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Abstract

De novo RNA-Seq assembly facilitates the study of transcriptomes for species without sequenced genomes, but it is
challenging to select the most accurate assembly in this context. To address this challenge, we developed a
model-based score, RSEM-EVAL, for evaluating assemblies when the ground truth is unknown. We show that
RSEM-EVAL correctly reflects assembly accuracy, as measured by REF-EVAL, a refined set of ground-truth-based scores
that we also developed. Guided by RSEM-EVAL, we assembled the transcriptome of the regenerating axolotl limb; this
assembly compares favorably to a previous assembly. A software package implementing our methods, DETONATE, is

freely available at http://deweylab.biostat.wisc.edu/detonate.

Background
RNA sequencing (RNA-Seq) technology is revolution-
izing the study of species that have not yet had their
genomes sequenced by enabling the large-scale analysis
of their transcriptomes. To study such transcriptomes,
one must first determine a set of transcript sequences via
de novo transcriptome assembly, which is the reconstruc-
tion of transcript sequences from RNA-Seq reads without
the aid of genome sequence information. A number of
de novo transcriptome assemblers are currently available,
many designed for Illumina platform data [1-8] and others
targeted for Roche 454 Life Science platform data [9-12].
These assemblers, combined with their often sizable sets
of user-tunable parameters, enable the generation of a
large space of candidate assemblies for a single data set.
However, appropriately evaluating the accuracy of assem-
blies in this space, particularly when the ground truth is
unknown, has remained challenging.

A number of studies have been devoted to the evalua-
tion of de novo transcriptome assemblies [13-20]. Assem-
bly evaluation measures used in such studies can be
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grouped into two classes: reference-based and reference-
free. Reference-based measures are those that are com-
puted using previously known sequences. For example,
after establishing a correspondence between assembly ele-
ments and a reference transcript set, one can calculate
the fraction of assembly elements that accurately match
a reference transcript (precision), the fraction of refer-
ence transcripts that are matched by assembly elements
(recall), or a combination of these two (e.g., the F] mea-
sure) [5,16,17]. In addition to transcript sets, genome
and protein sequences can also be used as references for
assembly evaluation [2,4,8,13,15,20].

However, in most cases where de novo assembly is
of interest, reference sequences are either not available,
incomplete or considerably diverged from the ground
truth of a sample of interest, which makes the assembly
evaluation task markedly more difficult. In such cases, one
must resort to reference-free measures. Commonly used
reference-free measures include median contig length,
number of contigs and N50 [13,16,17]. Unfortunately,
these measures are primitive and often misleading [20].
For example, N50, one of the most popular reference-
free measures, can be maximized by trivial assemblies.
N50 is defined as the length of the longest contig such
that all contigs of at least that length compose at least
50% of the bases of the assembly [21]. The motivation for
this measure is that better assemblies will result from a
larger number of identified overlaps between the input
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reads and thus will have more reads assembled into longer
contigs. However, it is easy to see that a trivial assembly
constructed by concatenating all of the input reads into
a single contig will maximize this measure. In short, N50
measures the continuity of contigs but not their accu-
racy [22]. Other simplistic reference-free measures can be
similarly misleading regarding the accuracy of assemblies,
although some have been shown to be potentially infor-
mative when assemblies include singletons (i.e., contigs
derived from single reads) [20].

We improve upon the state-of-the-art in transcrip-
tome assembly evaluation by presenting the DETONATE
methodology (DE novo TranscriptOme rNa-seq Assem-
bly with or without the Truth Evaluation) and software
package. DETONATE consists of two components:
RSEM-EVAL and REF-EVAL. RSEM-EVAL, DETONATE’s
primary contribution, is a reference-free evaluation
method based on a novel probabilistic model that depends
only on an assembly and the RNA-Seq reads used to
construct it. RSEM-EVAL is similar to recent approaches
using statistical models to evaluate or construct genome
[23] and metagenome [24,25] assemblies, but, as we will
discuss, is necessarily more complex because of widely
varying abundances of transcripts and alternative splic-
ing. Unlike simplistic reference-free measures such as
N50, RSEM-EVAL combines multiple factors, including
the compactness of an assembly and the support of the
assembly from the RNA-Seq data, into a single, statisti-
cally principled evaluation score. This score can be used
to select a best assembler, optimize an assembler’s param-
eters and guide new assembler design as an objective
function. In addition, for each contig within an assembly,
RSEM-EVAL provides a score that assesses how well that
contig is supported by the RNA-Seq data and can be used
to filter unnecessary contigs. REF-EVAL, DETONATE’s
second component, is a toolkit of reference-based mea-
sures. It provides a more refined view of an assembly’s
accuracy than existing reference-based measures.

We have performed a number of experiments on both
real and simulated data to demonstrate the value of the
RSEM-EVAL score. First, we generated a set of per-
turbed assemblies around a single true assembly, and
we show that RSEM-EVAL ranks the truth among the
highest-scoring assemblies. Second, we computed RSEM-
EVAL scores and REF-EVAL reference-based measures on
over 200 assemblies for multiple data sets, and we find
that the RSEM-EVAL score generally correlates well with
reference-based measures. The results of these first two
experiments together show that the RSEM-EVAL score
accurately evaluates de novo transcriptome assemblies,
despite not having knowledge of the ground truth. Third,
in comparison with several alternative reference-free and
comparative-reference-based measures, we demonstrate
the advantages of RSEM-EVAL in terms of accuracy,
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applicability and runtime requirements. Lastly, as a
demonstration of the use of the RSEM-EVAL score, we
assembled the transcriptome of the regenerating axolotl
limb with its guidance. This new assembly allowed
for the identification of many more genes that are
involved in the process of axolotl limb regeneration
than had been found with an assembly from a previous
study.

Results

DETONATE: a software package for the evaluation of de
novo transcriptome assemblies

The main contribution of our work is DETONATE,
a methodology for the evaluation of de novo tran-
scriptome assemblies and a software package that real-
izes this methodology. DETONATE consists of two
components: RSEM-EVAL, which does not require a
ground truth reference, and REF-EVAL, which does.
The high-level workflow of DETONATE is shown in
Figure 1. In the following subsections, we (1) describe
the RSEM-EVAL reference-free score and show that
the true assembly is an approximate local maximum of
this score, (2) describe the REF-EVAL reference-based
scores and show that RSEM-EVALSs score correlates
well with these measures, indicating that RSEM-EVAL
reflects the accuracy of a transcriptome assembly, and
(3) demonstrate our methods’ practical usefulness by
assembling the transcriptome of the regenerating axolotl
limb with the guidance of RSEM-EVAL. To understand
the components of DETONATE and the experiments
we have performed with them best, we first define
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Figure 1 The DETONATE package workflow. The DETONATE
package consists of two components: RSEM-EVAL and REF-EVAL.
Combined, these two components allow for the computation of a
variety of evaluation scores for a de novo transcriptome assembly.
RSEM-EVAL produces an evaluation score that is based only on an
assembly and the set of reads from which it was constructed. When a
reference transcript set is available, REF-EVAL may be used to
compute a number of reference-based measures. For most measures,
REF-EVAL requires only an assembly and a reference transcript set. For
weighted measures and measures with respect to an estimated true
contig set, REF-EVAL additionally requires the set of reads that were
assembled (dashed arrow).
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what is considered to be the true assembly of a set of
RNA-Seq reads, which is critical to the assembly evalua-
tion task.

The true assembly according to DETONATE
Ideally, the goal of transcriptome assembly would be to
construct the full-length sequences of all transcripts in
the transcriptome. Unfortunately, it is rarely possible to
achieve this goal in practice, because sequencing depths
are usually not high enough to cover all transcripts com-
pletely, especially those of low abundance. Thus, a tran-
scriptome assembly is, in general, a set of contigs, with
each contig representing the sequence of a segment of a
transcript. When paired-end data are assembled, one can
also consider constructing scaffolds, or chains of contigs
separated by unknown sequences with estimated lengths.
Both RSEM-EVAL and REF-EVAL make use of the con-
cept of the true assembly of a set of RNA-Seq reads, which
is the assembly one would construct if given knowledge
of the true origin of each read. A precise definition of the
true assembly is provided in the Materials and methods.
Intuitively, for each non-negative integer w, the true contig
assembly at minimum overlap length w is the collection of
transcript subsequences that are covered by reads whose
true alignments overlap by at least w bases. The true con-
tig assembly at minimum overlap length 0 is the collection
of transcript subsequences covered by reads whose true
alignments are contiguous (that is, overlap by zero bases)
or overlap by at least one base. The true contig assembly at
minimum overlap length 0 is the best theoretically achiev-
able contig assembly in that it represents all supported
segments of the transcript sequences, and no unsupported
segments. Figure 2 gives an example of true contig assem-
blies at minimum overlap lengths w = 0 and w = 1.
With paired-end data, the true assembly is the set of scaf-
folds that one would obtain by scaffolding the true contig

[ s overlapsizew =0
contigs
g ] ,
[ D = overlapsizew=1
reads [ ] ]
o S s
]

transcript

Figure 2 Example construction of true assemblies with different
minimum overlap lengths. Six reads (red) are positioned at their
true places of origin along one transcript (blue). The assembly with
minimum overlap length w = 0 consists of two contigs (green). For
w = 1, the assembly instead consists of three contigs because the
second and third reads from the left are immediately adjacent but
not overlapping.
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assembly with complete knowledge of which contigs are
linked by a read pair and the distances between contigs.

