [46],
we chose the simulated trees to be representative of dif-
ferent modes of evolution (Figure 3). One tree reflects
monoclonal evolution, three trees are based on a poly-
clonal mode of evolution, and one tree assumes a mutator
phenotype.
For monoclonal evolution, we constructed a tree that

has only two clones. The root node represents healthy
cells and the child clone of the root represents a mon-
oclonal tumor (Figure 3A). A monoclonal hierarchy has

Figure 2 BitPhylogeny as a graphical model. Each of a total of N observed marker patterns is denoted by xn (shaded node). The clone
membership of each observation is denoted by εn and generated by a tree-structured stick-breaking process with variables νε (clone size) and ϕε

(branching probability), and parameters λ, α0 and γ . For each clone, tε and θε are the branch length and clone parameter, respectively, which
determine the local probability distribution of observing a marker pattern from this clone. The function pa( · ) denotes the parent of each clone in
the tree, except the root clone ∅. The transition probabilities p(θε | θpa(ε)) have hyperparameters βm , βu , 
 and μ.
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Figure 3 Simulation study with five trees (A-E). (First column) Sankey plots of the trees used for simulations. For each node, the width of the
in-edge is proportional to the clone frequency. The colors denote different layers of the tree (tree depths). Plots were produced with the R package
riverplot. (Second column) Performance of clustering methods for the simulation studies with four different noise levels. Performance
measures are based on 10,000 MCMC samples (the box plots in the second column). The MPEAR-summarized predictions (marked as
BitPhylogeny) outperform the baseline competitors in all data sets with noise. (Third column) Comparison in terms of the summary statistics
maximum tree depth and number of clones. For hierarchical clustering and k-centroids, the trees are constructed as minimum spanning trees from
estimated clonal methyltypes.



Yuan et al. Genome Biology  (2015) 16:36 Page 6 of 16

been predicted to be the dominant mode of evolution in
a JAK2-negative myeloproliferative neoplasm single-cell
sequencing study [14]. For the polyclonal trees, we first
constructed a tree similar to the manually reconstructed
tree presented in [5] (polyclonal-low, Figure 3B). This tree
was originally based on whole-genome sequencing data
with an average coverage of only 188 and hence limited
power to detect small clones [5]. Since many more small
clones are expected in tumors [47], we added small clones
to the tree. Specifically, we added another tree level with
five clones; three had relative frequency 0.03 and the other
two had 0.02 (polyclonal-medium, Figure 3C). This tree
was further extended to contain 18 clones, most of them
having a very low frequency (around 0.02) (polyclonal-
high, Figure 3D). Finally, the mutator phenotype mode
of evolution is represented by a star-like tree with many
leaf nodes (Figure 3E). Evidence for this model, which is
driven by high mutation rates, has been found in multiple
neoplastic tissues [48].
For each of the five trees, we simulated eight marker

sites, sampled 2,000 observations, and added observation
errors by flipping every site with a fixed error probability
of 0, 0.01, 0.02 or 0.05 in four separate simulation runs.
We subsequently applied BitPhylogeny and evaluated
its performance for each MCMC iteration separately. The
first 30,000 iterations were discarded as a burn-in phase,
and the next 50,000 samples were collected and thinned
out by a factor of 5. The following analyses are based on
the resulting 10,000 samples.

Clustering performance
The clustering performance of BitPhylogeny was
compared to that of two baseline methods: k-centroids
and hierarchical clustering with model selection using
silhouette scores (see Materials and methods). We used
the v-measure to compare the clustering performance
of the three methods (see Materials and methods). The
BitPhylogeny MCMC samples (called the trace) are
summarized by the MPEAR approach, which generates
an optimal clustering configuration from the samples (see
Materials and methods). For perfect data without errors,
all three methods achieved perfect performance for the
monoclonal tree. BitPhylogeny achieved almost per-
fect clustering for the mutator tree (Figure 3A,E, second
column). However, for the three polyclonal trees (low,
medium and high), the two baseline methods achieve per-
fect clustering, while BitPhylogeny comes very close
to perfect performance with a v-measure of around 0.9
(Figure 3B,C,D, second column). This is because some of
the clones have very similar marker profiles (e.g., a sin-
gle differing marker site), and highly asymmetric sizes.
As a result, in these cases, BitPhylogeny tends to
underestimate the number of clusters, since a mixed
clone is more preferred than separated clones. However,

importantly, the advantage of using BitPhylogeny is
very clear in the presence of noise. The MCMC traces
from BitPhylogeny perform similar to k-centroids
and hierarchical clustering and the MPEAR-summarized
results outperform the baseline methods at all noise
levels.

