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Abstract

Identification of noncoding drivers from thousands of somatic alterations in a typical tumor is a difficult and
unsolved problem. We report a computational framework, FunSeq2, to annotate and prioritize these mutations. The
framework combines an adjustable data context integrating large-scale genomics and cancer resources with a streamlined
variant-prioritization pipeline. The pipeline has a weighted scoring system combining: inter- and intra-species conservation;
loss- and gain-of-function events for transcription-factor binding; enhancer-gene linkages and network centrality; and
per-element recurrence across samples. We further highlight putative drivers with information specific to a particular
sample, such as differential expression. FunSeq2 is available from funseq2.gersteinlab.org.
Background
Cancer genome sequencing generally identifies thousands
of somatic alterations in individual tumor genomes. A few
of them, called drivers, contribute to oncogenesis, whereas
the majority are passenger mutations accumulated during
cancer progression [1]. Systematic studies of human can-
cer genomes have discovered a wide range of driver genes
[2-6]. However, comparatively less effort has been invested
in the noncoding portions of the genome. Recent discov-
ery of somatic mutations in telomerase reverse transcript-
ase (TERT) promoter shows that regulatory variants may
constitute driver events [7-10]. With the decrease of se-
quencing cost, international cancer consortia, such as
TCGA (The Cancer Genome Atlas) and ICGC (The Inter-
national Cancer Genome Consortium), plan to perform
large-scale cancer whole-genome sequencing in the near
future. Thus, there is a great demand for high-throughput
computational methods to analyze those variants.
In contrast to coding variants, the functional impact of

noncoding variants is more difficult to evaluate, due to the
lack of knowledge about noncoding regions. The import-
ant role of regulatory variants in various diseases has gen-
erated a great deal of interest in studying noncoding
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sequences [11-14]. Projects aiming to uncover potential
regulatory sequences, such as The Encyclopedia of DNA
Elements (ENCODE) [15] and 29 Mammals Project [16],
provide an unprecedented opportunity to interpret non-
coding variants. Studies have shown that disease-associated
single nucleotide polymorphisms (SNPs) identified by
Genome-wide Association Studies (GWAS) are signifi-
cantly enriched in ENCODE regions [17]. A number of
tools have been developed using these data to annotate
potential regulatory variants or to suggest the most
likely causal variants in linkage disequilibrium with
GWAS SNPs, such as Haploreg [18], RegulomeDB [19],
ANNOVAR [20], GEMINI [21], FunciSNP [22], and VEP
[23]. Recently, two computational approaches - GWAVA
and CADD - were published to predict the deleterious ef-
fect of variants genome-wide [24,25]. These two methods
utilized machine-learning models trained on potential
pathogenic variants or nearly fixed/fixed human derived al-
leles to distinguish deleterious variants from neutral ones.
While much work has been done for germline vari-

ants, this is not the case for cancer somatic mutations.
Through analyzing the variation patterns of natural poly-
morphisms, we have published a prototype approach
(FunSeq) to identify potential noncoding drivers [26].
Here, we report a more elaborate and flexible framework -
FunSeq2 - to annotate and prioritize somatic alterations
integrating various resources from genomic and cancer
studies. The framework consists of two components: (1)
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data context from uniformly processing large-scale data-
sets; and (2) a high-throughput variant prioritization pipe-
line. The data context can be rebuilt using newly available
dataset. Key features of our pipeline include: (1) integrating
various functional annotations to identify potential regula-
tory variants; (2) predicting nucleotide-level loss- and gain-
of-function events; (3) examining whether variants occur
in noncoding regions that are less likely to tolerate
mutations, by analyzing both evolutionary and human
population-level conservation; (4) systematically linking
variants with target genes using data from the Roadmap
Epigenomics Project; (5) incorporating network topology
analysis, gene functions, and user annotations to investi-
gate these variant-gene linkages; and (6) identifying recur-
rent elements from both user-input and publicly available
cancer datasets. To prioritize ‘high-impact’ variants, we
developed a weighted scoring scheme that takes into
account the relative importance of various features,
based on the mutation patterns observed in natural
polymorphisms.
Besides mutations in the TERT promoter, no other

regulatory variants have been functionally characterized
as cancer drivers. Thus, due to the lack of a gold stand-
ard for regulatory cancer drivers, we used recurrent
somatic mutations and known germline pathogenic vari-
ants to evaluate the performance of our method. Our
method has good prediction power for both recurrent
somatic and germline pathogenic regulatory variants,
and more importantly it contains multiple cancer-specific
features, such as differential gene expression detection be-
tween tumor and matched normal samples. As a test case,
we also applied our method to an individual tumor gen-
ome with a known TERT promoter mutation. Our method
is able to prioritize the variant and provides a hypothesis
for its potential functional impact. This shows that our
method can help researchers and clinicians to prioritize a
few somatic regulatory mutations for further studies.

Results and discussion
High-throughput technologies have generated huge amount
of genomics data in the past few decades. How to mine and
integrate these data to tackle particular scientific question
remains a challenge. In this study, we first build an orga-
nized data context by processing large-scale genomics and
cancer resources into small-scale informative data and then
use them to annotate and prioritize cancer somatic alter-
ations. The workflow is depicted in Figure 1 and the detailed
description of variant prioritization is in Figure 2.