RSEM-EVAL is a novel reference-free transcriptome
assembly evaluation measure

RSEM-EVAL, our primary contribution, is a reference-
free evaluation measure based on a novel probabilistic
model that depends only on an assembly and the RNA-
Seq reads used to construct it. In short, the RSEM-EVAL
score of an assembly is defined as the log joint probabil-
ity of the assembly A and the reads D used to construct it,
under a model that we have devised. In symbols:

scorersem-EVAL(A) = log P(A, D)

RSEM-EVALs intended use is to compare several
assemblies of the same set of reads, and under this sce-
nario, the joint probability is proportional to the posterior
probability of the assembly given the reads. Although the
posterior probability of the assembly given the reads is a
more natural measure for this application, we use the joint
probability because it is more efficient to compute.

The details of the RSEM-EVAL model are provided
in the Materials and methods. In summary, the RSEM-
EVAL score consists of three components: a likelihood, an
assembly prior and a Bayesian information criterion (BIC)
penalty. That is:

log P(A,D) = log / P(DIA, A)P(A|A)P(A)dA
A

~ log P(D|A, Amie) + log P(A|AmLE)

likelihood

assembly prior

- %(M +1)logN, (1)

—_—
BIC penalty

where N is the total number of reads (or read pairs,
for paired-end data), M is the number of contigs (scaf-
folds) in the assembly, and Apjrr is the maximum likeli-
hood (ML) estimate of the expected read coverage under
P(A,D|A). For typical sizes of RNA-Seq data sets used
for transcriptome assembly, the likelihood is generally the
dominant component of the RSEM-EVAL score in the
above equation. It serves to assess how well the assem-
bly explains the RNA-Seq reads. However, as we will
show later, only having this component is not enough.
Thus we use the assembly prior and BIC components
to assess an assembly’s complexity. These two compo-
nents penalize assemblies with too many bases or contigs
(scaffolds), or with an unusual distribution of contig (scaf-
fold) lengths relative to the expected read coverage. Thus,
these two components impose a parsimony preference on
the RSEM-EVAL score. The three components together
enable the RSEM-EVAL score to favor simple assemblies
that can explain the RNA-Seq reads well.
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The ground truth is an approximate local maximum of the
RSEM-EVAL score

As we have discussed, the true assembly at minimum
overlap length O is the best possible assembly that can
be constructed solely from RNA-Seq data. Therefore, we
consider it to be the ground truth assembly. A good eval-
uation measure should score the ground truth among its
best assemblies. Ideally, we would have explored the entire
space of assemblies and shown that the RSEM-EVAL score
for the ground truth assembly is among the highest scores.
However, such a global search of assembly space is com-
putationally infeasible. Thus, we instead performed exper-
iments that assess whether in the local space around the
ground truth, the ground truth is among the best scoring
assemblies. In other words, we tested whether the ground
truth assembly is approximately a local maximum of the
RSEM-EVAL function.

We explored the local space of assemblies around that
of the ground truth by generating assemblies that were
slightly perturbed from it. We performed experiments
with two kinds of perturbations: random perturbations
and guided perturbations. In our random perturbation
experiments, assemblies were generated by randomly
mutating the ground truth assembly. Since the minimum
overlap length is a critical parameter for constructing
assemblies, we also assessed the RSEM-EVAL scores for
true assemblies with different minimum overlap lengths
in guided perturbation experiments. A good evaluation
score should generally prefer true assemblies with small
minimum overlap lengths, which are closest to the ground
truth.

For these experiments, it was critical that the ground
truth assembly be known, and therefore we primarily used
a simulated set of RNA-Seq data, in which the true origin
of each read is known. In addition, for our guided pertur-
bation experiments, we used the real mouse data set on
which the simulated data were based, and we estimated
the true origin of each read. For details about these real
and simulated data, see the Materials and methods.

Random perturbation

With our random perturbation experiment we wished to
determine how well, in terms of the RSEM-EVAL score,
the ground truth compares to assemblies in the local
space surrounding it. To explore the space of assem-
blies centered at the ground truth thoroughly, we used
four types of mutations (substitution, fusion, fission and
indels), each of which was applied at five different strength
levels (see Materials and methods). Therefore, in total,
we generated 20 classes of randomly perturbed assem-
blies. For each class, we generated 1,000 independent ran-
domly perturbed assemblies to estimate the RSEM-EVAL
score population mean and its 95% confidence interval for
assemblies of that class.
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On average, the perturbed assemblies had RSEM-EVAL
scores that were worse than that of the ground truth
(Figure 3A). In addition, the higher the mutation strength,
the worse the mean score of the perturbed assemblies.
This suggests that the ground truth assembly behaves sim-
ilarly to a local maximum of the RSEM-EVAL function.
Even though the population mean scores of the perturbed
assemblies were estimated to be always worse than the
score of the ground truth, individual perturbed assem-
blies could have had higher scores. Therefore, for each
class of perturbed assemblies, we calculated the fraction
of assemblies with RSEM-EVAL scores larger than that
of the ground truth, which we refer to as the error rate.
Error rates decreased dramatically with increasing muta-
tion strength and, for all mutation types except fusion,
error rates were only non-zero for the weakest muta-
tion strength level (Figure 3B). RSEM-EVAL had the most
trouble with the fusion-perturbed assemblies, with more
than half of such assemblies at the weakest mutation
strength having a score above that of the ground truth.
From individual examinations of these assemblies, we
observed that in many of these cases, the assemblies con-
tained fusions of contigs with low abundances, which
are difficult to distinguish from true contigs, especially
with the ground truth defined as the true assembly with
minimum overlap length w = 0.

Guided perturbation

With the guided perturbation experiments, we measured
the RSEM-EVAL scores of assemblies constructed with
different values of the minimum overlap length, which is a
common parameter in assemblers. Since the true assem-
bly at minimum overlap length O is the best achievable
assembly, a good evaluation score should be maximized at
small minimum overlap lengths. As described before, we
used one simulated and one real mouse RNA-Seq data set
for these experiments. For each data set, we constructed
the true assemblies with minimum overlap lengths rang-
ing from O to 75. The true assembly at minimum overlap
length 76 (the read length) was not constructed because of
prohibitive running times. For the real RNA-Seq data, true
assemblies were estimated using REF-EVAL's procedure,
described below. We then calculated the RSEM-EVAL
scores for all of these assemblies.

As we had hoped, we found that the RSEM-EVAL score
was maximized at small minimum overlap lengths, for
both the simulated and real data sets (Figure 4). In con-
trast, the ML score increased with minimum overlap
length and peaked at minimum overlap length w = 75.
These results support the necessity of the prior of the
RSEM-EVAL model, which takes into account the com-
plexity of an assembly.

To explore the effects of the minimum overlap length
parameter, w, in the RSEM-EVAL model, we also per-
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Figure 3 Random perturbation results. Comparison of the RSEM-EVAL score of the ground truth assembly to those of randomly perturbed
versions of that assembly. (A) Changes in the relative scores of the perturbed assemblies with increasing mutation strength. For each class of
perturbed assemblies, we computed the mean percentage change in the normalized RSEM-EVAL score for the 1,000 randomly perturbed
assemblies in that class. The normalized RSEM-EVAL score is the RSEM-EVAL score of the assembly minus the RSEM-EVAL score one would obtain for
the null assembly with no contigs and is useful when positive scores are necessary. For each mutation type, the normalized RSEM-EVAL score is
plotted as a function of the mutation strength, with error bars corresponding to 95% confidence intervals. (B) RSEM-EVAL error rates for each
perturbed assembly class. Error bars correspond to the 95% confidence intervals for the mean error rates.
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formed the guided perturbation experiments with w = 50
for the RSEM-EVAL model. We did not observe any major
differences between these results and those for w = 0
(Additional file 1: Figures S3 and S4). To explain this
result, note that although the RSEM-EVAL model uses w
in both the prior and likelihood correction components,
our estimation procedure for the uncorrected likelihood
component (see Materials and methods) does not explic-
itly check for violations of the minimum overlap length
by the assembly (i.e., regions that are not covered by
reads that overlap each other by at least w bases). Thus,
the minimum overlap length does not play a role in the
uncorrected likelihood, which is the dominant term of the
RSEM-EVAL score.

REF-EVAL is a refined toolset for computing
reference-based evaluation measures

Our first experiment, above, shows that RSEM-EVAL has
an approximate local maximum at the true assembly.
However, this does not necessarily imply that RSEM-
EVAL induces a useful ranking of assemblies away from
this local maximum. Thus, to assess the usefulness of
RSEM-EVALs reference-free score, it is of interest to
compare the ranking RSEM-EVAL assigns to a collec-
tion of assemblies to the ranking assigned by comparing

each assembly to a reference. This raises two questions:
(1) What reference do we compare against? (2) How
do we perform the comparison? REF-EVAL constitutes
an answer to both questions. The tools REF-EVAL pro-
vides are also of independent interest for reference-based
evaluation of transcriptome assemblies.