Tree reconstruction performance
We compared BitPhylogeny to minimum spanning
trees constructed from the clustering results obtained by
the two baseline clustering methods. The third column
of Figure 3 shows tree depth and number of nodes as
summary statistics for all trees at all noise levels in all
simulation studies. Overall, the trees reconstructed from
the baseline clustering methods have too many clusters
and are much deeper than the true tree (Additional file 1:
Figure S2).
To compare the tree topologies explicitly, we developed

a distance measure called consensus node-based shortest
path distance (see Materials and methods for details). The
performance of BitPhylogeny is examined based on
the empirical MAP solution (see Materials and methods).
The results for all synthetic data sets (five clone composi-
tions and four noise levels) are presented in Figure 4. For
all clonal compositions and noise levels, BitPhylogeny
constructs trees that are much closer to the true tree
than both baseline methods. For the monoclonal tree,
all three methods are able to reconstruct the two clones
accurately. However, as clonal composition becomesmore
complex, the performance of the two baseline methods
starts to degrade quickly. The baseline methods overes-
timated the number of clones and produce much deeper
trees for most synthetic data sets. As a result, they per-
form poorly when the complexity of clone composition
increases.

Case study 1: colon cancer development
We applied BitPhylogeny to bisulfite sequencing data
using the 454/Roche technology of the IRX2 locus of
colon tumors from [9]. The tumors from different patients
are denoted as CT, CU, CX and HA. Between three and
five samples are available from two spatially separated
sides of the tumor (denoted left and right). Each sample
is denoted by the tumor, the tumor side and a number.
For example, CT_R1 is the first sample from the right
side of tumor CT. On average, there are more than 1,500
reads per cancer gland. The methylation tag sequencing
fidelity was 99.6%, i.e., the data exhibit an error rate of
0.4% [9].
To compare trees from different samples and tumors,

we analyzed a number of topological features of the
BitPhylogeny trees. The number of big clones (car-
rying more than 1% of the tumor mass) and the total
branch length are measures of the heterogeneity of the
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Figure 4 Consensus node-based shortest path distances for all simulated trees. Each box plot is summarized for the distance measures across
four noise levels (0%, 1%, 2% and 5%). The suffixes L, M and H for the polyclonal tree type refer to the polyclonal-low, -medium and -high trees in
Figure 3. BitPhylogeny consistently outperforms the two baseline methods.

samples. The maximum depth of the tree and the root-
to-leaf mass distribution are indicators of the level of
differentiation of the tumor sample. The trees of most
samples have between two and four node levels, or tree
layers. In general, we find that the number of big clones
correlates with the maximum depth of the trees. The root
clones of the trees contain up to 30% of the tumor mass
with a strong bias for small root nodes (median 2.3%
of the tumor mass). A notable exception is CX_R6 with
36%. With a median of 62% across all samples, most of
the mass is usually assigned to the second layer of the
trees. However, this value ranges from 7% to 98%. The
third layer has a median mass of 25% and the fourth
layer 2%.

Analysis of CT and the CX samples
Among the CT samples, we find that the left side displays
more topological diversity than the right side (Figure 5).
The samples from the right side have most of their mass
assigned to levels two and three, though the tumor mass
in the left side in one sample, CT_L7, is mostly at the
second level. In CT_L3, most of the tumor mass is at
the third level and in CT_L2 a considerable proportion
of the tumor mass, about 18%, is assigned to the fourth
level. The fourth sample of the left side, CT_L8, exhibits
a mass distribution similar to the right side. The pairwise
symmetrized Kullback–Leibler divergences, a measure of
topological diversity, among samples from the left colon