Variants in potential regulatory elements
Regulatory elements, especially promoters and enhancers,
are capable of regulating the expression of specific genes.
We collected functional annotations from ENCODE [15]
(transcription factor binding sites and the high-resolution
motifs within them, enhancers from genome segmenta-
tions and DNase I hypersensitive sites) and regions that
are highly occupied by transcription factors (HOT) from
Yip et al. [27] to annotate variants in potential regulatory
sequences. We evaluated their functional effect from se-
quence and network levels in the following sections.
Nucleotide-level impact of regulatory variants
Regulatory mutations can cause transcriptional alterations
by either loss-of or gain-of- function effects. Loss-of-
function events in transcription factor binding motifs
are likely to cause deleterious impact [26,28,29]. Variants
decreasing the position weight matrix (PWM) scores
could potentially alter the binding strength of tran-
scription factors, or even eliminate the binding. Our
framework consists of a module to detect motif-breaking
events - defined as variants decreasing PWMs (Material
and methods). Meanwhile, gain of new binding sites
caused by somatic mutations can constitute driver events
[7-10]. To the best of our knowledge, there is no auto-
mated tool to detect such events in whole tumor genomes.
We incorporated a gain-of-motif scheme to scan and sta-
tistically evaluate [30] all possible motifs created by mu-
tated alleles in promoter or enhancer regions. For each
variant (SNV or indel), we concatenated it with +/- 29 bp
nucleotides around it and calculated sequence scores for
each possible motif against the PWMs. Gain-of-motif
events are identified when the sequence score with
mutated allele is significantly higher than the back-
ground (P <4e-8), whereas that with germline allele is
not. As discussed later, our scheme is validated by the
detection of motif-gaining events caused by the two
driver mutations in TERT promoter (Additional file 1:
Table S1).
Variants in conserved regions
Sequences that are under strong negative or purifying
selection are thought to have important biological func-
tions [31]. In previous studies, oncogenes or tumor sup-
pressor genes are found to experience higher intensity of
selective pressure than other disease-related and non-
disease genes [32]. Cross-species genome comparison is
a powerful approach to identify evolutionary conserved
sequences. For example, GERP [33] is developed to
estimate the position-specific evolutionary constraint;
sequences that are shared across species are defined
as ultra-conserved elements [31]. Meanwhile, human
population-level constrained regions are identified from
1000 Genomes [26,34] using depletion of common poly-
morphisms. We combined these data to detect potential
deleterious variants in noncoding sequences. Each variant
will be annotated with its corresponding conservation
information.



Figure 1 (See legend on next page.)
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Figure 1 Schematic workflow. FunSeq2 consists of two components: creation of data context and variant prioritization. We processed large-scale
genomics (such as 1000 Genomes and ENCODE data) and cancer resources to create the small-scale informative data context, as shown within the
dashed rectangle. The variant prioritization pipeline will take user-input cancer variants and then annotate and score them against the data context. All
features are used to annotate variants (shown in Additional file 1: Table S2), whereas a fraction of them are used to score variants (Additional file 1:
Table S3) with the weighted scoring scheme. ‘Process’ contains scripts to analyze data, which can be downloaded from our website. Green arrows
show the input and output of the prioritization pipeline (matched with Figure 2).
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Linking regulatory elements with likely target genes
Functional genomic studies have characterized biological
functions of a large number of genes. Linking regulatory
variants with coding genes, especially those well-known
cancer driver genes, will help us understand the regula-
tory mechanisms that govern oncogenesis and poten-
tially benefit therapeutic treatment. Positioned distant to
their target genes, regulatory elements regulate gene ex-
pression through long-range interactions [35]. The linkages
between regulatory elements and genes remain elusive. To
explore likely functional consequences of regulatory vari-
ants, we comprehensively define regulatory element-target
gene pairs through correlating various epigenetic modifica-
tions with gene expression levels. We consider the enhan-
cer marks H3K4me1 and H3K27ac as two types of activity
signals, and DNA methylation as an inactivity signal. Using
ChIP-Seq and RNA-Seq data from the Roadmap Epige-
nomics Mapping Consortium (REMC), for each regulatory
element-candidate target gene pair, we computed the
correlations of H3K4me1 and H3K27ac and the anti-
correlations of DNA methylation at the regulatory elem-
ent with gene expression levels across 20 tissue types
(Material and methods). In total, we identified approxi-
mately 2,448 K significant associations involving roughly
1,279 K regulatory elements and 17 K genes (Material and
methods; Additional file 1: Figure S1). All noncoding vari-
ants in these regulatory elements can be associated with
potential target genes (with various association confi-
dences). To incorporate the ever-increasing amounts of
genomic data, we include a pipeline for users to extend
the data context with their own data. For example, users
can input annotation regions or chromatin marks to find
novel associations between regulatory elements and cod-
ing genes (Additional file 1).