In answer to question (1), REF-EVAL provides a method
to estimate the true assembly of a set of reads, relative to
a collection of full-length reference transcript sequences.
The estimate is based on alignments of reads to reference
transcripts, as described in the Materials and methods. As
we have previously discussed, we wish to compare assem-
blies against the set of true contigs or scaffolds instead of
full-length reference sequences because the latter cannot,
in general, be fully reconstructed from the data and we
want to reward assemblies for recovering read-supported
subsequences of the references.

In answer to question (2), REF-EVAL provides two kinds
of reference-based measures. First, REF-EVAL provides
assembly recall, precision, and F; scores at two differ-
ent granularities: contig (scaffold) and nucleotide. Recall
is the fraction of reference elements (contigs, scaffolds
or nucleotides) that are correctly recovered by an assem-
bly. Precision is the fraction of assembly elements that
correctly recover a reference element. The F; score is
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Figure 4 Guided perturbation results. RSEM-EVAL (top row) and maximum likelihood (bottom row) scores of true assemblies for different values
of the minimum overlap length w on both simulated (left column) and real (right column) data sets. The maximizing values (red circles) are
achieved atw = 0, w = 2, w = 75 and w = 75 in a top-down, left-right order. For better visualization of the maximizing values of w, RSEM-EVAL
scores for the local regions around the maximal values are shown in Additional file 1: Figure S2.

the harmonic mean of recall and precision. For precise
definitions and computational details, see Materials and
methods.

Although the contig- (scaffold-) and nucleotide-level
measures are straightforward and intuitive, both have
drawbacks and the two measures can be quite dissim-
ilar (Figure 5). For example, if two contigs align per-
fectly to a single reference sequence, but neither covers
at least 99% of that sequence, the nucleotide-level mea-
sure will count them as correct, whereas the contig-level
measure will not (Figure 5B). In general, the contig-
and scaffold-level measurements can fail to give a fair
assessment of an assembly’s overall quality, since they
use very stringent criteria and normally only a small
fraction of the reference sequences are correctly recov-
ered. And whereas the nucleotide-level measure arguably
gives a more detailed picture of an assembly’s qual-
ity, it fails to take into account connectivity between
nucleotides. For example, in the example depicted in
Figure 5B, the nucleotide-level measure does not take into
account the fact that the correctly predicted nucleotides

A Contig level B nucleotide level

Recall values

Nucleotide

99%

99%

55%
Contig
99% A 100%
B 0%
44%

reference

conti
e sequence

and nucleotide-level recall values for (A) and (B).

Figure 5 Different granularities of reference-based measures
computed by REF-EVAL. (A) The contig-level measure requires at
least 99% alignment between a matched contig and reference
sequence in a one-to-one mapping between an assembly and the
reference. (B) The nucleotide-level measure counts the number of
correctly recovered nucleotides without requiring a one-to-one
mapping. Unlike the contig-level measure, it gives full credit to the
two short contigs. The table on the right gives both the contig-level
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of the reference sequence are predicted by two different
contigs.

Motivated, in part, by the shortcomings of the contig-,
scaffold-, and nucleotide-level measures, REF-EVAL also
provides a novel transcriptome assembly reference-based
accuracy measure, the k-mer compression score (KC
score). In devising the KC score, our goals were to define a
measure that would (1) address some of the limitations of
the other measures, (2) provide further intuition for what
the RSEM-EVAL score optimizes and (3) be relatively sim-
ple. The KC score is a combination of two measures,
weighted k-mer recall (WKR) and inverse compression
rate (ICR), and is simply defined as:

scoregxc = WKR — ICR (2)

WKR measures the fidelity with which a particular
assembly represents the k-mer content of the reference
sequences. Balancing WKR, ICR measures the degree
to which the assembly compresses the RNA-Seq data.
WKR and ICR are defined and further motivated in the
Materials and methods.

The RSEM-EVAL score correlates highly with
reference-based measures

Having specified a framework for reference-based tran-
scriptome assembly evaluation via REF-EVAL, we then
sought to test whether the RSEM-EVAL score ranks
assemblies similarly to REF-EVAL’ reference-based mea-
sures. To test this, we constructed a large number of
assemblies on several RNA-Seq data sets from organ-
isms for which reference transcript sequences were avail-
able, and we computed both the RSEM-EVAL score and
reference-based measures for each assembly. The RNA-
Seq data sets used were the simulated and real mouse
strand non-specific data from the perturbation experi-
ments, a real strand-specific mouse data set and a real
strand-specific yeast data set. Four publicly available
assemblers, Trinity [4], Oases [6], SOAPdenovo-Trans [8]
and Trans-ABySS [2], were applied to assemble these data
sets using a wide variety of parameter settings.

Overall correlation

For each data set, we computed Spearman’s rank corre-
lation between the reference-based measure values and
the RSEM-EVAL scores to measure the similarity of the
rankings implied by them. For single-end data, RSEM-
EVAL scores had decent correlation with the contig and
nucleotide-level F; measures on the strand non-specific
(Figure 6) and strand-specific (Additional file 1: Figure
S5) data sets. Specifically, the correlation of the con-
tig and nucleotide-level F; measures to the RSEM-EVAL
score is comparable to the correlation of the contig and
nucleotide-level F; measures to each other. RSEM-EVAL
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performed similarly well on the paired-end strand non-
specific data set (Additional file 1: Figure S6).

The RSEM-EVAL scores had markedly higher correla-
tions with the KC score (k = L, the read length) for
both the strand non-specific (Figure 7) and strand-specific
(Additional file 1: Figure S7) single-end data sets, as well
as for the paired-end data set (Additional file 1: Figure S6),
which confirmed our expectations given the mathematical
connections between these scores. To assess the impact of
the k-mer size on the KC score, we also computed corre-
lations between the RSEM-EVAL score and the KC score
at half (k = 36) and double (k = 152) the read length
for the strand non-specific single-end data. We found that
these correlation values were not sensitive to the value
of k (Additional file 1: Figures S8 and S9). These results
provide some intuition for what the RSEM-EVAL score
assesses and indicate that the RSEM-EVAL score could be
used as a proxy for the KC score when reference sequences
are not known.

Although this experiment was not designed as a com-
prehensive evaluation, some features of these results are
suggestive of the relative accuracies of the assemblers.
First, given the selected assembler versions and parameter
settings, Trinity produced the most accurate assemblies
for all data sets with respect to the contig-, scaffold-
and nucleotide-level F; scores and the KC score. The
RSEM-EVAL score supported this result, with the Trinity
assemblies also obtaining the highest RSEM-EVAL scores.
Second, varying the Trinity parameters had a relatively
small effect on the accuracy of the resulting assemblies,
compared to Oases and SOAPdenovo-Trans, which pro-
duced assemblies that spanned a large range of accuracies.
From the assemblies of the mouse strand non-specific
single-end data produced by the assemblers with their
default parameters, we identified a case that exemplifies
Trinity’s accuracy and demonstrates how RSEM-EVAL
selects the best assembly (Figure 8).

Comparison to other measures

As we mentioned in the introduction, there are a wide
variety of other measures that have been proposed and
used for the evaluation of assemblies. We selected a rep-
resentative set of such measures for comparison with
RSEM-EVAL. From the simple reference-free measures,
we selected N50 because of its popularity and the number
of bases in (non-singleton) contigs because this measure
was determined to be ‘strong’ and ‘fully consistent’ for
evaluating de novo transcriptome assemblies [20]. Genovo
[24] and ALE [25] both provide model-based reference-
free scores for evaluating metagenome assemblies, which
are highly similar to transcriptome assemblies, and
thus we also included these scores for comparison.
Lastly, we compared RSEM-EVAL to two comparative-
reference-based measures that may be used if a protein
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Figure 6 Correlation of RSEM-EVAL score with reference-based measures for strand non-specific single-end data sets. Scatter plots are
shown for the simulated (top row) and real mouse (bottom row) data sets and for both the nucleotide-level F; (left column) and contig-level f;
(center column) measures. For comparison, scatter plots of the nucleotide-level 1 against the contig-level Fy are shown (right column). Spearman’s
rank correlation coefficient (bottom-right corner of each plot) was computed for each combination of data set and reference-based measure.

set from a closely related species is available: the
ortholog hit ratio [26] and the number of unique pro-
teins matched by assembly elements, both of which were
determined to be effective for transcriptome assembly
evaluation [20].

Because some of these measures were computationally
costly to compute, we evaluated them with a smaller data
set than that used in the previous section. Specifically,
we used the set of reads from the real mouse strand
non-specific single-end data set that mapped to genes on
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Figure 7 Correlation of the RSEM-EVAL and KC scores on the strand non-specific single-end data sets. Spearman’s rank correlation
coefficient (bottom-right corner of each plot) was computed for each data set. KC score, k-mer compression score.
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Score Likelihood Prior BIC | RSEM-EVAL
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Assembly

Rpl24

Trinity -86542 -876 -8 -87426
RNA-Seq
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3,818 reads —

SOAPdenovo-Trans L -254310 -613 | -12 -254935

most accurate assembly. BIC, Bayesian information criterion.