side were larger than those within the right side (P =
0.002, Wilcoxon rank sum test).
In terms of maximum tree depth, two samples from the

right side show a uniform behavior between 3 and 4 and
the remaining two have a bias towards a maximum depth
of 3. The samples from the left side, however, all have a
strong tendency for a maximum depth of either 3 (three
samples) or 4 (one sample: CT_L2). The variance of the
posterior of the maximum depth is bigger for the right
side than for the left side (P = 0.014, Wilcoxon rank
sum test). The same behavior can be observed for total
branch length. The same three samples that show a bias
towards three node levels also have a shorter total branch
length than the samples from the right side (Figure 5).
These summary statistics indicate that the right side of the
tumor evolved at a more homogeneous speed than the left
side.
For the CX sample, we observed that the left side can be

well separated from the right side in terms of maximum
tree depth (P = 0.027, t-test; Figure 6). Less pronounced,
this separation was also found for the total branch length
as well as for the number of clones and big clones. In
the original study [9], the CX sample was identified as
the largest tumor in the study. The size of this tumor
could be a reason for the separation of the evolutionary
history of the right side from the left side. Additionally,
they identified CX as the tumor with the highest can-
cer stem cell fraction. We did not observe such a clear
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Figure 5 Analysis of CT samples. (A) Level-wise mass distribution of CT samples. For each tree, the bars show the level sums of the mixture model
masses for all eight samples of the CT tumor. The red bars correspond to the posterior means of the root masses. The blue, green and pink bars
correspond to the means of the sums of the second, third and fourth tree levels, respectively. (B)Maximum depth of trees of the individual samples.
Turquoise densities are from the right side of the tumor and the pink ones are from the left side. Trees from the left side of the tumor have peaked
posterior densities at a depth of either 3 or 4, while the posterior densities from the right side are less peaked. (C) Total branch length of trees of
individual samples. The trees from the left side, which peak at depth 3 in (B), have shorter total branch lengths than the tree that peaks at depth 4 or
the trees from the right side of the tumor.

separation of left and right sides in any of the other sam-
ples. The left side of the tumor appears to evolve faster
than the right side, because it has deeper trees with more
clones and longer total branch lengths than the right
side.
The phylogenetic trees in Sottoriva et al. [9] do not con-

tain an errormodel, i.e., every distinctmethylation pattern

is considered a clone, and therefore they cannot be com-
pared to our BitPhylogeny trees. The authors did not
attempt to reconstruct hierarchical relationships between
clonal subpopulations, but rather estimated the fraction
of cancer stem cells in the tumor and the degree of het-
erogeneity. They found a large degree of intra-tumor and
intra-sample heterogeneity as well.
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Figure 6 Analysis of CX samples and joint analysis of all samples. Turquoise densities are for samples from the right side of the tumor and the
pink ones are for the left side. (A)Maximum depth of trees. Trees from the right side have posterior maximum depth between 2 and 3, while trees
from the left side have posterior maximum depth between 3 and 4. (B) Total branch length of trees. Trees from the right side have slightly shorter
total branch lengths than the trees from the left side. (C) Number of clones in a tree. Trees from the right side contain fewer clones than trees from
the left side. (D)Mean number of clones versus mean maximum depth of trees. With these two summary statistics of trees, samples from the left
and right can be separated very clearly.

Case study 2: myeloproliferative neoplasm
We used BitPhylogeny to analyze single-cell sequenc-
ing data of a JAK2-negative myeloproliferative neoplasm
[14]. The data set consists of 712 SNVs detected by
sequencing the exomes of 58 cancer cells. In addition to
single cells, the data set also contains genotypes from
bulk-sequenced normal and tumor tissue. On average,
Hou et al. [14] estimated the allele dropout rate to be
43.09% and the false discovery rate to be 6.04 × 10−5.