Network analysis of variants associated with genes
Unlike germline mutations, somatic alterations are not
expected to be under organism-level evolutionary selec-
tion pressure and thus are more likely to affect functional
centers in gene interaction networks [36]. Network studies
have found that cancer genes possess high topological
centralities, even higher than essential genes [26,36]. We
used the regulatory element-target gene pairs to connect
noncoding variants to a variety of networks: protein-
protein interaction, regulatory and phosphorylation
networks [26,35,37]. For each noncoding variant, we
calculated the scaled network centrality (the percentile
after ordering centralities of all genes in a particular
network) of the associated gene in each network (Material
and methods). Among the different network centralities,
we used the maximum centrality as the network disrup-
tive measure of the variant. The higher this value, the
more likely the variant is to be deleterious. We make the
scheme flexible so it can integrate user networks in
addition to the pre-collected networks.

Recurrent elements across cancer samples
One criterion to identify cancer driver genes is to exam-
ine their mutational recurrence across multiple samples
[3]. We extended the concept to noncoding regulatory
elements, such as transcription factor binding sites. Our
method is able to detect sites, genes, and regulatory ele-
ments that are mutated in at least two samples from
user-input (Material and methods).
When having small sample sizes, comparisons with avail-

able tumor genomes would be useful to discover recurrent
mutations. Related to this, we have created a recurrence
database (Recurrence DB) (including regulatory elements,
coding genes and the same-site mutations) with publicly
available cancer whole-genome sequencing data. Currently,
we have identified recurrent loci or sites from 570 samples
of 10 tumor types [38-40] and from COSMIC [41] (Table 1;
Material and methods). Variants in user-input tumor ge-
nomes are compared to the recurrence database and the
results in different cancer types are reported in the output.
The use of the database along with our framework would
provide higher confidence in prioritization of regulatory
drivers (Figure 2). The database will be updated with newly
available dataset.

Weighted scoring scheme to prioritize variants
All of the above features are used to annotate and score
variants (Figure 3). To integrate the various features to
predict ‘high-impact’ somatic alterations, we developed a
weighted scoring scheme, taking into account the rela-
tive importance of each feature (Figure 2). In general,
features can be classified into two classes: discrete and
continuous. Discrete features are binary, such as in
ultra-conserved elements or not. For continuous fea-
tures, taking the ‘motif-breaking score’ as an example,
the values would be the changes in PWMs. We weighted
each feature based on the mutation patterns observed in
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Figure 2 Variant prioritization. The variant prioritization step will annotate input variants and then score them using the weighted scoring
scheme. Features used in the weighted scoring scheme can be classified into ‘functional annotations’, ‘conservation’, ‘nucleotide-level analysis’,
‘network analysis’, and ‘recurrence’. ‘Recurrence’ feature could be detected from user-input cancer samples and also from ‘Recurrence DB’ (* means
optional. User can choose to use the ‘Recurrence DB’ or not). Different from other features, ‘recurrence’ depends on the user-input (for example, if user
only uploads one sample and chooses not to use the ‘Recurrence DB’, then ‘recurrence’ feature will not be observed for any variant). Each feature is
assigned a weighted score (Material and methods). Scores obtained from the top grey panel are called ‘core scores’, which is independent of the user’s
choice (see above for ‘recurrence’ feature). Variants with the ‘recurrence’ feature are assigned an additional score in the final output. In addition to
features used in the scoring scheme, other features are used to highlight potentially interesting variants, such as variants associated with
known cancer genes.
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natural polymorphisms (Material and methods; Additional
file 1: Table S3). Constrained by selective pressure, natural
variations tend to arise in functionally unimportant re-
gions. Thus, features that are frequently observed are less
likely to contribute to the deleteriousness of variants and
are weighted less. We calculated the information content
to denote the importance of each feature. For each cancer
mutation, we scored it by summing the information
contents of all its features (details in Material and
methods). Variants ranked on top of the output are
those with higher scores and are most likely to be
deleterious.
Highlighting variants using prior knowledge of genes and
user annotations
Interpretation of the functional impact of noncoding
variants can be greatly enhanced if the function of its
target protein-coding gene is known. Many cancer genes
are known to play a crucial role in cell proliferation and
DNA repair. We integrated prior knowledge of genes,
such as known cancer-driver genes [2,42], genes involved
in DNA repair [43] and actionable genes (‘druggable’
Table 1 Summary of recurrence database

Cancer type Samples (n) Somatic
mutations
(SNVs) (n)

Recurrent elements |
Genes | Mutations (n)

AML 7 271-1,068 1

Breast 119 1,043-67,347 69,140

CLL 28 522-3,338 709

Liver 88 1,348-25,131 74,144

Lung adeno 24 9,284-297,569 162,165

Lymphoma B cell 24 1,502-37,848 4,233

Medulloblastoma 100 44-47,440 2,793

Pancreas 15 1,096-14,998 2,591

Pilocytic astrocytoma 101 2-926 58

Prostate 64 1,430-18,225 36,327

COSMIC recurrent
regulatory mutations

- - 10,041
genes) [44] to highlight noncoding variants that are likely
to be involved in cancer development and growth or
their associated genes could be used as drug targets. In
addition, user-specific gene lists can be easily input
(Figure 1 and Additional file 1).
Variants in regulatory elements may disrupt the ex-

pression of coding genes. Differential expression of tar-
get genes in cancer samples indicates the potential effect
of noncoding variants. We provide a ‘differential gene
expression analysis’ module (Figure 1 and Material and
methods) to detect differentially expressed genes in can-
cer samples (relative to matched normal) from RNA-Seq
data. Lists of differentially expressed genes can be gener-
ated and used to annotate variants.
We also provide an option for users to incorporate

