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Abstract

Background: The understanding of RNA structure is a key feature toward the comprehension of RNA functions and
mechanisms of action. In particular, non-coding RNAs are thought to exert their functions by specific secondary
structures, but an efficient annotation on a large scale of these structures is still missing.

Results: By using a novel high-throughput method, named chemical inference of RNA structures, CIRS-seq, that
uses dimethyl sulfate, and N-cyclohexyl- N'-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate to modify
RNA residues in single-stranded conformation within native deproteinized RNA secondary structures, we investigate
the structural features of mouse embryonic stem cell transcripts. Our analysis reveals an unexpected higher structuring
of the 5" and 3" untranslated regions compared to the coding regions, a reduced structuring at the Kozak sequence
and stop codon, and a three-nucleotide periodicity across the coding region of messenger RNAs. We also observe

that ncRNAs exhibit a higher degree of structuring with respect to protein coding transcripts. Moreover, we find that the
Lin28a binding protein binds selectively to RNA motifs with a strong preference toward a single stranded conformation.

Conclusions: This work defines for the first time the complete RNA structurome of mouse embryonic stem cells,
revealing an extremely distinct RNA structural landscape. These results demonstrate that CIRS-seq constitutes an
important tool for the identification of native deproteinized RNA structures.

Background

The development of high-throughput methods for the
analysis of the epigenome and transcriptome have led to
the discovery of thousands of previously unannotated
transcripts [1,2], many of which lack the ability to en-
code proteins [3-6], as further proven by genome-wide
ribosome profiling approaches [7]. While mechanisms of
action have been elucidated for a small fraction of these
non-coding RNAs (ncRNAs), for most the ways by which
they contribute to gene regulation still remain unclear.
One of the most intriguing modes of action proposed for
long ncRNAs (IncRNAs) is their potential to act as modu-
lar scaffolds for the assembly of large multi-protein com-
plexes [4,8], although the mechanistic aspects of these
interactions are largely unknown. As learned from small
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nuclear ribonucleic particle (snRNP) complexes [9,10],
most ncRNAs are thought to exert their functions by
folding into locally stable secondary structures that may
provide anchoring sites for interacting proteins. For ex-
ample, it has been shown in Drosophila melanogaster that
both MLE and MSL2 proteins of the MSL complex act by
binding to conserved structural domains of the roX1/2
ncRNAs, which then mediate targeting to the X chromo-
some to regulate dosage compensation in fruitfly [11,12].
Furthermore, in differentiating mouse embryonic stem
cells (ESCs), MLL1 protein has been shown to be re-
quired for the transcriptional activation of Hoxa6/7 genes,
and its recruitment to chromatin is mediated by inter-
action with a stem-loop structure located in the 3" region
of the Mistral IncRNA [13].

The growing number of annotated transcripts has out-
paced the efficient analysis of their structure; at present,
structural information exists for only a very tiny minority of
annotated RNAs. To address this need, over the past few
years various enzymatic- and chemical-based approaches
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have been proposed for the discovery of secondary struc-
tures for thousands of RNAs at a time [14-18]; however, all
these methods are based on the assumption that in vitro
folding may be representative of native RNA structures
in vivo. While for certain small RNAs the in vitro folding
landscape recapitulates well the in vivo one [19-21], long
RNAs often exhibit rugged folding landscapes that lead
in vitro to the prevalence of kinetically trapped intermedi-
ates and misfolded structures [22-24]. For example, in vitro
folding of the RNAse P ribozyme is a slow process that
takes several minutes and requires escape from a kinetic
trap [23,25]. Comparative analysis of in vivo and in vitro
probing data on human telomerase RNA revealed that
while the 3’-terminal small nucleolar RNA (snoRNA)-like
domain folds into comparable structures in the two
conditions, the 5" template domain exhibits very dif-
ferent foldings [26].

