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Characterizing heterogeneity in leukemic cells
using single-cell gene expression analysis
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Abstract

Background: A fundamental challenge for cancer therapy is that each tumor contains a highly heterogeneous cell
population whose structure and mechanistic underpinnings remain incompletely understood. Recent advances in
single-cell gene expression profiling have created new possibilities to characterize this heterogeneity and to dissect
the potential intra-cancer cellular hierarchy.

Results: Here, we apply single-cell analysis to systematically characterize the heterogeneity within leukemic cells
using the MLL-AF9 driven mouse model of acute myeloid leukemia. We start with fluorescence-activated cell sorting
analysis with seven surface markers, and extend by using a multiplexing quantitative polymerase chain reaction
approach to assay the transcriptional profile of a panel of 175 carefully selected genes in leukemic cells at the
single-cell level. By employing a set of computational tools we find striking heterogeneity within leukemic cells.
Mapping to the normal hematopoietic cellular hierarchy identifies two distinct subtypes of leukemic cells; one
similar to granulocyte/monocyte progenitors and the other to macrophage and dendritic cells. Further functional
experiments suggest that these subtypes differ in proliferation rates and clonal phenotypes. Finally, co-expression
network analysis reveals similarities as well as organizational differences between leukemia and normal granulocyte/
monocyte progenitor networks.

Conclusions: Overall, our single-cell analysis pinpoints previously uncharacterized heterogeneity within leukemic
cells and provides new insights into the molecular signatures of acute myeloid leukemia.
Background
Characterization of cancer heterogeneity is of immense
importance with significant clinical implications. To de-
scribe this heterogeneity, a model of considerable current
interest posits that tumors are hierarchically organized,
and initiated by cancer stem cells, which are able to self-
renew as well as to differentiate into all other lineages in
the tumor [1].
One of the few cancer-types in which cancer stem cells

have been intensively studied is acute myeloid leukemia
(AML) [2-4]. AML is a clonal neoplastic disorder that is
characterized by an increase in the number of myeloid
cells in the bone marrow and an arrest in their matur-
ation, frequently leading to hematopoietic insufficiency
* Correspondence: stuart_orkin@dfci.harvard.edu; gcyuan@jimmy.harvard.edu
†Equal contributors
3Division of Pediatric Hematology/Oncology, Boston Children’s Hospital,
Boston, MA 02115, USA
1Department of Biostatistics and Computational Biology, Dana-Farber Cancer
Institute, Boston, MA 02215, USA
Full list of author information is available at the end of the article

© 2014 Saadatpour et al.; licensee BioMed Cen
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
Domain Dedication waiver (http://creativecom
article, unless otherwise stated.
[5]. Initial studies showed that only a rare subset of cells
have the capacity to initiate the disease upon transplant-
ation and, therefore, have the leukemia stem cell (LSC)
property [2]. Further studies suggested that LSCs are
located almost exclusively downstream of the normal
progenitor compartment based on immunophenotype
[6] and that they display a phenotype similar to granulo-
cyte/monocyte progenitors (GMPs) [4]. However, it has
also been shown that tumor-initiating activities can be
found in immunophenotypically distinct compartments
[7]. Therefore, it remains a challenge to dissect the cellu-
lar hierarchy within leukemic cells. Similarly, the critical
pathways for LSC functions also remain incompletely
understood [8-10].
The hematopoietic system is one of the well-studied

models for cellular differentiation for which the cellular
hierarchy has been characterized [11,12]. The traditional
model holds that the self-renewing hematopoietic stem
cells (HSCs) are positioned at the apex of the hierarchy
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and are capable of reconstituting the entire hematopoietic
system, through sequential lineage differentiations to mul-
tipotent progenitors (MPPs) [13-15], followed by differen-
tiation into common lymphoid progenitors (CLPs) and
common myeloid progenitors (CMPs) [16,17]. CMPs can
further bifurcate to GMPs and megakaryocyte/erythroid
progenitors (MEPs) [18]. However, alternative models for
cellular hierarchy have also been proposed [19]. Single-cell
analysis further suggests that the CMPs are highly hetero-
geneous and contain one subgroup that may directly
differentiate into megakaryocytes [20].
The recent development of microfluidic-based single-

cell sorting technologies [21], high-throughput trans-
criptomic profiling with a multiplexing quantitative PCR
(qPCR) approach [20,22-25] or massively parallel se-
quencing [26-33], and mass cytometry-based proteomic
strategies [34-36] have greatly expanded the capacity for
single-cell gene expression profiling, which was trad-
itionally carried out by using fluorescence-activated cell
sorting (FACS) with only a few markers, and provided a
great opportunity to unearth cellular heterogeneity. These
technologies have been used to investigate the develop-
ment of the normal hematopoietic system, including
mapping the cellular hierarchy [20,34], reconstructing
transcriptional networks [20,25], and characterizing cel-
lular heterogeneity in other cancers [23,37].
In this paper, we first utilize FACS analysis of seven