Figure 8 RSEM-EVAL correctly selects the Trinity assembly of reads originating from a transcript of mouse gene Rpl24 as the best among
the default assemblies from Trinity, Oases and SOAPdenovo-Trans. Reads from the mouse strand non-specific single-end data set aligning to
transcript 1 of Rpl24 were extracted and assembled by Trinity, Oases and SOAPdenovo-Trans with default parameters. Contigs (filled rectangles)
from each assembly were aligned against the true transcript with BLAT to establish their positional identities (blue-yellow fill, with only the segment
of a contig from its highest-scoring local alignment shown). RSEM-EVAL was run on each assembly and the likelihood, prior, BIC and total
RSEM-EVAL scores were recorded. Although the SOAPdenovo-Trans assembly was smaller (as reflected by the higher prior score), the Trinity
assembly had a much higher likelihood score, which is generally the dominant term in the RSEM-EVAL score, and was thus correctly selected as the

chromosome 1. As in the previous section, we assembled
these reads with a variety of assemblers and parameter
settings and computed the selected set of measures along
with the RSEM-EVAL and REF-EVAL measures on the
resulting assemblies.

In terms of Spearman’s rank correlation, RSEM-EVAL
outperformed all other measures with respect to the
contig-level F; and KC scores, but had lower correla-
tion with the nucleotide-level F; score than the Genovo,
ALE and number of unique proteins matched mea-
sures (Table 1, Additional file 1: Figures S10 and S11).

Table 1 Spearman’s rank correlation coefficient of the
scores assigned by several alternative transcriptome
assembly evaluation measures to the reference-based
scores from REF-EVAL

KCscore ContigF1  Nucleotide F1
RSEM-EVAL score 0.99 0.83 0.46
Genovo score 0.96 0.80 0.53
ALE score 0.64 045 0.62
N50 022 033 —0.31
Number of nucleotides 0.13 0.29 —0.21
in assembly
Number of unique proteins  0.68 0.81 0.73
matched
Average ortholog hit ratio 0.31 0.31 —0.19

The alternative measures are defined in the main text. The evaluated assemblies
were produced by Trinity, Oases, SOAPdenovo-Trans and Trans-ABySS, based on
the subset of reads in the real (strand non-specific) mouse data that align to
genes on chromosome 1. This subset was used in the interest of computational
efficiency of the alternative measures.

KC score, k-mer compression score.

RSEM-EVAL, Genovo and ALE were the only reference-
free measures to have positive correlations with respect
to all three REF-EVAL measures. N50 and the number
of bases in contigs measures had negative correlation
with the nucleotide-level F; score and positive but poor
correlation with the other REF-EVAL measures. Unsur-
prisingly, because of the similarity of the models used
by RSEM-EVAL and Genovo, the scores produced by the
two methods were also similar (Additional file 1: Figure
S10). Although ALE is also a model-based reference-free
measure, it had noticeably different behavior from RSEM-
EVAL and Genovo, particularly for the Oases assemblies,
which were generally larger than the other assemblies. Of
the two comparative-reference-based measures, the num-
ber of unique proteins matched measure performed best,
achieving good correlation with all REF-EVAL measures
and the highest correlation (0.73) with the nucleotide-
level F; score. The ortholog hit ratio measure did not
fare as well and, in fact, had negative correlation with the
nucleotide-level F; score.

Given the similarity of RSEM-EVAL to Genovo and
ALE, both in terms of their underlying methodology and
their performance on the selected data set, we sought
to differentiate RSEM-EVAL further from these meth-
ods. First, we note that unlike RSEM-EVAL, the Genovo
and ALE scores do not explicitly take into account tran-
script abundances and only use one alignment per read,
even if a read has multiple equally good alignments. To
demonstrate the necessity of modeling transcript abun-
dance and read mapping uncertainty, we constructed a
simple realistic example in which only RSEM-EVAL cor-
rectly scores the true assembly as the best (Figure 9).
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= Score | RSEM-EVAL | GENOVO ALE

= Assembly

= -43720 -19557 -116316

= Truth

R —_— -44403 -18199 -88905
Isoform 1 (90% relative abundance) Long only

L —— — — — — — _

C 1 -104963 -68997 -52090
Isoform 2 (10% relative abundance) Short only

Figure 9 Example scenario in which RSEM-EVAL correctly selects the true assembly whereas Genovo and ALE select suboptimal
assemblies. Because Genovo and ALE do not explicitly take into account transcript abundance and read mapping uncertainty, scenarios in which
multiple isoforms of the same gene are present in an RNA-Seq sample can confuse these methods. In this example, a gene has two isoforms, the
first isoform (with a length of 1,000 bases) corresponding to the first half of the second isoform (with a length of 2,000 bases). We simulated 5,000
single-end RNA-Seq reads of length 100 bases with 0.01% sequencing error from these transcripts and with a 90 : 10 abundance ratio between the
first and second isoforms, respectively. Because RSEM-EVAL models transcript abundances and takes into account read mapping uncertainty, it
correctly scores the true assembly the highest. In contrast, Genovo selects the assembly containing only the long isoform and ALE selects the
assembly containing only the short isoform.

Second, we measured the runtime and memory usage of  with the KC score for real and simulated data when several
each of these software packages on the full mouse strand  different assemblers are used. Looking at each assem-
non-specific single-end data set and found that RSEM-  bler separately, we also find that the RSEM-EVAL score
EVAL is substantially faster than both Genovo and ALE, has high correlation with the KC score when only the
which have arguably prohibitive runtimes for this realis- assembler’s parameters are changed, for both strand non-
tic data set (Table 2). Lastly, RSEM-EVAL and ALE have specific (Figure 10) and strand-specific (Additional file 1:
richer models than Genovo, both supporting paired-end  Figure S12) single-end data sets, as well as for the paired-

data, quality scores and strand specificity. end data set (Additional file 1: Figure S13). This suggests
o ) that RSEM-EVAL can be used to optimize the parameters
Within-assembler correlation of an assembler for a given data set when the KC score is

One important potential application of RSEM-EVAListhe  finterest for measuring the accuracy of an assembly.
optimization of the parameters of an assembler. Thus, it

is of interest whether the RSEM-EVAL score correlates  Assessing the relative impact of individual contigs or

well with reference-based measures for assemblies gener-  scaffolds within an assembly

ated by a single assembler. In a previous subsection, we ~ The RSEM-EVAL score is an assembly-level measure that
showed that the RSEM-EVAL score has high correlation  allows one to compare different assemblies constructed

Table 2 Wall-clock runtimes (in hours, minutes and seconds) and memory usage (as measured by the maximum resident
set size, in gigabytes) for several assembly evaluation tools

Assembly T Assembly O Assembly S

Program Runtime Memory Runtime Memory Runtime Memory
RSEM-EVAL® Th4mb57s 202GB 4h40m36s 8.18GB 34m57s 1.23GB
Genovo 6d11h54m3s 19223 GB > 1 week - 4d15h3m3s 188.79GB
ALE® 12h39m36s 0.67 GB 6d23h23m13s 231GB 7h33mis 0.59 GB
REF-EVAL, contigb 3s 0.19GB 8s 0.33GB 2s 0.2GB
REF-EVAL, nucleotide® 8s 039GB 33s 1.27 GB 65 033GB
REF-EVAL, KC score Tmi8s 209 GB 1Tm30s 237GB Tmi3s 203GB
Bowtie 15m42s 0.11 GB Th1m38s 031GB 11Tm16s 0.1GB
BLAT 35m14s 0.0GB Th5Tm1s 0.01GB 28m19s 0.0GB

2Plus time to run Bowtie. We calculate Bowtie statistics separately because ALE takes Bowtie alignments as input.

bPlus time to run BLAT.

Each tool was run on three different assemblies of the real mouse data. Assembly T was produced by Trinity with its default parameters (52,667 contigs, 33 million
nucleotides). Assembly O was produced by Oases with its default parameters (160,455 contigs, 115 million nucleotides). Assembly S was produced by
SOAPdenovo-Trans with its default parameters (79,460 contigs, 28 million nucleotides). Multithreaded programs (RSEM-EVAL, REF-EVAL and Bowtie) were run with
16 threads. All programs were run on a compute server with an Intel® Xeon® CPU E5-2660 v2 2.20 GHz processor and 500 gigabytes RAM. Genovo had not finished
running on assembly O after more than 1 week.

KC score, k-mer compression score.
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Figure 10 Within-assembler correlation of the RSEM-EVAL and KC scores on the strand non-specific single-end data sets. Scatter plots are
shown for the simulated (top row) and real mouse (bottom row) data sets and for the Trinity (left column), Oases (center column) and
SOAPdenovo-Trans (right column) assemblers. Trans-ABySS was omitted because it had only one assembly. Spearman’s rank correlation coefficient
(bottom-right corner of each plot) was computed for each combination of data set and assembler.
KC score, k-mer compression score.

from the same data set. It is also of interest to compute
scores for individual contigs or scaffolds within an assem-
bly that reflect their relative impacts. In this section we
describe and assess a contig-level score based on RSEM-
EVAL for single-end data. RSEM-EVAL can analogously
produce scaffold-level scores when paired-end data are
available.