Two main scenarios can explain the differences ob-
served in RNA folding in vitro and in vivo. The first is
based on the assumption that, in the cell, most nas-
cent transcripts are likely to fold during transcription
[20,27,28]. In this perspective, the elongation rate of
RNA polymerase, as well as the directionality of tran-
scription, may influence the order and the speed of
the folding events, thus preventing the formation of
non-native, kinetically trapped intermediates [29]. The
second, which does not exclude the first, is that many spe-
cific as well as non-specific RNA binding proteins (RBPs)
may act as RNA chaperones, thus directing and stabilizing
RNA folding [30-33]. To overcome the issues introduced
by the study of RNA folding in vitro, two recent reports
analyzed the structures of Saccharomyces cerevisiae and
Arabidopsis thaliana RNAs by treating the cells with di-
methyl sulfate (DMS) [34,35].

We present here a new method, named chemical in-
ference of RNA structures followed by massive parallel
sequencing (CIRS-seq), that allows genome-wide in-
vestigation of native deproteinized RNA secondary
structures by exploiting the capacity of DMS and N-
cyclohexyl-N'-(2-morpholinoethyl)carbodiimide metho-p-
toluenesulfonate (CMCT) to specifically react with RNA
unpaired bases. Our approach, applied to mouse ESCs,
allowed us to obtain single-base resolution structural in-
formation for thousands of transcripts in their native
deproteinized conformation, revealing the structural com-
plexity of the mammalian transcriptome.

Results

CIRS-seq enables accurate transcriptome-wide inference
of single-stranded RNA residues

The CIRS-seq method (Figure 1) is based on the use of
DMS, which mainly methylates N1 of adenosine and N3
of cytosine [36,37], and CMCT, which primarily forms ad-
ducts with N1 and N3 of pseudouridine, N3 of uridine,
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and, to a lesser extent, N1 of guanosine and inosine [38-40]
but only when these residues are in single-stranded con-
formation. Treatment of RNA with the two reagents
enables the detection of unpaired nucleotide positions due
to the modification-induced reverse transcription (RT) stop
one nucleotide downstream of the modified residue. To
carry out CIRS-seq, we first optimized treatments to
achieve similar degrees of modification with the two re-
agents at different concentrations, as measured by reduc-
tion of the full-length reverse transcription product for a
test RNA following reaction with either DMS or CMCT
(Figure S1 in Additional file 1).

To perform transcriptome-wide probing of RNAs in
their native deproteinized conformation, we lysed mouse
ESCs in an isotonic buffer, and treated the lysate with
Proteinase K to unmask regions of RNAs bound by pro-
teins, without affecting the RNA structure (supplemen-
tary Materials and methods in Additional file 1). ESC
lysates were then treated with DMS or CMCT, and total
RNA was extracted following reaction quenching. Ex-
tracted RNA was subjected to random-primed RT. A
non-treated control was also produced to determine nat-
urally occurring RT stops. The generated cDNAs were
adapter ligated and subjected to high-throughput se-
quencing using the Illumina platform, resulting in about
90 x 10° deep-sequencing reads for each treatment,
across two biological replicates.

Since proper analysis of RNA folding requires correct
annotation of transcript sequences, reads were mapped
to a recently published variant of the mm9 assembly that
integrates single-nucleotide variants from the E14 ESC
line [41], and we obtained a similar distribution of read
mappings across all samples (Figure S2A in Additional
file 1). Estimation of transcript abundances using CIRS-
seq data correlated well across treatments, and with ca-
nonical RNA-seq data (R >0.9, Spearman correlation;
Figure S2B in Additional file 1), showing that the CIRS-
seq method enables unbiased probing of RNAs. At the
current coverage, we obtained structural information
for approximately 30,000 transcripts, belonging to ap-
proximately 13,000 genes (Figure 2a; Figure S2C in
Additional file 1).

As a quantitative measure of the probability of observ-
ing a RT stop specifically induced by our treatment, we
calculated raw reactivity scores as the base 2 logarithm
ratio of the normalized read counts for the DMS/CMCT
treatment at a given position of a transcript, and the
normalized read counts at the same position in the non-
treated control. The final normalization (Supplementary
methods in Additional file 1) yielded reactivity values
ranging from O to 1, and positions with reactivities >0
and <0.3, 0.3 to 0.7, or >0.7 were designated as weakly,
moderately, or highly reactive, respectively [42]. Correl-
ation analysis of reactivity values across the top 75th
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Winsorising) to obtain the normalized reactivity.