surface markers and then apply our recently developed
multiplexing qPCR approach to systematically inves-
tigate the transcriptional profile of 175 genes in 71
leukemic cells in AML. We integrate these data with our
previously published dataset on normal hematopoietic
cells [20], and utilize an integrated set of computational
tools to map the cellular hierarchy within leukemic cells,
and to further elucidate the underlying transcriptional
networks. Overall, our study provides novel insights into
the cellular heterogeneity and organizing principles in
AML.

Results
Comparing leukemic and normal hematopoietic cells at
the single-cell level
Previous studies suggest that the lineage hierarchy in the
MLL-AF9 driven leukemia is complex [6,7,20]. Here, we
aimed to combine FACS analysis and high-throughput
single-cell qPCR analysis to interrogate the differences
and similarities between leukemic and normal hemato-
poiesis. We generated the MLL-AF9 mouse leukemia
model using the previously described protocol [8]. We
then stained MLL-AF9 primary leukemia bone marrow
with antibodies against Flt3, lineage markers (Lin), Sca1,
Kit, CD24, CD34, and CD16/CD32, and analyzed the
samples by FACS (Figure 1A). These recipient bone mar-
row cells contain both non-leukemic and leukemic cells.
Leukemic cell populations can be distinguished by their
green fluorescent protein (GFP) expression, which origi-
nates from the MLL-AF9 construct.
Traditional serial two-dimensional gating analysis of

the FACS data may introduce bias in defining populations.
It is desirable to analyze multiple channels together, inte-
grating information from all seven markers. However, the
high dimensionality of the data provides a challenge for
visualization. The traditional principal component analysis
is ineffective because it relies on a linear assumption,
which is violated in single-cell gene expression data. To
overcome this limitation, we employed a recently devel-
oped nonlinear technique called t-distributed stochastic
neighbor embedding (t-SNE) [38], which projects high-
dimensional data into a low-dimensional space by con-
verting the Euclidean distances between each pair of data
points into heavy-tailed conditional probabilities that rep-
resent similarities. The main advantage of t-SNE is that it
preserves not only the global layout but also the local
structure of the high-dimensional data (see Materials and
methods for more details). Similar ideas have been used
before to visualize mass cytometry data [39].
t-SNE analysis of the FACS data indicates that the

non-leukemic cells are highly heterogeneous (Figure 1B;
Additional file 1). Notably, the leukemic cells display much
stronger heterogeneity compared with non-leukemic cells.
In addition, there is strong overlap between leukemic and
non-leukemic cells, suggesting that there remains a high
degree of similarity between them, possibly due to incom-
plete cell-fate transitions, and that these cells are difficult
to separate based on immunophenotyping alone.
One limitation of the FACS technique is that only a

small number of markers can be simultaneously profiled
due to spectral overlapping. In previous work, we devel-
oped and optimized a microfluidic-based multiplexing
qPCR strategy to accurately profile the gene expression
levels in more than 1,000 normal hematopoietic cells ex-
tracted from wild-type mouse bone marrow [20]. Here,
we applied a similar strategy to systematically investigate
the transcriptomic diversity within leukemic cells. In
order to explore potential molecular mechanisms under-
lying lineage specification, we assayed the expression
levels of 175 carefully selected genes, including lineage-
specific transcription factors, epigenetic modifiers, and
cell-cycle regulators, in 71 individual leukemic cells
(Additional file 2). In order to include cells from differ-
ent leukemic cell lineages and to enrich progenitor leu-
kemic cell populations, we used FACS to select four
groups of leukemic cells, corresponding to Kit+CD24-
(24), Kit+CD24+ (23), Kit-CD24- (12), and Kit-CD24+
(12), where the number of cells in each group is given in
parentheses. For comparison, we used the expression
levels of the same set of genes in 190 normal cells in
wild-type mice as control [20].
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Figure 1 t-Distributed stochastic neighbor embedding (t-SNE) analysis of FACS and qPCR single-cell gene expression data. (A) FACS
sorting strategy to enrich leukemic and non-leukemic cells. FSC, forward scatter; GFP, green fluorescent protein. (B) t-SNE plot of FACS data for a
random sample of 5,000 leukemic and 5,000 non-leukemic single cells. Shading shows the outline of the whole data. (C) t-SNE plot of the qPCR
single-cell gene expression data. Each marker represents a single cell. Leukemic cells are represented by triangles and normal cells are represented
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As an initial glimpse of the transcriptome landscape,
we applied the t-SNE method to project the qPCR data
onto a two-dimensional plane (Figure 1C). The color-
coding was overlaid on the t-SNE map to help better
visualize different cell types. The positions of the HSCs
and normal progenitor cells are consistent with their
lineage relationships. In particular, HSCs form a clearly
defined cluster, whereas MPPs are positioned between
HSCs and more specialized progenitors. Of note, the
leukemic cells are positioned proximal to GMPs but dis-
tal to HSCs.
Unsupervised hierarchical clustering according to the