Thus, a large amount of data is missing (on average
56.13% per cell). We binarized the SNV profile by writ-
ing 0 for the wild-type allele and 1 for a heterozygous
mutation.
Figure 7A presents the results of the BitPhylogeny

analysis. It shows a tree structure with a major clone
(labeled as clone c) containing 33 out of all 58 cells. This
clone is the most progressed clone since it has the longest
total branch length from the root clone. One distinct
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Figure 7 Reconstructed tree andmutation profiles from single-cell exome sequencing data. (A) Reconstructed phylogeny. Non-empty
clones are labeled a through i followed by the number of cells they contain. The vertical distance represents the evolutionary distance between
clones. (B) Estimated probabilities of six SNVs in key genes across all cells. The error bars summarize 50,000 MCMC samples and are color-coded
according to clone membership.
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feature of the reconstructed tree is that it captures both
clonal progression (e.g., clone b to c) and binary branch-
ing with unobserved common ancestors (e.g., clones d and
e). As a validation, genotypes from both bulk-sequenced
normal and cancer cells are included in the analysis. The
normal genotype is correctly identified as the root of the
tree (clone a in Figure 7A). The genotype of the bulk-
sequenced tumor is assigned to the most progressed clone
c.While the analysis of the data with classical phylogenetic
models in the original study only showed evidence for
monoclonal evolution, BitPhylogeny reveals an addi-
tional structure of the tumor phylogeny involving in total
half of all cells analyzed.
In addition to the phylogeny, BitPhylogeny provides

genotype estimates for all loci and cells. This is useful due
to the high amount of missing data and the high error rate
of the sequencing data. Hou et al. [14] identified eight key
genes that are mutated within the tumor of the patient.
With BitPhylogeny, we could gain more insight into
the role of these mutations in the progression of the dis-
ease. Figure 7B shows the genotype estimations of six
SNVs that are located in these key genes. The full profiles
of genotype estimations for all eight genes are provided
in Additional file 1: Figure S3. SESN2, which is related
to DNA damage and genetic instability, was the top gene
of interest in the analysis of Hou et al. [14]. Our results
confirm this finding as the gene is mutated in most cells.
Interestingly, mutations in NTRK1 and ABCB5 may play
a role during the expansion from clone b to c. The lower
bounds of the error bars for clone b of these two genes are
below 0.25, indicating only a 25% chance of beingmutated.
In contrast, clone c clearly has these two SNVs. The geno-
type profiles also suggest that the SNV in FRG1 (which
may be involved in pre-mRNA splicing [14]) are private
to the clones in subtree 3. Unlike Hou et al., our results
suggest that ASNS is not mutated, because the estimated
probability of mutation for the corresponding SNV is very
low for most cells.
The SNV in gene ST13 (Figure 7B) is mutated in clone

b, but not in clone c. Since clone b precedes clone
c, this violates the infinite sites assumption for point
mutations (which does not allow back mutations). An
explanation for this phenomenon could be the following:
BitPhylogeny accounts for two different sources of
uncertainty, namely the stochasticity of the evolutionary
process itself and observational noise. At the evolution-
ary level, BitPhylogeny does not allow mutations to
revert back to normal. At the observational level, how-
ever, base changes can be due to sequencing errors or
missing entirely. Therefore, a violation of the infinite sites
model can occur in the tree if the observational likeli-
hood outweighs the evolutionarymodel. In such cases, the
error bars may indicate how the data are explained by the
model. In the present case, the error bars for the genotype

of clone b are relatively large. The lower bound reaches
0.5, indicating only a 50% chance of being mutated. In
addition, it could also be the case that the mutation is
present in the cells of clone c, but are miscalled because of
insufficient coverage at the site.

Modes of tumor progression
The topology of intra-tumor phylogenetic tress can pro-
vide insights into the mode of evolution of the tumor
[46]. Like classical phylogenetic trees, BitPhylogeny
trees are expected to show distinct structural features for
different modes of tumor progression.
For monoclonal tumors (Figure 3A), the BitPhylo-

geny tree would be expected to consist of a single homo-
geneous clone. In both methylation and single-cell data,
we did not find trees supporting this mode of tumor
progression in any of the samples we analyzed. How-
ever, we observed patterns reminiscent of monoclonal
evolution at the subtree level. For example, in subtree
1 of the single-cell tree (Figure 7), progression from
clone b to c can be regarded as a monoclonal evolu-
tionary pattern. Clone c arises from clone b through
the acquisition of additional SNVs, some of which may
provide a selective advantage. The linear subtree struc-
ture without branching suggests that clone c replaces
clone b in a clonal expansion. In contrast, a polyclonal
mode of tumor progression (Figure 3B,C,D) would result
in BitPhylogeny trees with a moderate number of
clones distributed over a small number of tree lev-
els, and most of the samples we analyzed fell into this
category.
A mutator phenotype (Figure 3E) would generate an