Figure 1 Overview of the CIRS-seq method. Cells are harvested and lysed in isotonic buffer, then treated with Proteinase K to unmask
protein-bound regions of RNAs. The whole cell population of RNAs in their native deproteinized conformation is probed with either DMS
or CMCT to modify unpaired bases. A non-treated control is also produced to allow further mapping of natural RT stops. After modification,
the RNAs from the three populations are reverse transcribed, and cDNA is adapter ligated for high-throughput sequencing. Mapping reads
to the transcriptome provide information regarding how many RT stops occurred at each position of the analyzed transcripts. The non-treated
(NT) signal at each position is then subtracted from the DMS and CMCT signals to obtain the raw reactivity profile at base resolution. After
scaling each data point above the 90th percentile to the 90th percentile, reactivity at each position is divided by the 90th percentile (90%

percentile of covered transcripts revealed the high repro-
ducibility of CIRS-seq (R = 0.90, Pearson correlation;
Figure 2b); therefore, we combined the two replicates for
further analysis.

Collectively, we obtained structural data for 1,190,948
and 1,080,859 nucleotides in the DMS (weak, 13.6%;
moderate, 49.9%; high, 36.5%) and CMCT (weak, 16.6%;
moderate, 54.7%; high, 28.7%) treatments, respectively
(Figure S2D in Additional file 1). To validate CIRS-seq,
we overlaid reactivity data on the well characterized
structures of tRNAs [43,44] (Figure 2c; Figure S3A,B
in Additional file 1), and observed that all the highly
reactive residues were almost completely confined to
the tRNAs' D and anticodon arm loops, suggesting a
high overall accuracy for our method.

Despite the respective strong preference of DMS and
CMCT for A/C and G/U residues, we also observed
non-canonical reactivities in both treatments. Our data
are in agreement with previous reports showing DMS
reactivity with G/U residues [36,45-47] and CMCT re-
activity with cytosines [48-50]. We observed a significant
increase in the accuracy of the de novo prediction of
structures when considering also these non-canonical
reactivities as both the canonical and non-canonical re-
activities lay within single-stranded regions (Figure S3C
in Additional file 1). Moreover, overlaying reactivity data
on the known structures of U5 and Ul small nuclear
RNAs (snRNAs) and U3 snoRNA (Figure 2d; Figure
S4A,B in Additional file 1) showed that the Proteinase K
treatment enabled high-resolution determination of sec-
ondary structures at the level of protein-masked regions
of RNAs without losing the proper folding. In fact, in-
ternal loop IL2/IL2" of U5, box B/C of U3 and loop II of
U1 are bound in vivo by, respectively, a 116 kDa protein
(Snull4p yeast homolog) [51], a 15.5 K protein [52,53],
and the UIA protein [10]; these regions showed very
high reactivity to DMS/CMCT treatments and were al-
most completely resolved by CIRS-seq. Overall, for the
set of analyzed structures (Table 1), 80.6% of the highly
reactive residues were located within single-stranded
regions. Of the 19.4% of the highly reactive residues lo-
cated within regions of the known structures annotated
as double-stranded, 84.2% were positioned at the end of
helices or adjacent to bulges/loops. These regions were

previously shown to be subjected to structural flexibility,
so chemical reagents can easily modify these terminal
residues [34,54]. When accounting for these additional
accessible positions, the overall true positive rate of our
method rose to 96.3%.

Collectively, this analysis proves the high accuracy of
CIRS-seq, and provides a nucleotide-resolution panorama
of the mouse ESC RNA structurome.