One natural statistical approach for assessing the
explanatory power of a contig is to compare the hypoth-
esis that a particular contig is a true contig with the
null hypothesis that the reads composing the contig are
actually from the background noise. For each contig, we
use the log of the ratio between the probabilities for
these two hypotheses as its contig impact score. Through
a decomposition of the RSEM-EVAL score log P(A, D)
into contig-level components, we are able to calculate
these contig impact scores efficiently (Additional file 1:
Section 5).

RSEM-EVALs contig impact score measures the relative
contribution of each contig to explaining the assembled
RNA-Seq data. This suggests a strategy to improve the

accuracy of an assembly: trim it by removing contigs
that contribute little to explaining the data. To evaluate
this strategy (and by extension the contig impact score
itself), we trimmed assemblies of the simulated data using
the RSEM-EVAL contig impact scores and computed the
resulting changes in the evaluation measures. Assem-
blies were trimmed by removing all contigs with negative
scores.

In general, the trimmed assemblies had better eval-
uation scores than their untrimmed counterparts
(Additional file 1: Table S2 and Figure S14). The largest
improvements were seen for assemblies produced by
Oases and Trans-ABySS, which tend to produce large
numbers of contigs. In fact, for both the nucleotide-
and contig-level F; scores, the trimmed Oases assem-
blies were the most accurate of all assemblies (both
trimmed and untrimmed), supporting the usefulness of
the RSEM-EVAL contig impact score. This suggests that
the RSEM-EVAL contig impact scores are correctly iden-
tifying contigs that are either erroneous or redundant
within these assemblies.
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RSEM-EVAL guides creation of an improved axolotl
assembly

The axolotl (Ambystoma mexicanum) is a neotenic sala-
mander with regenerative abilities that have piqued the
interests of scientists. In particular, there is significant
interest in studying the molecular basis of axolotl limb
regeneration [27]. Although the axolotl is an important
model organism, its genome is large and repetitive, and,
as a result, it has not yet been sequenced. In addition, a
publicly available, complete and high-quality set of axolotl
transcript sequences does not exist, which makes it chal-
lenging to study the axolotl’s transcriptome.

To demonstrate the use of RSEM-EVAL, we employed
it to select an assembler and parameter values for a set
of previously published RNA-Seq data from a time-course
study of the regenerating axolotl limb blastema [27]. This
data set consisted of samples taken at 0 hours, 3 hours,
6 hours, 12 hours, 1 day, 3 days, 5 days, 7 days, 10 days,
14 days, 21 days and 28 days after the start of regeneration
and had a total of 345,702,776 strand non-specific single-
end reads. Because of the large size of this data set and
our goal of testing many different assemblers and param-
eter settings, we first restricted our analysis to data from
three of the time points (6 hours, 14 days and 28 days),
which made up a total of 55,559,405 reads. We ran Trinity,
Oases and SOAPdenovo-Trans on these data to produce
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over 100 different assemblies, each of which we scored
using RSEM-EVAL. Trans-ABySS was not included due to
some difficulties in running it.

Since we did not have a known axolotl transcript set, we
were unable to use the reference-based measures we have
discussed thus far to assess the RSEM-EVAL score’s effec-
tiveness for these data. Therefore, to obtain an orthogonal
measure of accuracy with which to validate the RSEM-
EVAL score for this data set, we instead used alignments
of the assembly contigs to the known protein sequences
of the frog species Xenopus tropicalis. Specifically, we
aligned the assemblies against the frog protein sequences
with BLASTX [28] and calculated the number of frog pro-
teins that were recovered to various percentages of length
by an axolotl contig (Additional file 1: Section 9). We
found that, in general, the assemblies with higher RSEM-
EVAL scores were those that were also considered better
by comparison with the Xenopus protein set (Figure 11).
Thus, the RSEM-EVAL score appears to be selecting the
highest-quality axolotl assemblies.

We then pooled all time points of the time course
and built an assembly using the assembler (Trin-
ity) and parameter set (--glue factor 0.01
--min_iso ratio 0.1) that maximized the RSEM-
EVAL score on the subset described above. This assembly
is publicly available from the DETONATE website. We
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Figure 11 RSEM-EVAL scores and Xenopus protein recovery for the axolotl blastema transcriptome assemblies. The y-axis represents the
percentage of proteins with at least x percent of their length (x-axis) recovered by an axolotl contig. The curve for each assembly is colored
according to its RSEM-EVAL score, with red representing the highest RSEM-EVAL score. The assembly with the curve closest to the upper-right
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compared this assembly to a published axolotl assembly
[27]. We find that the new assembly is longer overall
and has a larger N50 score than the published assembly
(Additional file 1: Table S3).

As length-based measures may not be indicative of a
higher quality assembly, we also evaluated the assemblies
based on the number of expressed genes and the number
of differentially expressed up-regulated (DE UP) genes at
each time point in the axolotl RNA-Seq time course. To
enable direct comparisons with the published assembly,
we used data and methods identical to those in [27], which
used a comparative technique that analyzes the axolotl
transcripts in terms of their orthologous human genes.
With the new RSEM-EVAL guided assembly, we identify
both more expressed genes at each time point and more
DE UP genes at each time point (Additional file 1: Figure
S15). The majority of DE UP genes found in the published
assembly are captured in the new assembly (608 of 888 =
68%), while only 39% (608 of 1,576) of the DE UP genes
found in the new assembly are captured in the published
assembly. The new assembly identifies many new DE UP
genes (968) not captured in the old published assembly.

Because transcription factors are important for setting
and establishing cell state [29], we further evaluated the
list of transcription factors found in the new assembly
that are not found in the published assembly across the
axolotl RNA-Seq time course. Prior results indicate that
oncogenes are up-regulated early in the time course [27].
Using the new assembly we identify two additional DE
UP oncogenes (FOSLI and JUNB) that are not identified
using the published assembly [27]. The prior assembly
identified many genes associated with limb development
and limb regeneration as being DE UP during the mid-
dle phase (3 to 14 days) of the time course [27]. The
new assembly identifies additional limb development and
limb regeneration genes during this middle phase such as
HOXA11, HOXA13, MSX1, MSX2 and SHOX. HOXA1l
and HOXA 13 are important specifiers or markers of posi-
tional information along the proximal/distal and ante-
rior/posterior axes of the limb [30]. MSXI and MSX2 have
been shown to be expressed in the axolotl blastema [31].
SHOX mutants in humans exhibit short limbs and over-
all stature [32]. The identification of many more expressed
and DE UP genes, a number of which have previous sup-
port for involvement in limb regeneration, suggests that
the new assembly gives a more comprehensive view of the
genes expressed in the axolotl.

Discussion
Related work
RSEM-EVAL is related to several recently developed
methods for de novo genome and metagenome assembly.
Although the evaluation of de novo genome assemblies
is a relatively mature area of research [22,33-40], only
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recently has the need for statistically principled meth-
ods been recognized [41]. Notably, Rahman and Pachter
[23] developed CGAL, a principled probabilistic model-
based method for evaluating genome assemblies without
the ground truth. RSEM-EVAL and CGAL are closely
related in that they both make use of the likelihood to
score an assembly. However, RSEM-EVAL is necessarily
more complex due to important differences between the
tasks of transcriptome and genome assembly. In partic-
ular, with genome assembly it is generally assumed that
all chromosomes are sequenced to the same sequenc-
ing depth, whereas with transcriptome assembly one has
to consider variable sequencing depth because of widely
varying transcript abundances. Therefore, as we demon-
strated through our experiments, use of the likelihood
alone is suboptimal for evaluating transcriptome assem-
blies. In fact, even for de novo genome assembly evalu-
ation, one can show that use of the likelihood alone is
not optimal. For example, the likelihood criterion can-
not distinguish between the true assembly and assemblies
constructed by duplicating each contig of the true assem-
bly ¢ times. RSEM-EVAL corrects for this limitation by
prior modeling of assemblies.

Because the task of de movo metagenome assembly
is roughly equivalent to that of de novo transcriptome
assembly, RSEM-EVAL also has close connections to
methods developed for metagenomics. Metagenomic data
are similar to transcriptomic data in that each distinct ele-
ment of the population is present at varying multiplicities.
In this paper we have shown that RSEM-EVAL has impor-
tant advantages over the two model-based reference-
free measures that have been developed for evaluating
metagenome assemblies, Genovo and ALE. In particu-
lar, RSEM-EVAL correctly models transcript abundances
and read mapping uncertainty, which is critical for distin-
guishing between assemblies of alternatively spliced tran-
scripts. And on realistic data sets, RSEM-EVAL is notably
faster than Genovo and ALE, both of which have run-
times measured in days, which is unlikely to be practical
for users interested in evaluating multiple assemblies.