their own annotations. Impact of variants in regulatory
regions is generally restricted to cis-acting effects that
control the spatial and temporal patterns of gene expres-
sion [13]. Activation of regulatory elements is associated
with the underlying epigenetic or open chromatin land-
scape, which is largely cell-line specific [45]. For ex-
ample, enrichment of H3K27ac may indicate an active
state of enhancers in a particular sample. Therefore, it
would be useful to incorporate sample-specific epigen-
etic or open chromatin profiles, if available, to highlight
variants in activated or inactivated regulatory sequences.
All features used in our method and corresponding

details are described in Additional file 1: Table S2.
Performance on regulatory cancer somatic variants and
germline pathogenic variants
Recurrent somatic variants
Currently, only two known regulatory variants are thought
to act as cancer drivers. Hence, to evaluate the perform-
ance of our scoring scheme, we used recurrence to
approximate the deleteriousness of somatic variants.
Recurrence is considered as one potential sign of
positive selection among tumors and is more likely to
be associated with driver events [3]. We examined re-
currence from two perspectives: recurrence at the
exact same site and recurrence in the same regulatory
element. First, we classified COSMIC regulatory somatic
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variants [41] as same-site recurrent or non-recurrent
(Material and methods) [25]. Our method scores recur-
rent variants higher than non-recurrent ones (Wilcoxon
rank-sum test: P value <2.2 e-16; Figure 4A). Variants
that occur in more than two samples have higher scores
than those that are in two samples. Next we evalu-
ated variants in recurrent regulatory elements using a
separate dataset. We ran our pipeline on 119 breast
cancer samples [38] and classified variants as occurring in
recurrent elements or not (Material and methods). We
found that variants in recurrent elements get significantly
higher scores (Wilcoxon rank-sum test: P value <2.2e-16;
Figure 4B) than variants elsewhere. Similar patterns
are observed with other cancer types (Additional file 1:
Figure S5). Results from CADD and GWAVA are shown
in Additional file 1: Figure S6.
We note that cancer is a very heterogeneous disease

and distinct molecular subtypes may involve unique
oncogenic mechanisms. Thus, tumor samples from dif-
ferent patients may involve different driver events. These
unique drivers would not show recurrence across sam-
ples. Furthermore, in the absence of large sample sizes,
it might be impossible to detect recurrence of mutations.
Our method would be especially useful in such scenar-
ios, since it has the ability to prioritize deleterious vari-
ants in each tumor genome. Moreover, the functional
relevance and hence the biological mechanism by which
drivers act is largely unknown. Our method provides an
in-depth annotation of such variants, including the rela-
tive contribution of each feature to its deleteriousness.
This knowledge would greatly help understand the po-
tential oncogenic mechanisms.

Germline pathogenic variants
Disease studies have identified many noncoding patho-
genic variants. Designed primarily for somatic muta-
tions, our framework contains several features that are
applicable to germline variants. We tested the ability of
our method to distinguish germline pathogenic variants
from neutral ones. We also did possible comparisons
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with other germline variant prioritization tools [24,25].
We obtained pathogenic regulatory variants from HGMD
[46] and three sets of controls from Ritchie et al. [25]: ‘un-
matched’; ‘matched TSS’; and ‘matched region’ (Material
and methods). Our method scored HGMD variants higher
than all controls, with AUC scores of 0.86 (for ‘un-
matched’), 0.74 (for ‘matched TSS’), and 0.62 (for ‘matched
region’) (Figure 4C and 4D). Results from CADD [24]
using the same dataset are shown in Additional file 1:
Figure S7 (AUC scores: 0.75 (‘unmatched’), 0.68 (‘matched
TSS’), and 0.61 (‘matched region’)). As negative sets are
much larger than positive set, one concern with AUC
scores is that the prediction power may come from the
ability to predict negatives instead of positives. Thus we
examined precision and recall to capture the ability of our
method to predict positives (Additional file 1: Figure S8).
Generally speaking, our method has good prediction power
for pathogenic regulatory variants. In addition, GWAS
SNPs show higher scores than matched common polymor-
phisms (mean values: 0.41 vs. 0.34, P value <2.2e-16;
Material and methods; Additional file 1: Figure S9).

A case study: somatic variants from an individual tumor
genome
High recurrence of the TERT promoter mutations indicates
their important roles in tumorigenesis [7]. Among the 570
cancer samples we collected, seven samples contain the
TERT promoter mutation (chr5: 1295228). We used one
Medulloblastoma sample as an example to prioritize regu-
latory variants from whole-genome sequencing. Among the
2,183 somatic single nucleotide variants, the TERT
promoter mutation ranks second (0.09%). Our method
further suggests potential functional impact of this
variant. As shown in Table 2, this mutation occurs in
ENCODE regulatory regions, creates a novel ETS bind-
ing motif and potentially affects a highly connected



Table 2 Output for the TERT promoter mutation in a medulloblastoma sample

Variant GERP Functional annotations Gain of motif Associated
gene

Network Recurrence
in samples

Recurrence
database

Score

chr5:
1295228

-1.46 DHS, Enhancer, TFP
(E2F6, EGR1, ELF1,
GABPA, HDAC2, MAX,
MYC, SIN3A, TCF12,
USF1, ZBTB7A, ZEB1)