single-cell gene expression profile correctly positioned
the normal cells of common lineages next to each other
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Figure 2 Hierarchical clustering of the single-cell gene expression dat
corresponds to a single cell. A representative cell lineage for each cell clust
common myeloid progenitor; GMP, granulocyte/monocyte progenitor; HSC
MPP, multipotent progenitor.
(Figure 2), indicating the high quality of the data. An
interesting exception is that CMPs form two separate
clusters, which are positioned next to GMPs and MEPs,
respectively. Such heterogeneity among CMPs is consist-
ent with our previous study, which further showed
that these two subgroups are primed to different cell lin-
eages [20]. In addition, the leukemic cells form a distinct
cluster next to GMPs. The leukemic cells express a
number of GMP-specific genes, including CD48, CD52,
CD53, Sell, Cebpa, and Dtx4, but not the key HSC-
specific genes such as Gata2, Hlf, and Mpl, suggesting
that leukemic cells resemble a GMP-like cell state but
are highly distinguishable from HSCs. Similar results
were obtained by using a self-organizing map [40] (data
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not shown). This is consistent with a model in which
leukemic cells originated from GMPs [4].

Mapping cellular hierarchy identifies subtypes of
leukemic cells
In order to map the cellular hierarchy in leukemic cells,
we took advantage of a reference map recently identified
in the normal hematopoietic system by using single-cell
analysis [20]. This map was obtained by profiling the
expression levels of commonly used cell surface markers
(280 genes) in more than 1,000 cells followed by
construction of a minimum spanning tree using the
SPADE (spanning-tree progression analysis of density-
normalized events) algorithm [34,41]. Each branch of
the tree represents a group of cells with similar lineage
relationships. In order to map each leukemic cell to the
SPADE tree, we implemented a strategy using informa-
tion only from the set of 33 genes (Additional file 3)
profiled in both datasets. To test whether these 33 com-
mon genes were sufficient for reproducing the cellular
hierarchy, we first applied this strategy to re-analyze the
original dataset in [20]. We calculated the mean expres-
sion profile of these 33 genes for each node in the
SPADE tree, and its Euclidian distance to each cell in
the dataset. Then a cell was mapped to the node corre-
sponding to the smallest distance. While the SPADE tree
was originally constructed by using information from all
280 genes, we found that our mapping strategy preserves
the essential lineage relationships. In total, 90% of the
cells were projected to the proximity (≤2 steps) of their
original position in the SPADE tree, and 63% of the cells
were mapped exactly to the same node (Figure S2A in
Additional file 4). For comparison, we randomly selected
100 gene lists, each containing 33 genes, and examined
how well the lineage relationships are preserved. We
found that, on average, 84% of the cells were mapped to
the proximity (≤2 steps) of their original position in the
SPADE tree (Figure S2B in Additional file 4), suggesting
that the mapping accuracy can be largely preserved by
the use of a relatively small number of genes.
We next applied this strategy to map our leukemic

and control cells to the SPADE-derived cellular hier-
archy (Figure 3A). Again, most normal cells are mapped
to the expected branches, whereas the cells that are
mapped to a different location might result from im-
perfect clustering. Notably, the leukemic cells are further
divided into two subgroups, each projected onto a se-
parate branch of the SPADE tree. The first group (which
we call Leukemia 1, containing 29 cells) is mapped to a
branch corresponding to GMPs, whereas the second
group (which we call Leukemia 2, containing 42 cells) is
mapped to the branch corresponding to dendritic cells/
macrophages. In addition to the 33 common genes, using
the expression profile of about 140 additional genes in our
dataset (Additional file 2) provides an opportunity to un-
cover important differences between the leukemic cells
and their closest normal lineages. We used the Wilcoxon-
Mann-Whitney rank sum test [42], a robust and non-
parametric method, to compare the gene expression levels
between Leukemia 1 cells and GMPs. We used a stringent
criterion (adjusted P-value <1E-5 and absolute log fold
change ≥2) for differential gene expression in order to en-
hance specificity. We note that while we may miss certain
genes that are differentially expressed between the two
populations, the advantage of choosing a stringent cutoff
is that we can then focus on the genes that truly differ be-
tween the two cell types. Using this cutoff, we identified
four differentially expressed genes, namely Meis1, Cdkn2c,
Pecam1, and Aebp2 (Additional file 5, which also includes
adjusted P-values for the rest of the genes). The most dif-
ferentially expressed gene is Meis1 (log fold change =
7.77), consistent with the previous finding that Meis1 is an
essential and rate-limiting regulator of MLL-induced LSC
potential [43]. The fact that Meis1 is highly expressed in
Leukemia 1 suggests that this subgroup of cells may be
highly aggressive. Interestingly, Cdkn2c, a negative regula-
tor of cell cycle, is also over-expressed in Leukemia 1 cells.
We next compared the transcriptional profiles bet-