CIRS-seq data allow accurate secondary structure
prediction

Next, we verified the ability of CIRS-seq to infer de novo
secondary structures. Constraints derived from chemical
probing data may significantly improve the accuracy of
RNA secondary structure prediction tools [42,56]. We
chose the U2 and low-abundance U12 snRNAs, and the
valine and threonine tRNAs, whose structures were pre-
viously experimentally defined [57,58], or can be easily
derived from phylogenetic analysis. We used the RNAS-
tructure tool [59] to devise secondary structures by im-
posing constraints for unpaired positions. This tool can
accept chemical probing data in the form of SHAPE data
files, allowing more comprehensive modeling of the
structure according to the CIRS-seq-derived data com-
pared with hard constraints-based methods. For both
the unconstrained minimum free energy (MFE) and the
CIRS-seq constrained secondary structures, we calcu-
lated the positive predictive value (PPV) as the fraction
of base-pairs present in the predicted structure that
are also present in the validated structure, and the
sensitivity as the fraction of base-pairs present in the
validated structure that are also in the predicted struc-
ture (Table 2). Notably, CIRS-seq-derived structures
for all the four transcripts analyzed showed higher
similarity to the known structures (Figure 3a,b; Figure
S5A,B in Additional file 1); on average, the CIRS-seq-
guided folding outperformed the MFE unconstrained
predictions in terms of both PPV and sensitivity (PPV
0.53 and sensitivity 0.57 for unconstrained MFE struc-
tures; PPV 0.95 and sensitivity 0.95 for CIRS-seq con-
strained structures). This analysis demonstrates that the
use of CIRS-seq data improves the accuracy of RNA sec-
ondary structure prediction tools, and that low-abundance
transcripts can be successfully probed by CIRS-seq.
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CIRS-seq reveals structural features of mammalian mRNAs
and ncRNAs

Thanks to the high resolution enabled by CIRS-seq,
we then investigated the structural features of mouse
mRNAs, and looked for structural differences across
transcript regions. We selected approximately 9,500
mRNAs, in which the DMS/CMCT treatment induced, on

average, at least one RT stop per nucleotide (Supplementary
methods in Additional file 1).

Meta-analysis of average reactivity across UTRs and
coding regions revealed a strong reduction of reactivity
scores in the 50 nucleotides of the 5" UTR immediately
preceding the Kozak sequence (average 0.165) compared
with the first and last 100 nucleotides of the coding
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Table 1 CIRS-seq efficiency on validated secondary structures
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Including helix termini

Excluding helix termini

ENSEMBL ID Symbol TP (%) FP (%) TP (%) FP (%)
ENSMUST00000082420 mt-Te 87.5 12.5 875 125
ENSMUST00000082389 mt-Ti 75.0 250 100.0 0.0
ENSMUST00000082399 mt-Tn 90.0 100 90.0 100
ENSMUST00000083033 Ul 834 16.6 947 53
ENSMUST00000082496 us 737 263 100.0 0.0
ENSMUST00000082466 u3 750 250 9.9 1.1
Total 80.6 194 96.3 37

Percentages of true positive (TP) and false positive (FP) highly reactive positions for known secondary structures.

region (average 0.208, P-value 3.0e-374, Wilcoxon rank
sum test; Figure 4a,b). Moreover, a significant reduction
of reactivity was also observed in the first 50 nucleotides
of the 3° UTR immediately downstream of the stop
codon (average 0.172, P-value 1.1e-243, Wilcoxon rank
sum test). These results differ from what has been re-
cently observed in A. thaliana, where the coding region
is more structured than the UTRs [34]. We also identi-
fied a significant increase of reactivity score at the level
of the Kozak sequence (average 0.229) with a maximum
of reactivity on the base immediately preceding the
AUG (average 0.345), and on the stop codon beginning
three nucleotides upstream (average 0.226), compared
with the coding region (P-values 4.0e-24 and 6.5e-8, re-
spectively, Wilcoxon rank sum test; Figure 4c), revealing
a markedly reduced probability of base-pairing in these
regions. The reduced base-pairing on the Kozak se-
quence and around the stop codon suggests that a more
accessible context in these regions of protein-coding
transcripts may facilitate both the entry and the detach-
ment of ribosomes.