extreme case of polyclonality with a very large number
of clones, each carrying a very small proportion of the
tumor mass. We did not find any trees based on methyla-
tion data that would be consistent with thismode of tumor
progression. For the single-cell SNV tree (Figure 7), there
are several small clones (d to i) with similar distances to
the root, which could indicate a mutator phenotype given
the total number of inferred clones. However, considering
that measurements have been exome-wide, the number of
small clones does not appear to imply a mutator pheno-
type for this tumor. Confirmation of this mode of tumor
progression would require data from a considerably larger
population of single cells.
The cancer stem cell model has been widely discussed

and the original study of Sottoriva et al. [9] is based on this
assumption. Under a stem cell model, our trees capture
the developmental hierarchies of stem cells. In this case,
the marker profiles mainly reveal the differences among
stem cell generations. The non-stem cell descendants are
expected to have similar marker profiles as their immedi-
ate stem cell ancestors, which means that the stem cell lin-
eage is driving tumorigenesis [9]. Thus, each clone would
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be a mixture of stem cells and their descendants, and the
phylogenetic trees represent the stem cell hierarchies.

Conclusions
BitPhylogeny provides a probabilistic framework
for inferring intra-tumor phylogenies from observed
sequence data. It jointly estimates the subclonal struc-
ture of a tumor and the evolutionary relationship of its
clones using a full Bayesian approach. In two case studies,
we have shown that the method can be useful for recon-
structing the life histories of tumors and for making infer-
ence about the mode of tumor evolution. Unlike previous
methods for unphased short-read data, BitPhylogeny
does not rely on mutation frequencies, but rather con-
siders haplotype sequences, specifically patterns of co-
occurring genetic or epigenetic variations. More phased
data can be expected to be widely available soon due
to technological advances increasing the length of reads.
BitPhylogeny is also applicable to other data types, like
somatic copy number aberrations, which have been used
for classical phylogenetic inference [34].
The present study has also revealed limitations of our

approach. The data from Sottoriva et al. [9] is unique, and
while the IRX2 locus has been specifically selected for its
suitability as a molecular clock, it is important to note
that the information contained in a single locus might
not reflect the complete evolutionary history of a tumor.
Additionally, theMCMC inference schemewe use is state-
of-the-art but slow for large instances, such that improved
(approximate) inference methods should also be consid-
ered. Another limitation is that we assume independence
of sites, which might be violated even for well-chosen
molecular clocks. This limitation is shared with most clas-
sical phylogenetics methods. It can be overcome using
hidden Markov models [49] or a finite-state transducer
[34,50], andwe plan to extend ourmethod in this direction
in the future.
A major challenge we identified is how to compare

evolutionary trees with different numbers of nodes and
different node labels and compositions. In this study, we
have used simple summary statistics, since a general dis-
tance measure between trees of tumor evolution is lack-
ing. Ideally, such a measure would combine the overlap
between node content, as computed, for example, by the
v-measure [51], with a measure of graph similarity, for
example, by adapting graph alignment approaches [52].
Advances in tree comparison would not only be impor-
tant for method comparison, but also for constructing and
comparing evolutionary trajectories of tumors in time.
Combined with tree comparison methods, approaches
like BitPhylogeny could then be applied to large col-
lections of molecular tumor profiles to identify conserved
evolutionary trajectories or developmental pathways dif-
ferentiating good from poor responders, which may lead

to further insights into cancer evolution and progression
and eventually inform treatment decisions.