ween the two subgroups of leukemic cells and identified
14 differentially expressed genes (adjusted P-value <1E-5
and absolute log fold change ≥2), all of which are up-
regulated in Leukemia 1 (Additional file 5). The mean
expression levels for four such genes are overlaid on the
SPADE tree in Figure 3B. Among the differentially ex-
pressed genes, Kit is a well-characterized marker, which
is frequently mutated in AML. Etv6 and Runx1 are known
leukemic regulators [44-46], and Suz12 and Ezh2 are core
members of the Polycomb repressive complex 2 (PRC2),
whose activities have been shown to be essential for MLL-
AF9 driven leukemia [8]. In particular, Ezh2 inhibition was
recently found as a therapeutic strategy for Ezh2-mutant
cancers [47,48]. Furthermore, Brd3 is a member of the
bromodomain-containing protein family associated with
wide-range activation of super-enhancers in cancer [49].
We then aimed to test whether these subtypes of leu-

kemic cells have different functions. However, one chal-
lenge was that only a few of the differentially expressed
genes were surface markers, making it difficult to purify
each population a priori. Nonetheless, we recognized that
Kit was the most differentially expressed gene between the
two cell types (adjusted P-value = 7.91E-11; Additional
file 5), and that 83% of the leukemic cells with Kit+CD24-
immunophenotype were mapped to Leukemia 1 as op-
posed to Leukemia 2 cells. Therefore, we FACS sorted
subpopulations in the primary leukemia using Kit and
CD24 markers as a proxy to the two leukemic cell sub-
types, with the caveat that these two markers are insuf-
ficient to completely distinguish the two subtypes. We
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Figure 3 Mapping cellular hierarchy using SPADE analysis. (A) The cellular hierarchy in the normal hematopoietic system is represented by
the SPADE tree (adapted from [20]), on which the leukemic and normal cells are mapped as described in the main text. Open circles denote
clusters to which no cells were mapped. The size of each non-empty node is scaled according to the associated number of cells. The branches
corresponding to HSC, GMP, and dendritic cell (DC)/macrophage lineages according to [20] are labeled. (B) The mean expression levels for four
select genes are overlaid on the SPADE tree.
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performed in vitro colony-forming assays to test prolif-
eration rate and differentiation capability of these sorted
cells. Our results indicate that differential expression of
these markers correlates with different clonal activity
(Figure 4). In particular, we observed that CD24- leukemic
cells grew much faster and generated both adhesive sphere-
type colonies and non-adhesive spread-type colonies. On
the other hand, CD24+ leukemic cells generated signifi-
cantly fewer colonies (predominantly adhesive sphere-type
colonies). This is consistent with previous in vivo trans-
plantation experiments, suggesting that CD24- leukemic
granulocyte-monocyte progenitors (LGMPs) are more po-
tent for inducing leukemia than CD24+ LGMPs [20]. Fur-
thermore, Kit+ leukemic cells generated a greater number
of sphere-type colonies than the Kit- leukemic cells. We
note that in Leukemia 1 cells, 72% of the population have
a CD24- immunophenotype and 97% of the population
have a Kit+ immunophenotype. Therefore, our experi-
mental data provide further evidence that Leukemia 1
cells are more proliferative than Leukemia 2 cells.

The leukemic cell subtypes are characterized by distinct
co-expression networks
Genes do not function independently but rather interact
in concert through a complex regulatory network. In
order to systematically identify gene modules with coor-
dinated activities in leukemic cells at the single-cell
resolution, we employed weighted gene co-expression
network analysis (WGCNA) [50,51]. By analyzing one sub-
set of cells at a time, we constructed four co-expression