We next analyzed the first and last 99 nucleotides of
mRNA coding regions to determine if the previously re-
ported periodic signal of three nucleotides [14,34] was
conserved also in mouse. To this end, we observed that
mouse protein-coding transcripts, similar to A. thaliana
and S. cerevisinte mRNAs, exhibit a strong three-
nucleotide periodicity across the coding region that was
not observed within the UTRs (Figure 4d). The second
and third nucleotides of each codon were highly

structured and exhibited lower average reactivities (aver-
age 0.205 and 0.199, respectively), with the third nucleo-
tide being the less reactive (P-value 1.7e-07, Wilcoxon
rank sum test), while the first nucleotide was the less
structured and significantly more reactive to DMS/CMCT
treatment than the second and third (average 0.220, P-
values 2.0e-12 and 8.2e-12, respectively, Wilcoxon rank
sum test). Taken together these results suggest a deep in-
volvement of RNA secondary structures in driving and
regulating translation efficiency.

Analysis of the RNA structure is particularly rele-
vant for ncRNAs as they are thought to exert their
function by interacting with other molecules via their
secondary structure. We then sought to determine
whether an overall structural difference exists between
protein coding RNAs and different classes of ncRNA
transcripts. To avoid biases due to differential cover-
age, only transcript positions with sequencing depth
greater than 50x were considered (Supplementary
methods in Additional file 1). Analysis of normalized
reactivity showed a significantly lower average reactivity
of snoRNAs (average 0.282, P-value 1.1e-87, Wilcoxon
rank sum test), snRNAs (average 0.295, P-value 2.le-
146, Wilcoxon rank sum test), tRNAs (average 0.251,
P-value 2.5e-9, Wilcoxon rank sum test), and long
intergenic non-coding RNA (lincRNAs; average 0.309,
P-value 7.4e-48, Wilcoxon rank sum test) compared
with mRNAs (average 0.366) (Figure 4e). Collectively,
these data reveal a higher structuring of ncRNA tran-
scripts compared with mRNAs.

Table 2 Statistics for CIRS-seq de novo inferred secondary structures

Unconstrained (MFE)

CIRS-seq constrained

ENSEMBL ID Symbol PPV Sensitivity PPV Sensitivity
ENSMUST00000101806 U2 0.68 0.89 1.00 1.00
ENSMUST00000083242 u12 0.80 0.84 1.00 0.95
ENSMUST00000082389 mt-Tv 0.22 0.20 1.00 1.00
ENSMUST00000083422 mt-Tt 041 0.35 0.81 0.85
Average 0.53 0.57 0.95 0.95

Positive predictive value (PPV) and sensitivity measures calculated for both the unconstrained minimum free energy (MFE) and CIRS-seq constrained structures.
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Figure 3 CIRS-seq data allow correct inference of native deproteinized RNA secondary structures. (a) Normalized reactivity profiles for the
U2 snRNA and overlay of reactivity data on the secondary structure inferred from chemical constraints. Bases are color coded according to their
reactivity. The structure of the human ortholog with superimposed SHAPE-reactive positions from [57], and the unconstrained MFE structure are
also shown. (b) Normalized reactivity profiles for the low-abundance U12 snRNA and overlay of reactivity data on the secondary structure inferred
from chemical constraints. Bases are color coded according to their reactivity. The structure of the U12 A. thaliana ortholog with superimposed
DMS/SHAPE-reactive positions from [58], and the unconstrained MFE structure are also shown.