Materials andmethods
BitPhylogeny employs a non-parametric Bayesian
clustering approach for reconstructing intra-tumor phy-
logenies from observed sequence data. To integrate the
assignment of sequences to clones with the organization
of clones into a tree, it uses the TSSB as a prior [16]. In
this model, the observed data (i.e., sequences) are asso-
ciated with all nodes of the tree, rather than only to the
leaves as in classical phylogenetic models. The TSSB is
a probabilistic mixture model with an infinite number
of hierarchically organized components, but only a finite
number of components have a non-zero weight. In addi-
tion to this prior, the full generative probabilistic model
underlying BitPhylogeny is defined by node-wise data
distributions, a transition kernel and the root prior.
Let i ∈ {1, . . . ,M} denote the considered marker sites

and n ∈ {1, . . . ,N} index the observed marker profiles
or sequences (methyltypes or genotypes). We denote the
marker state at site i of sequence n by xi,n ∈ {0, 1},
where xi,n = 1 indicates methylation or mutation. To
assign sequences to clones, each clone has a label. Fol-
lowing the notation in [16], the clone label is defined as
ε = (ε1, . . . , εK ), where εk ∈ N for all k ∈ {1, . . . ,K}. Each
label is a sequence of natural numbers indicating the loca-
tion of the clone in the phylogenetic tree. For example, the
clone ε = (1, 2) is located in the second layer of the tree,
and its lineage trace is ∅ → 1 → 2, where the numbers are
node labels in each level and the root node is labeled by
the empty sequence, ∅. The length K = |ε| is the depth of
clone ε; for example, |(1, 2)| = 2. The root clone has depth
|∅| := 0. The probability of an observed marker pattern
originating from clone ε is denoted by πε . This parame-
ter specifies the proportion of observations explained by
clone ε (Figure 1C).

Tree-structured stick-breaking process
The TSSB generates an infinite series of clone proportions
πε , which sum to one by interleaving two stick-breaking
processes [16],

νε ∼ Beta(1, λ|ε|α0), ψε ∼ Beta(1, γ ),

ϕεεi = ψεεi

εi−1∏
j=1

(1 − ψεj), π∅ = ν∅,

πε = νεϕε

∏
{ε′ }

ϕε′(1 − νε′).

(1)

The beta-distributed random variables νε and ψε define
the clone size πε by distributing mass between each node
and its descendants and its siblings, respectively. The
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index εεi denotes the εi-th child of clone ε, and in the sec-
ond product, the index ε′ runs over all ancestors of clone
ε in the tree. The clone size depends on the depth and
a decay constant λ. We refer to the distribution of clone
sizes π = {πε} and their hierarchical structures gener-
ated by (1) as TSSB(λ, α0, γ ). Using this tree partition
prior of unbounded depth and width, the infinite mix-
ture model for the observed methylation or mutation data
xn = {xi,n}Mi=1 is defined as

π ∼ TSSB(λ,α0, γ ), εn | π ∼ Discrete(π),
θ ε ∼ p(· | θpa(ε)), xn ∼ p(· | εn, θ ε),

(2)

where θ ε = {θi,ε}Mi=1 are the parameters of the local distri-
bution p(xn | θε) of the data emitted from clone ε. Each
clonal parameter is sampled from a transition distribution
that depends on the parent clonal parameter θpa(ε). We
denote the distribution of the root parameter by p(θ∅).

Customizedmethylation model
To model methylation data, we specify the local probabil-
ity distributions p(xn | θ ε) and the transition probabilities
p(θε | θpa(ε)). For each clone ε, the local data distribution
is a Bernoulli distribution with the parameter transformed
by a sigmoid function. The parameter θi,ε ∈ R is used to
control the probability of observing a methylation event at
locus i. Assuming independence among loci, we set

p(xn | θ ε) =
M∏
i=1

σ(θi,ε)
xi,n(1 − σ(θi,ε))

1−xi,n , (3)

where σ(θi,ε) = 1/(1 + exp(−θi,ε)). Here, we assume
the CpG sites are independent, which is appropriate for
the IRX2 molecular clock (verified in Additional file 1:
Figure S1).
For the transition probabilities, we use a mixture of two

Laplace distributions to model the parent–child relation,

p
(
θ ε | θpa(ε),μ,
,w

) =
N∏
i=1

wi Laplace(μ,
)

+ (1 − wi)Laplace(−μ,
),
(4)

where μ defines the location of a positive and a neg-
ative mode and w = {wi}Mi=1. Intuitively, the positive
mode generates parameters that give a high probability of
observing methylation events, whereas the negative mode
has the opposite effect. The hyperparameter 
 models
variation within the modes. The weights wi and 1 − wi
of the two Laplace densities specify the probabilities of
either mode being selected for sampling the child param-
eter. The Laplace densities have the effect of pushing the
sampled parameters close to the modes μ or −μ.