A

C D E

B

Figure 4 Experimental validation of the functional difference between the two leukemic cell subtypes. (A) Snapshot of a colony-forming
assay of CD24- leukemic cells on day 7. (B) Snapshot of a colony-forming assay of CD24+ leukemic cells on day 7. (C) Number of spread-type
colonies of different leukemic cell subpopulations. (D) Number of sphere-type colonies of different leukemic cell subpopulations. (E) Total number
of cells after one-week culture in methylcellulose supplemented with IL3, IL6, IL7 and stem cell factor. The error bars represent standard deviation.
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networks, corresponding to GMPs, all leukemic cells,
Leukemia 1 cells, and Leukemia 2 cells (Figure 5). Both all-
leukemia and Leukemia 1 networks are further divided into
multiple modules containing highly correlated (or anti-
correlated) genes, whereas the GMP and Leukemia 2 net-
works each contains a single module. The list of genes in
each module is given in Additional file 6.
Consistent with our t-SNE and hierarchical clustering

analyses, the GMP and all-leukemia networks share sig-
nificant similarity. Of the 64 genes in the GMP module,
56 (88%) are contained in Module 1 of the all-leukemia
network (Additional file 7). Surprisingly, three of the dif-
ferentially expressed genes (Meis1, Cdkn2c, and Aebp2)
are contained in this common module, suggesting that
cell-fate differences largely reflect different states of a
common regulatory circuitry. To see that this is not a
contradiction, we note that differential expression and
differential co-expression are two distinct modes of chan-
ges. Differential expression reflects the change of activity
of a gene in isolation whereas differential co-expression
reflects the change of correlation between a pair of genes.
As a simple example, if the expression level of transcrip-
tion factor A is higher in condition 1 compared with con-
dition 2, and that gene B is a direct target of A whose
expression level is positively correlated with A, then both
A and B are differentially expressed between the two con-
ditions, but they are not differentially co-expressed, since
their relationship remains the same. Generally speaking, if
a set of genes is co-regulated, then differential expression
may occur without change of co-expression.
We also found important differences between the GMP

and all-leukemia networks. Among the 39 genes that are
uniquely contained in Module 1 of the all-leukemia net-
work (Additional files 6 and 7) are a number of well-
characterized oncogenes, such as Ar, Bmi1, ETS1, Kit,
Lin28a, as well as tumor repressor genes, such as Rb1.
The all-leukemia network also contains an additional
module, Module 2, which is likely to be regulated inde-
pendently of Module 1. Module 2 has little overlap (2/35)
with the GMP network (Additional file 7). Out of 35 genes
in Module 2, 14 (Additional files 6 and 7) are associated
with regulation (either positively or negatively) of cell pro-
liferation, including Bcl11b, Flt3, Gata3, Cdkn1a, Cdkn2a,
Tek, Esr1, Pbx1, Cdkn2b, APC, Tcf7, Tgfb2, Tgfb3, and
Mycn. Among these genes, Pbx1 is especially important
because it has been shown to be a critical gene required in
leukemia initiation [52,53].
We next compared the Leukemia 1 and Leukemia 2

networks to identify subtype-dependent differences. These
two networks have strikingly different modular structures.



Figure 5 Network modules identified by weighted gene co-expression network analysis. Co-expression networks for: (A) all leukemic cells;
(B) GMPs; (C) Leukemia 1 cells; and (D) Leukemia 2 cells. Each row and column corresponds to a gene. The modules are indicated by the color
bars next to the heat map. Light color in the heat map indicates low topological overlap and progressively darker red represents higher
topological overlap.
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The Leukemia 1 network contains three modules, al-
though Module 3 is rather small and less organized;
whereas the Leukemia 2 network contains only a single
module. Of the 52 genes in the Leukemia 2 network, 31
(60%) are common with Module 1 of the Leukemia 1 net-
work (Additional file 7). This common set contains 5 of
the 14 genes that are differentially expressed between
these two subtypes, further suggesting that differential
gene activities are coordinately regulated through a com-
mon circuitry. This conclusion does not depend on the
exact P-value cutoff for differential expression, as we ar-
rive at similar results by choosing the top 30 or 50 differ-
entially expressed genes between the two leukemic cell
subtypes (that is, a 2.1- or 3.6-fold increase in the number
of differential genes, respectively). In these cases, we found
a 2.4- or 3.6-fold increase in the number of differentially
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expressed genes that belong to the common module of
the two subtypes. This approximately linear relationship
suggests that our conclusion is unaffected by the number
of genes in question. We note that only 5 of 40 genes in
Module 2 of the Leukemia 1 network are shared in the
Leukemia 2 network (Additional file 7). Comparison
with the all-leukemia network suggests that Module 2
of the all-leukemia network is retained in Module 2 of the
Leukemia 1 network, sharing 33 genes, but lost in the
Leukemia 2 network (Additional file 7). Similar results
were obtained by using an alternative approach called
DiffCoEx [54], which systematically identifies differentially
co-expressed modules between two conditions by group-
ing genes according to their shared, but subtle, differential
correlation patterns (see Additional files 8, 9, and 10 for
details). Taken together, these analyses suggest that there
are significant network differences between the leukemic
cell subtypes.