Motif: Ets_known10 TERT (promoter)
(Cancer gene)

Protein-protein
interaction
Centrality: 0.798

2/100 Medulloblastoma
samples

5/88 Liver
samples;
54 COSMIC
samples

2.69

G → A Position: 1295223 –
1295229

Strand: +

Score: 1.893 → 5.743
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and known cancer gene - TERT. It is also found in an-
other five liver samples and 54 COSMIC samples in
our recurrence database. Besides DNA sequences, epi-
genome or transcriptome could also be altered in cancer
genomes. These data provide sample-specific activation or
inactivation signatures of regulatory sequences. If pro-
vided, our framework is flexible in integrating those data
into our annotation scheme (refer to Additional file 1 for
details).
We also applied CADD and GWAVA on the Medullo-

blastoma sample. CADD ranked the TERT promoter
mutation 224th (10.3%) and GWAVA ranked it 25th
(1.15%) with the matched region model (Additional file 1:
Figure S10). However, only our method shows that the
mutation corresponds to gain-of an ETS binding mo-
tif in the promoter of a cancer driver gene. Results of
the additional six samples are shown in Additional file 1:
Table S4.
Output format and performance
FunSeq2 is a Linux/Unix-based tool with a web-server
available at [47]. The code is also posted under GitHub
[48]. It takes VCF- or BED-formatted cancer variants
and generates results in either BED or VCF format (refer
to Additional file 1 for examples). Users can retrieve or
visualize results in concise tables through the web inter-
face. We also provide pre-computed scores for all pos-
sible regulatory SNVs of GRCh37/hg19 on our website
(the ‘core scores’ in Figure 2).
FunSeq2 runs in a tiered fashion. Building data context

from bulk of data resources is time-consuming. Cur-
rently it takes about 1 week (on approximately 20 4-core
3.00-Ghz 16GB RAM PowerEdge 1955 nodes) to rebuild
the data context based on pre-processed genomics data,
such as ENCODE peak calls. The data context will be
updated regularly to keep it up-to-date. Users can input
additional data to customize the data context upon the
existing one. Variant prioritization step is quite efficient.
It takes about 2 to 3 min to prioritize one genome with
thousands of variants on a QEMU Virtual CPU version
(cpu64-rhel6) @ 2.24-GHz 1 processor Linux PC with
20 GB RAM, and a 500 GB local disk. Time comparison
with CADD and GWAVA is in Additional file 1: Table S5
(our method is two times faster with equal number of
variants). In addition, we implemented parallel-processing
fork manager for efficient memory utilization to tackle
multiple genomes in a single run. With a flexible and
modularized structure, researchers can restructure the
pipeline to incorporate more data and new features.
Conclusions
We have developed a method integrating various genomic
and cancer resources to prioritize cancer somatic variants,
especially regulatory noncoding mutations. User data can
be easily integrated into the framework. We believe that
the software will be useful for researchers to identify a few
somatic events among thousands for further in-depth
analysis to understand the mechanisms underlying
oncogenesis.
Material and methods
Data resources
We collected polymorphisms from 1000 Genomes Project
Phase 1 [34], GERP scores and ultra-conserved elements
from [31,33], sensitive/ultra-sensitive regions from [26],
functional genomics data from ENCODE [15], highly oc-
cupied regions (HOT) from [27], and histone modifica-
tions ChIP-Seq and gene expression RNA-Seq data from
REMC [49]. Cancer driver genes are the union of genes
from Vogelstein et al., cancer gene consensus, and COS-
MIC [2,41,42]. DNA repair and actionable genes are from
[43,44]. Binary protein-protein interaction network is from
InWeb [50] and HINT [51]. Regulatory and phosphoryl-
ation networks are obtained from Gerstein et al. [35], and
Lin et al. [37], respectively. Whole-genome somatic alter-
ations contain 506 cancer genomes from Alexandrov et al.
[38] and 64 prostate cancer samples from [39,40].
High-impact variants in motifs: nucleotide resolution
effect
User-input variants are first filtered against natural poly-
morphisms based on user-defined minor allele frequency
(MAF) threshold to get rid of unlikely somatic variants
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(hg19). Currently, SNVs and small indels (<=20 bp) will
be analyzed.
Motif breaking
When variants hit transcription factor binding motifs
under ENCODE Chip-Seq peaks, we examined their motif
breaking or conserving effect using position weight ma-
trixes (PWM). Motif-breaking events are defined as
variants decreasing the PWM scores, whereas motif-
conserving events are those that do not change or increase
the PWM scores [29] (we calculated the difference be-
tween mutated and germline alleles in the PWMs). Vari-
ants causing motif-breaking events are reported in the
output together with the corresponding PWM changes.
Transcription factor PWMs are obtained from ENCODE
project [15], including TRANSFAC and JASPAR motifs.
Motif gaining
Whole-genome motif scanning generally discovers mil-
lions of motifs, of which a large fraction are false posi-
tives. We focused on variants occurring in promoters
(defined as -2.5 kb from transcription starting sites) or
regulatory elements significantly associated with genes.
For each variant, +/- 29 bp are concatenated from the
human reference genome (motif length is generally <30
bp). For each PWM, we scanned the 59 bp sequence.
For each candidate motif encompassing the variant, we
evaluated the sequence scores using TFM-Pvalue [30]
(with respect to the PWM). Given a particular PWM (fre-
quencies are transformed to log likelihoods), sequence
score is computed by summing up the relevant values at
each position in the PWM. If the P value with mutated al-
lele < = 4e-8 and the P value with germline allele >4e-8,
we define the variant creating a novel motif. The process
is repeated for all PWMs and all variants. The sequence
score changes are reported in the output.
Associating regulatory elements with likely target genes
We define both proximal and distal associations. For
proximal associations, we assign variants in gene pro-
moters, introns, or UTRs to their nearby genes. For dis-
tal associations, in addition to those identified in [27],
we further expanded the method to all ENCODE regula-
tory elements and identified roughly 2,448 K significant
associations between 1,279 K regulatory elements and 17 K
genes (see below). The distributions of regulatory element-
gene associations are shown in Additional file 1: Figure S1.
The median number of associations is 26 per gene and 1
per regulatory element, respectively. The association
confidence is reported in the output for each regula-
tory element - target gene pair.
Correlating histone modifications with gene-expression
data to identify likely target genes of regulatory elements
Definition of distal regulatory modules (DRMs)
We started with a list of regulatory regions from three dif-
ferent types, namely transcription factor binding peaks
(TFP), DNase I hypersensitive sites (DHS), and Segway/
ChromHMM-predicted enhancers. All regulatory regions
at least 1 kb from the closest gene according to the
Gencode v7 annotation [52] were defined as distal regula-
tory modules (DRM).