The dependency on the parent parameter is introduced
through the weights wi as

wi =
{
P(θi,ε ≥ η | θi,pa(ε) ≥ η) if θi,pa(ε) ≥ η

P(θi,ε ≥ η | θi,pa(ε) < η) if θi,pa(ε) < η
(5)

where η is a fixed threshold. We set η = 1, which results
in very conservative methylation calls.
The probabilities in Equation (5) provide a link to evo-

lutionary models used in classical phylogeny. We define a
transition probability matrix Pε to describe the state tran-
sition from parent to child. Let m denote the methylated
state defined by θi,ε ≥ η and u the unmethylated state.
Then the matrix Pε can be written as

Pε =
(
Pu→u Pu→m
Pm→u Pm→m

)
, (6)

and according to Equation (5), we have

wi =
{
Pm→m if θi,pa(ε) ≥ η

Pu→m if θi,pa(ε) < η. (7)

The transition matrix is obtained from a rate matrix A
as the matrix exponential P(t) = exp(At). The rate matrix
A is parameterized as

A =
( −βm βm

βu −βu

)
ρ, (8)

where βm and βu are the equilibrium frequencies of the
methylated and unmethylated states, respectively, and
βm + βu = 1. The scaling factor ρ is set to ensure that
the average rate of methylation is one, i.e., 2βuβmρ = 1.
For each clone ε �= ∅, we denote its branch length by tε .
Finally, the root prior is defined as

p(θ0) =
N∏
i=1

Laplace(−μ,
). (9)

This prior favors clones with unmethylated states at all
loci as the root.
The complete generative probabilistic model underly-

ing BitPhylogeny, including all parameters and all
conditional independencies, is depicted in Figure 2 as a
graphical model.

Customized single-nucleotide variant model
Single-cell data sets often have high rates of missing data.
This can be the result of allele dropout and low depth at
some regions of the genome. In [14], the authors reported
that the allele dropout rate of their sequencing technique
is independent of the location or base type of the locus.
This matches the statistical description of data as missing
completely at random. In our likelihood-based approach,
the missing data can be handled by simply ignoring the
locus in each cell where it is missing.
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To specify the transitionmodel for SNV data, we employ
the following rate matrix,

A =
( −βm βm

0 0

)
ρ, (10)

where βm is the frequency of a locus being mutated. The
scaling factor ρ is set to ensure βm(1 − βm)ρ = 1.
After matrix exponentiation, the probability of transition
from mutation to normal is 0, which reflects the common
assumption of mutations being irreversible during tumor
evolution.

Inference
For statistical inference, we pursue a Bayesian approach
and estimate the full posterior probability distribution of
all model parameters, including clone assignment and tree
structure. For approximating the joint posterior

p({εn}, {θ ε}, {tε}, {νε}, {ϕε}, μ, 
 |{xn}, βu, βm, λ, α0, γ ) ,
(11)

we fix λ = 2, α0 = 0.3 and γ = 0.1. The equilibrium
state frequencies βu and βm are estimated directly from
the population as the average frequencies of unmethylated
and methylated states, respectively. To sample from the
target distribution (11), we use a Gibbs sampler, which
iteratively generates samples from the full conditional dis-
tribution of each variable of interest. The sampling proce-
dure follows the one described in [16] with one exception.
We integrated a new ‘swap clone’ move as an additional
step. In this move, the parameters, assigned data and
masses of two random nodes in the tree are swapped, then
the structure related parameters {νε} and {ϕε} are resam-
pled. The swap is accepted with a probability defined by
a metropolis ratio. If, after the swap node move, the root
node has no assigned data points, then more swap node
moves involving the root are conducted until the root
node has at least one data point assigned. In other words,
we consider empty root nodes as invalid.
We used the maximum posterior expected adjusted