Discussion
Cancers are associated with distinct heterogeneity. Mo-
lecular characterization and functional analysis of such
heterogeneity are critical for understanding their origin
and progression and treatment outcomes, which may
then serve as an important guide for developing new
therapeutic strategies. Here, we applied single-cell gene
expression analysis to systematically characterize the cel-
lular heterogeneity in AML using an MLL-AF9 driven
mouse model. Our analysis identified significant vari-
ation of gene expression profiles within the leukemic
cells, which can be explained in part by the differences
in their corresponding gene networks.
The t-SNE analysis and unsupervised hierarchical clus-

tering suggest that the transcriptomic state of leukemic
cells is close to GMPs and far away from HSCs, support-
ing a model in which LSCs are not directly linked with
HSCs [4]. We further investigated the cellular hierarchy
by using a previously generated lineage tree of the nor-
mal hematopoietic system as a guide [20]. We found
that the mapping accuracy was quite high even with a
relatively small number of markers (33 genes common
between the genes in Additional file 2 and the dataset
used in [20]), suggesting significant redundancy among
the cell surface markers. The robustness of this strategy
suggests that it may have potential applications in map-
ping cellular hierarchy of other single-cell data in the
hematopoietic system. Using this mapping strategy, we
found two subtypes of leukemic cells with one (Leukemia
1) resembling GMPs and the other (Leukemia 2) resem-
bling macrophage and dendritic cells. However, differen-
ces still exist between Leukemia 1 cells and normal GMPs.
Importantly, Meis1, a rate-limiting factor for the de-
velopment of AF9-MLL induced AML [43], is highly
expressed only in the leukemic cells. We also found
important differences between the two subtypes of leu-
kemic cells, with Leukemia 1 cells overexpressing a num-
ber of important leukemia regulators, including Etv6 and
Runx1, providing support that these cells are more im-
portant for tumor initiation. Notably, Leukemia 1 cells
also over-express a number of chromatin regulators, in-
cluding Brd3 and Polycomb complex members Ezh2 and
Suz12, all of which have been linked with leukemia and
other cancers [8,47,48]. By using in vitro colony-forming
assays we found that the Leukemia 1 population, which is
enriched with a Kit+CD24- immunophenotype, has a
higher proliferation rate and differentiation capability than
the Leukemia 2 population. However, we note that Kit
and CD24 markers alone are insufficient to completely
distinguish the two leukemic cell subtypes.
Network modeling is increasingly recognized as a

powerful tool for understanding complex biological sys-
tems, including the hematopoietic system [55,56]. Efforts
are underway to apply network-modeling approaches for
the computational elucidation and analysis of single-
cell data [20,25,30]. Here, we employed a co-expression
network-based method (WGCNA, [50,51]) to analyze
single-cell gene expression data, using the identified
cellular hierarchy as a guide. Our analysis identified a
core module that is common between GMPs and leuke-
mia networks, and suggested that much of the gene ex-
pression level changes between these two cell types can be
viewed as a switch of allowable states within a common
network module. On the other hand, we also identified
significant differences between the networks. For example,
Pbx1, which cooperates with Meis1 in leukemogenesis
[53], is regulated by a separate module. As such, our ana-
lysis demonstrates that network modeling provides mech-
anistic insights into organizing principles of leukemia.
LSCs are associated with poor prognosis and treatment

failure. However, the exact molecular signature of LSCs
remains incompletely characterized. While it has been im-
plicated that LSCs have a GMP-like immunophenotype,
the fact that there is significant variability of outcome in
LGMP-transfected mouse [20] indicates that there exists
significant heterogeneity among LGMPs. Such heterogen-
eity was clearly recapitulated in our single-cell analysis.
Our results suggest that only one subgroup of leukemic
cells (Leukemia 1) is likely to be more aggressive, as vali-
dated by our functional experiments. Interestingly, our
analysis shows that the gene expression profile of leu-
kemic cells is, in general, different from HSCs, supporting
the idea that the 'stemness' of LSCs is distinct from that of
normal stem cells [4].
One limitation of the qPCR assay is that it is only real-

istic to profile a small fraction of the transcriptome. As
single-cell RNA-seq technology being rapidly developed,
soon it will be feasible to conduct whole transcriptome
analysis in leukemic cells in a similar manner. Such
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analysis will be useful not only to refine the molecular
signature of LSCs but also to identify critical pathways
for leukemogenesis. Another important area of future re-
search is to link the association between transcriptomic
changes and genetic/epigenetic alterations. Such analysis
will provide important mechanistic insights that cannot
be obtained by gene expression analysis alone.