O'Neil and Emrich [20] comprehensively assessed
a large number of reference-free and comparative-
reference-based measures for evaluating de novo tran-
scriptome assemblies and similarly dismissed N50 as a
useful measure in this context. They identified a number
of informative measures and we compared RSEM-EVAL
to three of them. Two of these measures (number of bases
in contigs and orthology hit ratio) had poor correlation
with the REF-EVAL reference-based measures. The third
measure, number of unique proteins matched, performed
well in our experiments, further supporting the useful-
ness of this measure. However, unlike RSEM-EVAL, this
is technically a reference-based measure and is dependent
on a good comparative reference protein set. In addition,
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this measure is not appropriate as an objective function
for a de novo transcriptome assembler because it focuses
solely on matching proteins from a closely related species
and as such does not take into account how well an
assembly explains the reads used in its construction.

Limitations and future work

We stress that the correlation experiments presented in
this study were primarily designed to evaluate the RSEM-
EVAL score, not to determine which assembler is most
accurate, in general. The versions of the assemblers used
were not the most recent ones at the time of writing
and the parameter variations used were not necessar-
ily those recommended by the assemblers. Nevertheless,
with our selected assembler versions and parameter varia-
tions (which included the default settings for each assem-
bler), our results provide some evidence that Trinity is
more accurate than the other assemblers. To confirm this,
future benchmarking will require use of the latest ver-
sions of these actively developed assemblers, additional
data sets, and more carefully selected parameters.

We also note a couple of important limitations regarding
the use of RSEM-EVAL. First, it is critical that RSEM-
EVAL be run on the same RNA-Seq data set that was
provided to the assemblers as it assumes that an assembly
is compatible with the data. Second, RSEM-EVAL should
not be used if genome information is used during tran-
scriptome assembly because its model is purely based
on the RNA-Seq data and therefore might be mislead-
ing for genome-guided assemblies. Lastly, RSEM-EVAL
currently focuses only on assemblies constructed from
[lumina RNA-Seq data. We choose to focus on the Illu-
mina platform as it is currently the most popular RNA-Seq
platform. However, the methods we have presented can,
in principle, be extended to other sequencing platforms
(e.g., Roche 454 sequencing, Ion Torrent and Pacific Bio-
sciences), and we plan to do so in the near future.

In addition to supporting other sequencing platforms,
we plan to extend our framework to accommodate
indel alignments and sequencing biases. We also plan to
investigate remedies to RSEM-EVAL’s weakness of scor-
ing assemblies with incorrectly fused contigs above the
ground truth. Although it is unlikely that any reference-
free measure can score the ground truth above all other
assemblies, our random perturbation experiments sug-
gest that RSEM-EVAL is permissive of assemblies that
concatenate low-coverage contigs, perhaps because of its
modeling of the true assembly with minimum overlap
length 0.

Conclusions

We presented DETONATE, a methodology and cor-
responding software package for evaluating de novo
transcriptome assemblies, whch can compute both
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reference-free and reference-based measures. RSEM-
EVAL, our reference-free measure, uses a novel prob-
abilistic model-based method to compute the joint
probability of both an assembly and the RNA-Seq data as
an evaluation score. Since it only relies on the RNA-Seq
data, it can be used to select a best assembler, tune the
parameters of a single assembler and guide new assem-
bler design, even when the ground truth is not available.
REF-EVAL, our toolkit for reference-based measures,
allows for a more refined evaluation compared to exist-
ing reference-based measures. The measures it provides
include recall, precision and F; scores at the nucleotide
and contig levels, as well as a KC score.

Experimental results for both simulated and real data
sets show that our RSEM-EVAL score accurately reflects
assembly quality. Results from perturbation experiments
that explored the local assembly space around the ground
truth suggest that RSEM-EVAL ranks the ground truth
among the locally highest-scoring assemblies. In contrast,
a score based only on the likelihood fails to rank the
ground truth among its best scores, which highlights the
importance of including a prior on assemblies as part of
an evaluation score. Through correlation experiments, we
measured the similarity of the RSEM-EVAL scores to dif-
ferent reference-based measures. We find that, in general,
the RSEM-EVAL score correlates well with reference-
based measures. In contrast, simple reference-free mea-
sures, such as N50, did not correlate well, suggesting
that they are inappropriate for evaluating transcriptome
assemblies. And whereas several model-based methods
designed for the highly similar task of metagenome assem-
bly evaluation had correlations with reference-based mea-
sure comparable to those of RSEM-EVAL, we found that
these methods failed in a certain class of realistic scenarios
and did not have practical runtimes.

To demonstrate the usage of RSEM-EVAL, we assem-
bled a set of contigs for the regenerating axolotl limb with
its guidance. Evaluation of this new assembly suggests that
it gives a more comprehensive picture of genes expressed
and genes up-regulated during axolotl limb regeneration.
Thus, RSEM-EVAL is likely to be a powerful tool in the
building of assemblies for a variety of organisms where the
genome has not yet been sequenced and/or the transcrip-
tome has not yet been annotated.

Materials and methods

The true assembly according to DETONATE

As discussed in the Results above, both RSEM-EVAL and
REF-EVAL rely on the concept of the true assembly of a
set of RNA-Seq reads, which is the assembly one would
construct if given knowledge of the true origin of each
read. For each read, r, let transcript(r), left(r) and right(r),
denote the transcript from which r truly originates, the
leftmost (5') position of r along the transcript, and the
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rightmost (3') position of r along the transcript, respec-
tively. We parameterize this notion of a true assembly by
a length, w, which is the minimum overlap between two
reads required for the extension of a contig. Given w, we
define the sequence of a segment, [start, end], of a tran-
script, £, to be a true contig if there exists an ordered set of
reads, (r1,79,...,ry), such that:

1. transcript(r;) =¢, Vi

2. right(r;) — left(riz1) +1>w, Vi<n
3. left(r;) = start

4. right(r,) = end

5

. [start, end] is maximal

The first four conditions ensure that the segment is
completely covered by reads overlapping by at least w
bases and the last condition ensures that one contig can-
not be contained within another. With single-end data, the
true assembly is then defined as the set of all true contigs.
Such an assembly is the best theoretically achievable by a
de novo assembler that requires at least w bases of over-
lap to merge two reads. The true assembly at minimum
overlap length w = 0 is the best theoretically achievable
assembly in that it represents all contiguously covered seg-
ments of the transcript sequences. With paired-end data,
one may also consider the notion of a true scaffold, which
is a set of true contigs linked together by strings of N
characters representing intervals of transcripts that were
not covered by any reads but that were spanned by read
pairs. More precisely, if one constructs a graph with each
true contig as a vertex and an edge between any two ver-
tices whose respective contigs are linked by a read pair,
then the set of true scaffolds corresponds to the connected
components of this graph.

Overview of RSEM-EVAL

In this and the following subsections, we describe RSEM-
EVAL in more detail. To simplify the presentation, we
initially restrict our attention to contig assemblies from
single-end data. In a later subsection, we will describe the
slight differences in RSEM-EVAL when used with scaffold
assemblies from paired-end data.

RSEM-EVAL models an RNA-Seq data set, D, consisting
of N reads, each of length L, and an assembly, A, consisting
of M contigs, with the length of contig i denoted by ¢; and
its sequence by a;. RSEM-EVAL also models the expected
read coverage A = {X;} of each contig’s parent tran-
script, where the expected read coverage of a transcript is
defined as the expected number of reads that start from
each valid position of the transcript, given the sequenc-
ing throughput, N. A transcript’s expected read coverage
is proportional to its relative expression level (Additional
file 1: Section 1).

A natural way to decompose the joint distribution of
an assembly and the reads used to construct it, P(4, D),
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would be to (1) specify a prior distribution over the unob-
served transcript sequences and their abundances, (2)
model the generation of reads from these transcripts and
(3) model A as being the true assembly at minimum over-
lap length 0 of the reads in D (Additional file 1: Figure S1a).
Unfortunately, this decomposition requires us to inte-
grate out the unobserved transcript sequences to obtain
the distribution P(A4, D), and doing so is computationally
infeasible.

Instead, RSEM-EVAL decomposes the joint distribution
in an equally valid but more computationally convenient
manner, as follows:

1. We specify a prior distribution, P(A|A), over the
assembly A, given the expected read coverage of each
contig’s parent transcript, A.

2. We model the generation of a set of reads D
consistent with the assembly A and the expected read
coverage A; this model defines the likelihood
P(D|A, A), the probability of the reads D given the
assembly A and the expected read coverage A.

3. Instead of specifying a concrete distribution over the
number of contigs M and the expected read coverage
A, we approximately integrate out these variables
using the BIC [42].

Based on this decomposition, the RSEM-EVAL score,
log P(A, D), can be expressed as a sum of three terms: the
assembly prior, the likelihood and a BIC term (Equation 1
in the Results). These three terms are detailed in the
next three subsections. The relationship between the nat-
ural decomposition and the RSEM-EVAL model is further
discussed in Additional file 1: Section 2.