rand (MPEAR) method from [53] to compute summary
labels from MCMC samples. The method first computes
the posterior similarity matrix for the labels in each
MCMC sample. The posterior similarity matrix is an N ×
N matrix, in which each entry is the posterior probability
of two data points being clustered together. Given the pos-
terior similarity matrix, the posterior expected adjusted
rand (PEAR) index can be used to assess the performance
of a proposed label configuration. The labels, correspond-
ing to the highest PEAR, are chosen as the summary clus-
ter configuration.We used theMPEAR implementation in
the R package mcclust.
At the end of each MCMC run, the reconstructed tree

structure is obtained as the following. We check, for each

sample, the number of clones that have weights πε >

0.01. We call this number the big node number. Then,
all the samples can be grouped into different unique big
node number categories. For each unique big node num-
ber group, we record the tree structure with the highest
complete data likelihood (integrating out {εn}):

p ({xn}, {θε}, {tε}|{vε}, {ϕε}, μ, 
, βu, βm, λ, α0, γ ) .
(12)

Finally, we report the recorded tree from the most fre-
quent unique big node number group.

Baseline methods
We used hierarchical clustering and k-centroids as base-
line clustering methods. For both methods, the R function
dist with option ’binary’ was called to compute the
Jaccard distance matrix of the observed sequences. The
Jaccard distance matrix was then used to perform hier-
archical clustering (hclust) and k-centroids (pam). To
select the number of clusters, both methods were exe-
cuted with a range of possible cluster numbers from 2
to 20, and the cluster number with the highest silhou-
ette coefficient was selected. We computed silhouette
coefficients with the silhouette function from the R
package cluster. The coefficient is computed from the
mean distances within clusters and the mean distances
between clusters. It does not require the true cluster
labels. The silhouette coefficient takes values between −1
and 1, with higher values indicating better clustering per-
formance. We then estimated the methyltype sequences
(methylation patterns) of each clone. For hierarchical
clustering, each methyltype was computed by threshold-
ing the mean of all sequences assigned to the clone.
For k-centroids, the methyltypes were defined as the
medoids. Given the estimated methyltypes, we computed
minimum spanning trees from the Hamming distance
matrices. We used the minimum.spanning.tree
function from R package igraph. Finally, we defined
the clone with the least number of methylated states
to be the root clone and directed the tree accord-
ingly. Hierarchical clustering and minimum spanning
tree have been used as parts of the SPADE pipeline,
which extracts a cellular hierarchy from high-dimensional
cytometry data [54]. The baseline methods we used
here differ from SPADE by adding a model selection
step.

Clustering performance
The clustering performance was assessed by the v-
measure [51], which computes the harmonic mean of
two conditional entropies, namely homogeneity and com-
pleteness. Homogeneity measures how much each cluster
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contains only members of a single class, while complete-
ness measures whether all members of a given class are
assigned to the same cluster. The v-measure takes val-
ues in [ 0, 1], with 0 and 1 indicating the worst and best
clustering performance, respectively.

Tree distance
We considered all markers that were present in the ground
truth tree and in all three inferred trees. For these shared
markers, we computed their pairwise shortest-path dis-
tance matrix in each tree. The lower triangular part of the
distance matrices of all inferred trees were then compared
to the ground truth using the sum of the absolute values
of all differences between matrix entries. We named this
distance measure the consensus node-based shortest path
distance.

Software and data availability
Based on the TSSB implementation [16], BitPhylo-
geny has been implemented in Python and R and is
freely available under a GPL3 license [55]. For 2,000 data
points (observed marker patterns), a single MCMC itera-
tion takes on average about 1 s on a standard single-core
computer. Additional file 2 contains an R Markdown file
for reproducing all the figures in this manuscript. All data,
including synthetic, methylation and single-cell data sets,
are provided in the BitPhylogeny software package.
The sequencing data from the single-cell study are stored
in NCBI Sequence Read Archive [56] under the accession
number [SRA:SRA050202].

Additional files

Additional file 1: Supplementary figures. A PDF file with three
supplementary figures (Figures S1, S2 and S3).

Additional file 2: R markdown file. A PDF file with BitPhylogeny
package details and figure reproduction.
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