CIRS-seq identifies structural requirements of RNA

binding proteins

RNA-protein interactions are strongly influenced by sec-
ondary structures. Determining the structural require-
ments for RBPs to bind to their cognate targets is
required to understand their roles and mechanisms of
action. To this end, we analyzed from a structural per-
spective the binding sites of the highly conserved RBP
Lin28a. Lin28a is highly expressed in ESCs, and is one of
the factors required for the reprogramming of human fi-
broblasts to induced pluripotent stem cells [60]. To in-
vestigate the structural requirements of Lin28a binding,
we analyzed a previously published CLIP-seq dataset of
Lin28a in ESCs [61]. We identified peaks of Lin28a en-
richment across the mouse transcriptome, and calcu-
lated average reactivity on a window of 300 nucleotides
surrounding summits of the peaks (Figure 5a). While
more distal regions around the Lin28a peaks showed a
level of reactivity comparable to that of the coding se-
quence (average 0.21), in agreement with a preferential
positioning of Lin28a binding sites within this region, we
observed a significant and progressive increase in the
accessibility proceeding toward the peak summits (max-
imum 0.34, 25 nucleotides average 0.27, P-value 6.2e-
79, Wilcoxon rank sum test). Concordant with this
observation, analysis of putative Lin28a binding sites re-
vealed that the target A/G-rich motifs tends to assume a
single-stranded conformation within the loop regions of
hairpin-like structures (Figure 5b). This result is in
agreement with previous in silico predictions based on
the analysis of Watson-Crick pair co-occurrence around
the Lin28a consensus [61].

Discussion

In this work we have defined, for the first time, the
complete RNA structurome of mouse ESCs. Our ana-
lysis revealed the structural features of mRNAs and
ncRNAs, and identified the structural requirements for
Lin28a RNA binding protein.

The introduction of the CIRS-seq method, which
does not rely on a denaturation and re-folding ap-
proach, allowed us to massively probe RNAs in their
natural context. By applying CIRS-seq to mouse ESC
RNAs, we were able to probe protein-coding RNAs as well
as ncRNAs in their native deproteinized conformation.
Analysis of previously validated secondary structures

showed that CIRS-seq is extremely precise, and RNA
secondary structures inferred using CIRS-seq data to
constrain folding algorithms exhibit higher accuracy
than MFE structures predicted in the absence of
chemical probing data. Moreover, the use of two com-
pounds that modify distinct bases, together with the
introduction of a deproteinization step, which enabled
us to investigate protein-masked regions of transcripts
without losing their correct folding, increased the
resolution of our method.

The analysis of CIRS-seq data revealed a strong struc-
tural partitioning of protein-coding transcripts, revealing
a higher degree of structuring of UTRs compared with
coding regions. This was unexpected since it has been
recently reported that in A. thaliana UTRs have a higher
propensity to single-strandedness than coding regions
[34]. This difference may represent evolutionary struc-
tural diversity between metazoans and plant RNAs, as
suggested by previous in vitro [17] and in silico [62] ana-
lyses, or it could be explained by reduced accessibility of
transcript coding regions to DMS treatment, due to the
ribosome occupancy, in the absence of a deproteinization
step. However, the agreement of our data with a recent
nuclease-based analysis conducted in human lymphoblas-
toid cells [63] suggests that this structuring is conserved
in mammalian mRNAs and may have a functional role.

The slightly higher reactivity observed for 3" UTRs
compared with 5" UTRs in mouse mRNAs may be rep-
resentative of the preference of microRNA recognition
elements, which are highly enriched in 3" UTRs [64], to
reside within more accessible contexts [65,66]. It must
be also noticed that structural regulatory elements in the
3" UTR are often short and dispersed in the UTR, which
in many cases may be very long, thus leading to a lower
overall structuring of this region compared with the 5’
UTR [67].

Our analysis of Lin28a protein recognition elements
demonstrated genome-wide that binding sites for this
protein tend to preferentially assume a single-stranded
conformation. We moreover observed that Lin28a mo-
tifs tend to reside within loop regions of hairpin-like
structures.