Conclusions
Taken together, our results demonstrate that combining
single-cell gene expression profiling technology and com-
putational analyses provides novel insights into hetero-
geneity and cellular hierarchy in cancer. The refined
characterization of the gene signature of LSCs may fa-
cilitate the development of therapeutic strategies that
may overcome drug resistance, thereby improving treat-
ment outcomes.

Materials and methods
Ethics statement
All animals were housed in ARCH, the animal facility of
Boston Children’s Hospital, under proposals approved by
the Animal Care Committee of the hospital.

Generation of MLL-AF9 leukemic cells
Primary leukemia was generated as described before [8].
In brief, ecotropic retroviral vectors were generated by
cotransfection of 293 T cells with packaging constructs.
Lin-Sca1+Kit+(LSK) cells from mouse bone marrow
were transduced with MLL-AF9-GFP and maintained
in methylcellulose (Stem Cell Technologies, Vancouver,
British Columbia, Canada) with supplemental cytokines
for three days. Colonies were transplanted into suble-
thally irradiated (600 rad) C57BL6 recipients at 5 × 105

cells per mouse. Leukemic cells were collected from bone
marrow of multiple sick recipients after four weeks and
then pooled for analysis.

FACS sorting and single-cell collection
Bone marrow cells were isolated by crushing iliac crest
bones, femurae and tibiae in phosphate-buffered saline
containing 5% fetal calf serum and 2 mM EDTA. After
red blood cell lysis, the remaining cells were stained with
monoclonal antibodies, analyzed and sorted on the BD
FACSAria II (BD Bioscience, San Jose, CA, USA). Indi-
vidual cells were sorted directly into 96-well PCR plates
loaded with PCR buffer under single-cell mode. All data
were analyzed with FlowJo (Tree Star, Ashland, OR, USA).

One tube single-cell sequence specific pre-amplification
Individual primer sets were pooled to a final concentra-
tion of 0.1 μM for each primer. Individual cells were
sorted directly into 96-well PCR plates loaded with 5 μl
RT-PCR master mix (2.5 μl CellsDirect reaction mix
(Invitrogen, Carlsbad, CA, USA), 0.5 μl primer pool,
0.1 μl RT/Taq enzyme (Invitrogen), 1.9 μl nuclease-free
water) in each well. Sorted plates were immediately frozen
on dry ice. After brief centrifugation at 4°C, the plates
were immediately placed on the PCR machine. Cell lyses
and sequence-specific reverse transcription were per-
formed at 50°C for 60 minutes. Then reverse transcriptase
inactivation and Taq polymerase activation were achieved
by heating to 95°C for 3 minutes. Subsequently, in the
same tube, cDNA went through 20 cycles of sequence-
specific amplification by denaturing at 95°C for 15 s, an-
nealing and elongation at 60°C for 15 minutes.

High-throughput microfluidic real-time PCR
Pre-amplified products were diluted five-fold prior to
analysis. Amplified single-cell samples were analyzed
with Universal PCR Master Mix (Applied Biosystems,
Foster City, CA, USA), EvaGreen Binding Dye (Biotium,
Hayward, CA, USA) and individual qPCR primers using
96.96 Dynamic Arrays on a BioMark System (Fluidigm,
South San Francisco, CA, USA). Three dynamic arrays
loaded with different primer sets were used for each
sample plate. Ct (threshold cycle) values were calculated
using the BioMark Real-Time PCR Analysis software
(Fluidigm).

In vitro colony forming assay
We plated 5,000 cells from each population in 1.5 ml of
Methocult M3234 (Stem Cell Technologies) supplemen-
ted with IL3 (10 ng/ml), IL6 (5 ng/ml), IL7 (10 ng/ml)
and stem cell factor (20 ng/ml). Methylcellulose cultures
were incubated at 37°C in a humidified atmosphere with
5% CO2 in air. Colonies were scored on day 7.

Computational analyses
Gene expression levels were estimated by subtracting
the Ct values from the background level of 28, which ap-
proximates log2 gene expression levels. Ct values higher
than 28 were first transformed to 28 and are represented
by zero (no expression) in the data.
Unsupervised hierarchical clustering was achieved using