Identifying potential regulatory targets of each DRM
We grouped different transcripts of a gene sharing the
same transcription start site as a transcription start site
expression unit (tssEU). For each DRM, we first consid-
ered all tssEUs within 1 Mb from it as its candidate tar-
gets. We then correlated some activity/inactivity signals
at a DRM and the expression of its candidate target
tssEUs, and called the ones with significant correlation
values as potential DRM-target pairs as follows.
At the DRMs, we considered the enhancer marks

H3K4me1 and H3K27ac as two types of activity signals,
and DNA methylation as an inactivity signal. The activ-
ity level of each DRM was defined as the number of sequen-
cing reads aligned to the DRM from the corresponding
ChIP-seq experiments. The methylation level of a DRM was
defined as follows. For each CpG site i within a DRM, we
counted the number of reads that support the methylation
of it (mi), and the total number of reads covering it (ni). The
methylation level of the DRM was then defined as the ratio

of their sums across all CpG sites in the DRM,

X
i
miX
i
ni
. For

each tssEU, we defined its expression level as the number of
RNA-seq reads aligned to the (TSS-50, TSS + 50) window.
Both the activity signal levels and gene expression levels
were normalized by the total reads, then multiplied by one
million to keep them within an easily readable range of
values.
We collected all bisulfite sequencing, ChIP-Seq, and

RNA-Seq data from the Roadmap Epigenomics project
website [49] (EDACC release 91). We considered 19 tis-
sue types with data for both the activity signals and gene
expression, and 20 tissue types with data for both the in-
activity signal and gene expression. For RNA-seq, we
used the paired-end 100 bp Poly-A enriched datasets.
For experiments with replicates, we used the mean value
across the replicates as the expression level of a gene.
For each DRM-candidate target pair, we computed the

correlations of their activity/inactivity and expression
levels across the different tissue types. We computed
both value-based Pearson correlation and rank-based
Spearman correlation. The statistical significance of each
correlation value was evaluated by computing a P value
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based on one-tailed tests using the built-in functions in
R. Briefly, for Pearson correlation, the correlation values
would follow a t distribution with n - 2 degrees of free-
dom (where n is the number of tissue types) if the sam-
ples are drawn independently from normal distributions.
The Fisher’s Z transformation was used to compute the
P values. For Spearman correlation, the P value was
computed based on a procedure proposed by Hollander
and Wolfe [53]. For activity signals, we considered the
right tail, which means we looked for correlations sig-
nificantly more positive than would be expected by
chance. For inactivity signals, we considered the left tail,
which means we looked for correlations significantly
more negative (that is, strong anti-correlations) than
would be expected by chance. All P values were then ad-
justed for multiple hypotheses testing using the Bonferroni,
Holm, Benjamini-Hochberg (BH), or Benjamini-Yekutieli
(BY) methods.

Differential gene expression analysis
We incorporated a module to detect differentially expressed
genes in cancer samples (relative to matched normal) from
RNA-Seq data. When provided with gene expression files,
our module calls NOISeq [54] when having RPKM values
and DESeq [55] with raw read counts (from reads-mapping
tools) to detect differentially expressed genes. Genes that are
up- or down-regulated with FDR <0.05 (with biological rep-
licates) and FDR <0.1 (without replicates) in cancer samples
are identified and annotated in the output.

Network analysis of variants associated with genes
For each variant associated with genes, we examined its
topological properties in various networks. For each net-
work, we calculated the centrality position (cumulative
probability after ordering centralities of all genes increas-
ingly) of the associated gene. If one variant is associated
with multiple genes or the associated gene participates in
multiple networks, the maximum cumulative probability
is used as the continuous value for centrality score. Scripts
are provided to calculate network centralities (Additional
file 1). Users can easily incorporate other networks in this
analysis.