RSEM-EVAL'’s assembly prior component

RSEM-EVALS prior distribution over assemblies is based
on a simple parametric model of the transcriptome and
the reads, together with the concept of a true assembly
as we have described. First, a key assumption of the prior
model is that each contig is generated independently. This
assumption is useful, even though it is not satisfied in
practice since multiple contigs can be generated from the
same transcript. With this assumption, we may express
the prior as:

M
PAIA) = [ [Pl
i=1

Second, each contig’s parent transcript is modeled as
follows.

1. The transcript’s length follows a negative binomial
distribution, the parameters of which may be
estimated from a known transcriptome.
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2. The transcript’s sequence follows a uniform
distribution, given the transcript’s length.

3. For each position in the transcript, the number of
reads starting at that position follows a Poisson
distribution (mean = expected read coverage),
independently, given the transcript length and the
expected read coverage.

Third, each contig’s distribution is induced from the dis-
tribution of its parent transcript, as follows. Imagine that
we repeat the following steps until we have a large enough
number of contigs in the bag:

1. A transcript and its reads are generated as above.

2. The true assembly at minimum overlap length w = 0
is constructed from these reads.

3. All contigs in the true assembly are put into the bag.
The frequency of contigs in the resulting bag defines
our per contig prior P(a;|A;).

The above specification leads to the following functional
form for the prior:

M 1 Zg\ilzi
P(A|A)=(1"[P(ei|xi>> (4)
i=1

contig length prior assembly size prior

One can work out a dynamic programming algorithm
to compute P(¢;|A;), by means of which the prior can be
computed efficiently (Additional file 1: Section 3).

The practical contribution of the prior is as follows.
Each term of the contig length prior, P(¢;|1;), penalizes
contigs with aberrant lengths that are not likely given the
expected read coverage of their parent transcripts. The

M
assembly size prior, (i)Zi=1 b imposes a parsimony pref-
erence on the total length of an assembly and pushes the
RSEM-EVAL score to favor assemblies using fewer bases
to explain the RNA-Seq data.

RSEM-EVAL’s likelihood component

For modeling the RNA-Seq reads, we build on the model
used by RSEM [43,44] for the task of transcript quantifi-
cation. The RSEM model provides a probability distribu-
tion for an RNA-Seq data set, D, given known transcript
sequences, T, and relative abundances of those transcripts
encoded by the parameters, ®. Given this model, RSEM
uses the expectation-maximization algorithm for efficient
computation of the ML estimates for ®. Unfortunately, we
cannot directly use the likelihood under the RSEM model
because (1) we do not observe the full-length transcript
sequences and (2) we require that the RNA-Seq reads are
consistent with an assembly in that they completely cover
the contigs. Nevertheless, the RSEM model can be used
as part of a generative process that results in a proper
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probability distribution over D, given an assembly, A. This
process follows a simple two-step rejection procedure:

Step 1: Generate a set of reads, D', according to the
RSEM model with the contigs in A treated as
full-length transcripts.

Step 2: If the reads in D’ completely cover the contigs,

then set D = IV, otherwise go back to step 1.
This process results in the following form for RSEM-
EVALs likelihood:
Prsem (DIT = A, O%4 )
Prsem (C = 1T = A, 05, ;)

P (D|A, AmLe) = 3)
where Prspm denotes a probability under the RSEM
model and C = 1 denotes the event that every posi-
tion in the assembly is covered by reads that overlap with
each other by at least w bases. @}, denotes the equiv-
alent parameter values of the RSEM model given the ML
expected read coverage values, Apprg. We refer to the
denominator of Equation 3 as the likelihood correction
term. This term can be calculated efficiently (Additional
file 1: Section 4).

RSEM-EVAL's BIC penalty component

The BIC penalty is proportional to the product of the
number of free parameters and the logarithm of the size
of the data. The free parameters are the expected cov-
erage of each contig, plus one extra parameter for the
expected number of reads from RSEM’s noise model, for
M + 1 parameters in total. The data size is N, which rep-
resents the number of reads. The BIC penalty imposes a
parsimony preference on the total number of contigs in an
assembly.

The inference algorithm used to compute the RSEM-EVAL
score

We use the following heuristic inference algorithm to
calculate the RSEM-EVAL score:

1. Learn Opg using RSEM, treating the input assembly
A as the true transcript set.
2. Convert Opg into Ay via the formula:

NOmLE,i
G+L+1
3. Calculate the RSEM-EVAL score, log P(A, D), using

Amie and Equation 1.

AMLE,; = Jfori >0

In step 1, RSEM requires use of a short-read alignment
program to generate candidate alignments of each read
to the assembly [43,44]. The Bowtie aligner (v0.12.9) [45]
was used for all experiments except the random pertur-
bation experiments. Bowtie was called through RSEM
with RSEM’s default Bowtie parameters. For the random
perturbation experiments, since the perturbations were
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subtle, we chose to use a more sensitive aligner, GEM
(binary pre-release 3) [46]. To produce alignments with
similar criteria as Bowtie, we first extracted the first 25 bp
(seed) of every read and aligned the seeds using GEM
with -g ignore --mismatch-alphabet ACGNT -m
2 -e 0 --max-big-indel-length 0 -s 2 -d
200 -D O options set for gem-mapper. Lastly, we
filtered any alignments for which the seed could not be
extended to the full read length.

In step 2, we do not use the contig-level read coverage,
12110_1\2:%11 to approximate the expected read coverage of its
parent transcript, A;, because it is likely to overestimate A;,
especially for short contigs. Instead, to make a partial cor-
rection for this overestimation, we adjust the denominator
in this estimator to £; + L + 1 to account for the fact that
no reads started within L bases of the start positions of the
reads making up the contig (otherwise, the contig would
have been extended, since our model considers the assem-
bly to have been created using minimum overlap length
w=0).

RSEM-EVAL with paired-end data

RSEM-EVAL may also be used to evaluate scaffold assem-
blies from paired-end data. There are just a few differences
between the models RSEM-EVAL uses for single-end and
paired-end data. With paired-end data, N becomes the
number of read pairs in the data set, L becomes the mean
fragment length, and M becomes the number of scaffolds
in the assembly. The likelihood component of the RSEM-
EVAL score uses the probability of the data under RSEM’s
paired-end model, which includes the probabilities of the
fragment lengths implied by the alignments of the read
pairs. The likelihood correction term and assembly prior
component, both of which are dependent on L, are com-
puted based on the mean fragment length rather than
the mean read length. The inference algorithm used by
RSEM-EVAL for paired-end data is the same as for single-
end data with the exception that the reads are aligned to
the scaffolds as read pairs rather than as individual reads.

REF-EVAL'’s estimate of the true assembly

REF-EVAL estimates a set of true contig (scaffold)
sequences from a given set of transcripts and RNA-Seq
single-end (paired-end) reads using the following proce-
dure:

1. Align the reads against the transcript sequences
using RSEM.

2. For each alignable read (read pair), sample one of its
alignments based on the posterior probability that it
is the true alignment, as estimated by RSEM. The set
of alignments for each read (read pair) includes the
null alignment that the read (read pair) comes from
background noise.
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3. Treat the sampled alignments as true alignments and
compute the true contigs with minimum overlap
length w = 0.

4. For paired-end reads, join any true contigs that are
spanned by at least one read pair into true scaffolds,
with the distance between contigs determined by
their positions in the parent transcript.

REF-EVAL's contig- (scaffold-) and nucleotide-level
measures

Given a set of ground truth reference sequences, REF-
EVAL provides assembly recall, precision and F; scores
at two different granularities. Recall is the fraction of ref-
erence elements (contigs, scaffolds or nucleotides) that
are correctly recovered by an assembly. Precision is the
fraction of assembly elements that correctly recover a ref-
erence element. The F; score is the harmonic mean of
recall and precision:

2 x recall x precision

recall + precision

Because the Fj score is a combination of both recall and
precision, it gives a more balanced view of an assembly’s
accuracy than either precision or recall does alone.

REF-EVAL provides these measures at two different
granularities: contig (scaffold) and nucleotide. Taking
recall as an example, the measures at the two levels can
be summarized as follows. For both levels, we first com-
pute all significant local alignments between the assembly
sequences and the reference sequences, using BLAT [47].
The contig (scaffold) level measurement [2,16,17] counts
the number of correctly recovered reference sequences
after a one-to-one mapping is established between con-
tigs (scaffolds) and reference sequences. At the nucleotide
level, the recall measure instead counts the number of
correctly recovered nucleotides based on the alignments
between the assembly and the ground truth sequences
[5,6]. The precision measures for both levels are calculated
similarly by switching the roles of the assembly sequences
and reference sequences.

In detail, REF-EVAL defines the contig (scaffold) recall
as follows. For a reference sequence to be correctly recov-
ered, at least 99% of its (non-N) sequence must be identi-
cal to that of the assembly sequence to which it is aligned,
and vice versa, and the total number of insertions and
deletions in the alignment between the two must be no
more than 1% of the length of either sequence. Each per-
centage is computed relative to the length (excluding N
characters) of the assembly sequence or the length of the
reference sequence, whichever is most stringent. Under
these criteria, multiple reference sequences can be recov-
ered by the same assembly sequences. To handle this issue,
we define a bipartite graph in which the vertices are the
assembly sequences and the reference sequences, and the
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edges correspond to alignments that meet the above cri-
teria. The contig (scaffold) recall is the cardinality of the
maximum cardinality matching of this graph.