Furthermore, the analysis of ncRNAs revealed a higher
overall degree of structuring compared with protein-
coding transcripts, and showed that lincRNAs exhibit
structural features intermediate to those of mRNAs and
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Figure 4 Transcriptome-wide analysis of mRNAs reveals structural features of protein-coding and non-coding transcripts. (a) Meta-gene
analysis across the last 50 nucleotides of the 5" UTR, the first and last 100 nucleotides of the coding region, and the first 50 nucleotides of the 3'
UTR of approximately 9,500 mRNAs. (b) Average reactivity of the 5" UTR, coding region, and 3' UTR. (c) Average reactivity on the Kozak sequence
(=6/+1 nucleotides around AUG), coding region, and stop codon (+3 nucleotides upstream). (d) Average reactivity for the first, second, and third
base of each coding sequence codon, and for the first, second, and third base of the 5" UTR and 3' UTR, respectively, in the first and last 99
nucleotides of the coding region, last 48 nucleotides of the 5" UTR, and first 48 nucleotides of the 3" UTR. (e) Box-plot of base-normalized average
CIRS-seq reactivities for protein-coding and non-coding RNAs, calculated on all transcript positions with sequencing depth >50 .
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reactivity. The purine-rich motifs are highlighted in green.
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Figure 5 CIRS-seq reveals structural preferences of RNA binding proteins. (a) Average reactivity across 300 nucleotides surrounding
summits of Lin28a peaks. (b) Representation of sample secondary structures for Lin28a binding sites. Bases are color coded according to their

structural ncRNAs. This is in agreement with the report
that ncRNAs have higher melting temperatures than
mRNAs, denoting higher structural stability [18].

Collectively, our data demonstrate that CIRS-seq can be
used to obtain genome-wide information on native depro-
teinized RNA structures. Moreover, CIRS-seq method-
ology represents an important tool for the study of the
structural binding specificities of RBPs.

Conclusions

We define for the first time the complete RNA structur-
ome of mouse ESCs, by developing a high-throughput
method for the analysis of RNA secondary structures in
their native deproteinized conformation. This method
achieved extremely high accuracy on validated secondary
structures, and allowed the de novo prediction of RNA
structures. Analysis of structural data for protein-coding
RNAs revealed their strong structural partitioning between
5" UTRs, coding sequences, and 3" UTRs. Comparison
with non-coding RNAs showed that ncRNAs are more
structured than mRNAs, and that lincRNAs present an

average structuring midway between protein coding and
structural non-coding transcripts. We also reveal the struc-
tural requirements for binding of the RBP Lin28a, and
demonstrate that our method can provide insight into the
structural preferences of RBPs.

Materials and methods

Cell culture

Mouse E14 ESCs were grown on 0.1% gelatin-coated plates
and maintained in DMEM (4.5 g/L. D-glucose) supple-
mented with 15% heat-inactivated fetal bovine serum,
0.1 mM NEAA, 1 mM sodium pyruvate, 0.1 mM 2-
mercaptoethanol, 25 U/ml penicillin, 25 pg/ml strepto-
mycin and 1,500 U/ml LIF, as previously described [68].

Quantitative RT-PCR

Real-time quantitative PCR was performed using the
SuperScript III Platinum One-Step Quantitative RT- PCR
System (Invitrogen Carlsbad, CA, USA) as previously de-
scribed [69]. The primers for the Rpphl test transcript are
provided in Table S1 in Additional file 1.
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RNA-seq library preparation

For RNA-seq library preparation, approximately 1 pg of
TRIzol (Invitrogen) isolated total RNA from ESCs was
subjected to ribosomal RNA depletion using the Ribo-Zero
Gold Kit (Epicentre Madison, Winsconsin, USA). rRNA-
depleted RNA was used as the input for the RNA-seq li-
brary preparation using the TruSeq RNA Sample Prep Kit
(Ilumina) following the manufacturer’s instructions.

CIRS-seq

Cell lysis and chemical probing, library preparation, and
sequencing are detailed in the supplementary Materials
and methods in Additional file 1.

RNA quality assessment

RNA sample quality was assessed with the Agilent Bioa-
nalyzer 2100. All of the samples had an RNA integrity
number ranging from 9.9 to 10.

Data analysis

CIRS-seq data analysis, normalization and background
subtraction, and transcript analysis are detailed in the sup-
plementary Materials and methods in Additional file 1.

Data access

CIRS-seq and RNA-seq data have been deposited in the
Gene Expression Omnibus (GEO) under accession num-
ber GSE54106. Additional datasets and the source code
for the analysis tool are available at [70].

Additional file

Additional file 1: PDF file containing supplementary Materials and
methods, Figures S1 to S5), Table S1, and supplementary
references.
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