Recurrence database from whole-genome sequencing
With the increasing number of cancer samples being
whole-genome sequenced, we are able to study recur-
rence patterns in regulatory sequences. We analyzed
somatic alterations from 570 samples of 10 cancer types
to create the recurrence database [38-40], similar to the
cancer recurrent gene database in cBio [56]. For each
cancer type, recurrent regulatory elements, coding genes,
and the same-site mutations are stored as entries in the
database. We also incorporated same-site recurrent regu-
latory variants from COSMIC (version 68) into our
database. Recurrent elements are defined as identified in
whole-genome sequencing and observed in at least two
samples.

Weighted scoring scheme
Coding scoring scheme
Variants in coding regions (GENCODE 16 for the
current version; users can replace this with other GENE-
CODE versions) are analyzed with VAT (variant annota-
tion tool) [57]. Variants are ranked based on the following
scheme (each criterion gets score 1): (1) non-synonymous;
(2) premature stop; (3) is the gene under strong selection;
(4) is the gene a network hub; (5) recurrent; (6) GERP
score >2.

Noncoding scoring scheme (weighted scoring scheme)
Features used to score noncoding variants are shown in
Additional file 1: Table S3. In general, features can be
classified into two classes: discrete and continuous.
Discrete features are binary, such as in ultra-conserved
elements or not. Continuous features: (1) GERP score;
(2) motif-breaking score is the difference between germ-
line and mutated alleles in PWMs; (3) motif-gaining score
is the sequence score difference between mutated and
germline alleles; (4) network centrality score (the cumula-
tive probability, see ‘Network analysis of variants associ-
ated with genes’). If one variant has multiple values of a
particular feature (for example, breaking multiple motifs),
the largest value is used.
We weighted each feature based on the mutation pat-

terns observed in the 1000 Genomes polymorphisms.
We randomly selected 10% of the 1000 Genomes Phase
1 SNPs (approximately 3.7 M) and ran them through
our pipeline. For each discrete feature d, we calculated
the probability pd that overlaps a natural polymorphism.
Then we computed 1-Shannon entropy (1) as its weighted
value wd. The value ranges from 0 to 1 and is monotonic-
ally decreasing when the probability is between 0 and 0.5c
below 0.5).

wd ¼ 1þ pdlog2pd þ 1−pdð Þlog2 1−pdð Þ ð1Þ

pd ¼ number of polymorphisms with feature d
total number of polymorphisms

The situation is more complex for continuous features,
as different feature values have different probabilities of
being observed in natural polymorphisms. Thus, one
weight cannot suffice for varied feature values. For a
continuous feature c, which is associated with a score vc
(for example, motif-breaking score), we calculated fea-
ture weights for each vc. In particular, we discretized at
each vc and computed 1-Shannon entropy using (2).
Then we fitted a smooth curve for all vc to obtain con-
tinuous wvc

c . Now, when we come to evaluate the
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continuous feature c for a particular variant, we calculate
its weighted value (on the curve) using the actual vc cor-
responding to the variant.

wvc
c ¼ 1þ p≥vcc log2p

≥vc
c þ 1−p≥vcc

� �
log2 1−p≥vcc

� � ð2Þ

p≥vcc ¼ number of polymorphisms with score≥vc f or feature c
total number of polymorphisms

Taking ‘motif-breaking score’ as an example (Figure 3B),
for each score v, we calculated the probability of observing
motif-breaking scores ≥ v in polymorphism data, then
used (2) to fit the smooth function. ‘nls’ function in R is
used to fit curves.
The criterion of ‘GERP >2’ has been commonly used

to define conserved bases [15]. For the GERP score, we
chose to use a sigmoid transformation to transform
scores to the range 0 to 1. The parameters we chose
make the sigmoid curve sharp at ‘GERP = 2’ (Additional
file 1: Figure S2). The sigmoid transformation preserves
the ‘GERP > 2’ cutoff and makes the score continuous at
the same time. We calculated (1) treating ‘GERP >2’ as a
discrete feature. Thenwe usedwd * sigmoid transformed value
to assign weighted value for each continuous GERP score.
Finally, for each cancer variant, we scored it by sum-

ming the weighted values of all its features (3). If a par-
ticular feature is not observed, it is not used in the
scoring. Considering the situation that some features are
subsets of other features, to avoid overweighting similar
features, we took into account feature dependencies
when calculating the summed scores. As shown in
Additional file 1: Table S3, when having leaf features,
the weighted values of root features are ignored. For
example, when a variant occurs in sensitive regions,
the score of ‘in functional annotations’ is not used in
the sum-up. Leaf features are assumed independent.
Variants ranked on top of the output are those with
higher scores and are most likely to be deleterious.

score ¼
X

d

wd þ
X

c

wvc
c ð3Þ

Application to regulatory pathogenic and cancer somatic
variants
All scores in this section are ‘core scores’ described in
Figure 2.