In detail, REF-EVAL defines the nucleotide recall as fol-
lows. A nucleotide in a reference sequence is considered
to be correctly recovered if the corresponding nucleotide
in the alignment selected for that position is identical. To
handle the issue of multiple local alignments overlapping
a given reference position, we select a single alignment
for each position by picking alignments in order of their
marginal contribution to the nucleotide recall, given the
alignments that have already been selected. Algorithms to
compute the contig and nucleotide measures are given in
Additional file 1: Sections 6 and 7.

REF-EVAL's k-mer compression score

The KC score is a combination of two measures, WKR
and ICR (Equation 2). WKR measures an assembly’s recall
of the k-mers present in the reference sequences, with
each k-mer weighted by its relative frequency within the
reference transcriptome. It has several advantages over
the contig-, scaffold- and nucleotide-level recall mea-
sures. First, unlike the nucleotide measure, it takes into
account connectivity between nucleotides, but is not as
stringent as the contig measure because it only consid-
ers connectivity of nucleotides up to k — 1 positions
apart. Second, it is biased toward an assembler’s ability to
reconstruct transcripts with higher abundance, which are
arguably more informative for evaluation because there
are generally sufficient data for their assembly. Lastly, it
is relatively easy to compute because it does not require
an alignment between the assembly and the reference
sequences.

To compute WKR, the relative abundances of the ref-
erence elements are required. These abundances may be
estimated from the RNA-Seq data used for the assembly,
and REF-EVAL uses RSEM for this. Given the reference
sequences and their abundances, a k-mer occurrence fre-
quency profile, p, is computed, with individual k-mer
occurrences weighted by their parent sequences’ abun-
dances: for each k-mer r, we define:

Y pepn(r,b)t(b)
2 pepn(D)T(D)

where B is the set of reference sequences, and for each ref-
erence sequence b in B, n(r, b) is the number of times the
k-mer r occurs in b, n(b) is the total number of k-mers in
b, and t(b) is the relative abundance of b. Letting r(A) be
the set of all k-mers in the assembly, WKR is defined as:

WKR= " p(r)

rer(A)

pr) =

Since recall measures only tell half of the story regarding
accuracy, the KC score includes a second term, ICR, which
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serves to penalize large assemblies. We define the ICR of
an assembly as:
ICR = 14
NL

As this term’s name suggests, we can view an assem-
bler as a compressor for RNA-Seq data and the assembly
it outputs as the compressed result. The uncompressed
data size is the total number of nucleotides in the data,
NL, and the compressed result size is the total number
of nucleotides in the assembly, |A|. The smaller the ICR
value, the more efficient the assembler is in compress-
ing the data. We chose to use ICR over other possible
precision-correcting schemes (e.g., F; score) because of
important mathematical connections between the RSEM-
EVAL and KC scores (Additional file 1: Section 8). Thus,
as we showed with our experiments, the reference-based
KC score provides some additional intuition for what
the reference-free RSEM-EVAL score is measuring. The
theoretical links between the two scores suggest that
the KC score would benefit from some additional terms
(Additional file 1: Section 8); however, in keeping with our
goal of simplicity, we restricted the KC score to the two
most dominant terms.

RNA-Seq data used in the perturbation experiments

Both the random and the guided perturbation exper-
iments (see Results) use a simulated set of RNA-Seq
reads. We simulated these reads from a mouse tran-
script set (Ensembl Release 63 [48]), using RSEM’s [43,44]
RNA-Seq simulator and simulation parameters learned
from the first mates of a set of real paired-end mouse
data (Sequence Read Archive accession [SRA:SRX017794]
(49)).

The resulting simulated data set contained around 42
million strand non-specific 76-bp single-end reads. For
reasons of computational efficiency, in the random pertur-
bation experiments, we only used reads from transcripts
on chromosome 1, and we constructed the ground truth
accordingly. This resulted in 1,843,797 reads that formed
10,974 contigs in the ground truth assembly.

For our guided perturbation experiments, we addition-
ally used a real data set consisting of the first mates
of the mouse data previously mentioned. This real data
set also contained around 42 million strand non-specific
76-bp single-end reads. The true origin of each read in the
real data set was estimated using REF-EVAL.

Construction of randomly perturbed assemblies

The random perturbation experiments (see Results) com-
pare the true assembly’s RSEM-EVAL score to the scores
of numerous perturbed variants of this assembly. These
perturbed assemblies were constructed as follows. Sub-
stitution assemblies (randomly perturbed assemblies with
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substitution mutations) were generated by randomly and
independently substituting each base of the ground truth
at a specific substitution rate. Fusion assemblies were
generated by repeatedly joining two randomly selected
contigs until the specified number of fusion events was
reached. For each join, if the two selected contigs shared
a common sequence at their ends to be joined, the con-
tigs were overlapped such that the shared sequence only
appeared once in the fused contig. To generate a fis-
sion assembly, each contig position at which two reads
were merged in the ground truth was independently
selected as a fission point at the specified fission rate.
If reads overlapped at a fission point, the overlapped
segment was made to appear in both contigs after the
fission. To generate an indel-perturbed assembly, inser-
tions and deletions were introduced across the ground
truth assembly according to the specified indel rate.
The length of each indel was sampled from a geomet-
ric distribution with mean 3, to model the short indels
occasionally observed in high-throughput sequencing
data.

For substitution and indel assemblies, the mutation
strength was the mutation rate per contig position, which
was varied among 1 x 107°,1x 107>, 1 x 10741 x 1073
and 1 x 1072, For example, in the substitution experiment,
at mutation rate 1 x 1073, a substitution was introduced
at each position of each contig with probability 1 x 1073,
The fission experiments used the same range of mutation
rates, but with the rate defined as per pair of immediately
adjacent and overlapping reads. For fusions, the mutation
strength was the number of fusion events, which ranged
among 1, 10, 100, 1,000 and 10,000.

RNA sequencing data used in the correlation experiments

For our experiments measuring the correlation between
the RSEM-EVAL score and reference-based measures we
used five data sets: simulated and real mouse, strand non-
specific single-end RNA-Seq data sets used in the per-
turbation experiments, the complete strand non-specific
paired-end mouse data set [SRA:SRX017794] from which
these single-end data sets were derived, and the strand-
specific single-end mouse and yeast data sets from
Grabherr et al. [4]. The entirety of each data set was used,
except for the simulated data set, from which we used
roughly half of the simulated reads (reads from transcripts
in chromosomes 1 to 10) for computational efficiency. For
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each assembler, we used a variety of parameter settings
(Additional file 2), resulting in a total of 211 assem-
blies for each of the strand non-specific data sets and
159 assemblies for each of the strand-specific data sets
(Table 3). Because the versions of SOAPdenovo-Trans and
Trans-ABySS we used did not take into account strand
specificity, they were not run on the two strand-specific
data sets. The reference-based measures were computed
relative to the estimated true assemblies at minimum
overlap length w = 0. These assemblies were estimated
using the mouse Ensembl annotation (release 63) for the
three mouse data sets and the PomBase [50] Schizosaccha-
romyces pombe annotation (v09052011) for the yeast data
set.

Running of alternative evaluation methods

The compute score denovo program of Genovo
(v0.4) was run with default parameters to compute the
Genovo score of an assembly from a set of single-
end reads. ALE (Git commit b9d2d88915, 29 August
2014), was run with the --metagenome option (to
match more closely the transcriptome assembly task)
and with the identical alignment file of the reads to
the assembly sequences used by RSEM-EVAL. The N50,
number of bases in (non-singleton) contigs, number of
unique proteins matched and ortholog hit ratio mea-
sures were computed using custom scripts. The number
of unique proteins matched and ortholog hit ratio mea-
sures were computed as previously described [20,26], with
one clarification that the ortholog hit ratio of a con-
tig lacking a BLAST hit is defined as zero. For these
comparative-reference-based measures, we used the col-
lection of human protein sequences in release 2014_08
of the UniProt Knowledgebase [51] as a reference. For
the number of bases in contigs and number of unique
proteins matched measures, we removed all assembly ele-
ments with length less than or equal to the read length to
ensure that only non-singleton contigs were included in
the calculations.

Software availability

The DETONATE software is freely available from its web-
site [52]. Its source-code repository is available [53]. The
software runs in POSIX-compatible environments. A copy
of the version of the software used for the experiments in
this paper is provided as Additional file 3.

Table 3 Assemblers and number of assemblies generated by them (using different parameter settings) for the

correlation experiments

Assembler Trinity Oases SOAPdenovo-Trans Trans-ABySS
Version r2012-03-17 0.2.06 1.01 132
Number of assemblies 86 73 51 1

SOAPdenovo-Trans and Trans-ABySS were not run on the strand-specific data sets.
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Additional files

Additional file 1: Supplementary methods, tables and figures.
Additional file 2: Parameter settings for various assemblers.

Additional file 3: Version of the DETONATE source code used for the
experiments in this paper.
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