an average linkage method and a correlation-based dis-
tance (Pearson correlation) in MATLAB. The t-SNE ana-
lysis [38] was performed using the MATLAB toolbox for
dimensionality reduction [57]. This method is a variation
of the stochastic neighbor embedding (SNE) method [58],
which minimizes a cost function based on conditional
probabilities to describe the similarities between data
points in the high-dimensional space. That is, the simi-
larity of data point yj to yi is estimated by the condi-
tional probability that yi would pick yj as its neighbor, if
neighbors were selected in proportion to their proba-
bility density under a Gaussian distribution centered at
yi. t-SNE improves upon SNE by using a symmetrized
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version of the SNE cost function and a Student's
t-distribution rather than a Gaussian to compute the simi-
larity between two points, thereby making the optimiza-
tion problem easier to solve. It also reduces the tendency
to crowd points together in the center of the map and
thus produces better visualizations [38]. For the FACS
dataset, since it was computationally intractable to map all
the data into a two-dimensional space (Figure 1B), we ran-
domly sampled 5,000 non-leukemic and 5,000 leukemic
cells.
SPADE analysis [41] for mapping cellular hierarchy

was done in MATLAB and R. We used the 56 cell clus-
ters that were identified by SPADE analysis of more than
1,000 cells in [20]. Each normal or leukemic cell in our
dataset was then assigned to the cluster whose mean
was closest to that cell based on the Euclidean distance.
A two-sided Wilcoxon-Mann-Whitney rank sum

test, implemented in the coin package [59] in R, was
employed to identify differentially expressed genes. P-
values were adjusted using the Benjamini and Hoch-
berg method [60] in R. The fold change of each gene
in two cell populations was calculated as the differ-
ence of medians of the log2 expression levels for the
two groups.
Weighted gene co-expression network analysis was

done using the WGCNA package [50] in R. Anti-log2
transformation was applied to convert log2 expression
levels to a normal scale. To construct unsigned weighted
networks, WGCNA makes use of a power adjacency func-
tion aij = |cor(xi,xj)|

β to define the connection strength be-
tween any pairs of genes xi and xj and implements a soft
power threshold (β) approach that aims at approximating
a scale-free topology (that is, the frequency distribution,
p(k), of the network connectivity, k, follows a power law)
to the network [50,51]. For each network, we chose β in
such a way that the model fitting index R2, defined as
the square of the correlation between log10 (p(k)) and
log10 (k), is greater than 0.85. More specifically, β = 6, 4, 5,
and 4 for the GMP, all-leukemia, Leukemia 1 and Leu-
kemia 2 networks, respectively. The module detection was
achieved by using average linkage hierarchical clustering,
which uses a dissimilarity measure based on the topo-
logical overlap matrix (TOM) [50,51], and a dynamic tree-
cut algorithm. Topological overlap considers each pair of
genes in relation to all other genes in the network and, as
such, genes that are connected to roughly the same group
of genes in the network have a high topological overlap.
The modules were then visualized using a TOM plot
[50,51], which is a color-coded depiction of the values of
the TOM-based dissimilarity matrix. We note that all the
genes were considered in constructing each of the co-
expression networks in our model, but only those genes
that were assigned to a co-expressed module were shown
in the final networks.
Additional files

Additional file 1: Figure S1. Distributions of different markers in the
two subgroups of non-leukemic cells using FACS data. The red (blue)
boxplots correspond to the non-leukemic cell subgroup given on the
right (left) in Figure 1B.

Additional file 2: Table S1. Single-cell gene expression data in
leukemic cells. All gene expression data are represented as log2
expression level above the system background (Ct = 28), which is
approximately equal to 28 minus raw Ct (from each qPCR reaction). Ct
values higher than 28 were transformed to 28, and are represented by
zero (no expression) in the data. Each column corresponds to a specific
gene and each row corresponds to a single leukemic cell.

Additional file 3: Table S2. List of the 33 genes used for SPADE
analysis.

Additional file 4: Figure S2. Prediction accuracy of the SPADE tree
mapping strategy. (A) Using the 33 common genes discussed in the
main text. (B) Using the average of 100 randomly selected sets of 33
genes from the data. The error bars represent standard deviation. In both
graphs, the y-axis represents the fraction of cells that is mapped to a
cluster within a certain distance to the original cluster.

Additional file 5: Table S3. List of the identified differentially expressed
genes. List of all the genes along with their adjusted P-values and log
fold changes are given as well.

Additional file 6: Table S4. List of genes in each network module
represented in Figure 5.

Additional file 7: Figure S3. Venn diagrams showing the overlap
between the network modules given in Figure 5.

Additional file 8: Text S1. Details of the differential co-expression
module analysis between Leukemia 1 and Leukemia 2 using DiffCoEx.

Additional file 9: Figure S4. Comparative correlation heat map
showing differentially co-expressed modules between Leukemia 1 and
Leukemia 2. The upper/lower diagonal of the matrix shows correlations
between pairs of genes in Leukemia 1/Leukemia 2 populations. Each row
and column corresponds to a gene. The modules are indicated by color
bars next to the heat map.

Additional file 10: Table S5. List of genes in the differentially
co-expressed modules represented in Additional file 9.
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