Same-site recurrent somatic variants
We obtained noncoding somatic variants from COSMIC
(version 68). Recurrent variants (10,041) are defined as
identified in whole-genome sequencing and observed in
at least two samples. All other variants (1,311,389) are
non-recurrent ones. After excluding variants in coding
regions (GENCODE 16) and mitochondrion, there are
956 variants occurring in more than two samples, 8,932
variants in two samples, and 1,305,699 non-recurrent
variants. Because the same sample from different papers
may have multiple ids, we also defined recurrence based
on number of studies. Study-based recurrent variants
also have higher scores than non-recurrent ones (Wilcoxon
test: P value = 7.8e-08).
As we know, COSMIC collects somatic alterations from

diverse papers and studies. We noticed a potential artifact
related to pseudogenes (Additional file 1: Figure S3) - the
percentage of variants in pseudogenes increases with the
number of recurrent samples or studies. After removing
these variants, the trend of prediction scores persists
(Additional file 1: Figure S4).

Somatic variants in recurrent regulatory elements
Regulatory regions mutated in more than one sample
are defined as recurrent regulatory elements, such as the
same TF binding motif or the same noncoding RNA.
We first identified recurrent regulatory elements across
multiple cancer samples. Then we classified variants ei-
ther in recurrent regulatory elements or not. As recur-
rent regulatory elements are functional annotations, to
make a fair comparison, we filtered variants in non-
recurrent regulatory elements as those also in functional
annotations. From 119 breast cancer samples, there are
24,022 (4,841 in recurrent elements mutated in more
than two samples; 19,181 in elements mutated in two
samples) and 126,217 variants in recurrent and non-
recurrent regulatory elements, respectively. The feature
of recurrence is not considered in the weighted scoring
scheme for variants in sections 1 and 2.

Germline pathogenic variants and matched controls
Genome locations of pathogenic regulatory variants
(from HGMD [46] -1,614) and three sets of negative
controls were downloaded from GWAVA [25]. ‘Un-
matched’ control consists of 161,400 likely neutral poly-
morphisms randomly selected from 1000 Genomes Phase1
with allele frequency > =1%. Restrictions of ‘2Kb around
TSS’ and ‘1Kb around HGMD variants’ are applied to
‘matched TSS’ and ‘matched region’ controls, respectively.
‘Matched TSS’ control includes 16,140 variants and
‘matched region’ control has 5,027 variants. Allele infor-
mation for HGMD variants was obtained from HGMD
database (1,527 variants). For controls, the alleles were
from ENSEMBL BioMart, using reference SNP ids. We
then excluded polymorphisms that were in coding regions
or used in the weighted scoring scheme, from controls
(‘matched region’ - 4,258; ‘matched TSS’ - 13,861; ‘un-
matched’ - 144,086).
We downloaded pre-calculated CADD scores for 1000

Genomes variants and extracted corresponding scores
for control sets. For HGMD variants, we used the online
CADD server to obtain the scores.
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We compared the prediction scores of HGMD variants
with three sets of controls using various measures - TPR
(true positive rate), FPR (false positive rate), precision, and
recall. We treated HGMD as positive set and controls as
negative sets. For each possible score, we draw the cutoff
to make predictions and calculated - TPR = TP/(TP +
FN); FPR = FP/(FP + TN); Precision = TP/(TP + FP);
Recall = TP/(TP + FN) (TP: true positive; FP: false
positive; TN: true negative; FN: false negative). AUC
score is the cumulative area under the curve of TPR
and FPR.
We also tested our method with GWAS SNPs (6,604)

and matched controls (66,040) from [25]. Allele informa-
tion was obtained from ENSEMBL BioMart.

Framework flexibility
User data can be easily incorporated into our frame-
work. Cancer sample-specific studies, such as histone
modifications and gene expression, are especially useful in
evaluating variants’ impact. Please refer to ‘Additional file 1’
for usage.

Additional file

Additional file 1: Figure S1: Distribution of linkages between regulatory
elements and genes. Figure S2: Weighted values for continuous features.
Figure S3: Percentage of variants in pseudogene increases as the
number of recurrent samples/studies increases. We suspected that reads
containing these variants should probably be mapped to parent genes of
pseudogene, instead of the noncoding genome. Figure S4: After
excluding variants in pseudogenes, the trend of prediction scores
persists. Figure S5: Prediction scores of variants in recurrent regulatory
elements from 88 liver cancer samples. Figure S6: Comparisons with
GWAVA and CADD using breast cancer variants. Figure S7: ROC curves
comparing HGMD with controls using CADD. Figure S8: Precision and
recall comparing HGMD with controls. Figure S9: Prediction scores
of GWAS SNPs and matched control. Figure S10: Relationship
between distance to TSS and prediction scores (using variants from
one Medulloblastoma sample - MB59). Red dot is the TERT promoter
mutation. We reported ‘matched region’ model of GWAVA for all
analysis, as the model is less prone to bias. Table S1: Gain-of-motif
of the TERT promoter mutations (motif name # motif start coordinate #
motif end coordinate # motif strand # variant position # alternative sequence
score # germline sequence score). Table S2: Features used to annotate
variants. Table S3: Weighted scoring scheme. Table S4: Rankings of
the TERT promoter mutation in seven cancer samples. ‘Matched region’
model is used for GWAVA (Figure S10). Table S5: Time comparisons using
about 2,000 variants.
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