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Abstract

Background: The global effort to annotate the non-coding portion of the human genome relies heavily on
chromatin immunoprecipitation data generated with high-throughput DNA sequencing (ChIP-seq). ChIP-seq is
generally successful in detailing the segments of the genome bound by the immunoprecipitated transcription
factor (TF), however almost all datasets contain genomic regions devoid of the canonical motif for the TF. It remains
to be determined if these regions are related to the immunoprecipitated TF or whether, despite the use of controls,
there is a portion of peaks that can be attributed to other causes.

Results: Analyses across hundreds of ChIP-seq datasets generated for sequence-specific DNA binding TFs reveal
a small set of TF binding profiles for which predicted TF binding site motifs are repeatedly observed to be
significantly enriched. Grouping related binding profiles, the set includes: CTCF-like, ETS-like, JUN-like, and THAP11
profiles. These frequently enriched profiles are termed ‘zingers’ to highlight their unanticipated enrichment in
datasets for which they were not the targeted TF, and their potential impact on the interpretation and analysis of
TF ChIP-seq data. Peaks with zinger motifs and lacking the ChIPped TF’s motif are observed to compose up to 45%
of a ChIP-seq dataset. There is substantial overlap of zinger motif containing regions between diverse TF datasets,
suggesting a mechanism that is not TF-specific for the recovery of these regions.

Conclusions: Based on the zinger regions proximity to cohesin-bound segments, a loading station model is
proposed. Further study of zingers will advance understanding of gene regulation.
Background
The mapping of the regulatory sequences in the human
genome is proceeding rapidly. Large-scale chromatin im-
munoprecipitation coupled to high-throughput sequencing
(ChIP-seq) experiments have been a central component of
the mapping efforts, including both transcription factor
(TF) target and histone target derivatives [1]. These map-
ping efforts are providing key insights into the properties
of regulatory sequences, the interactions between TFs, and
the mechanisms contributing to selective patterns of gene
transcription. With the compilation of large and diverse
ChIP-seq data collections, an opportunity has emerged to
study the common characteristics of TF-bound regions re-
vealed by ChIP-seq.
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The characteristics of ChIP-seq data are shaped by both
biological and technical influences [2-5]. As with every
high-throughput technology, the community learns pro-
gressively more about the nuances of the data as they ac-
cumulate. Much effort has focused on the development
of peak finding methods, which allow for the quantita-
tive determination of TF-bound regions within the
sequences recovered in a ChIP-seq experiment. In gen-
eral, most methods take into account a background rate
of sequence recovery and use this background to evalu-
ate the significance of an observed number of mapped
reads in the foreground ChIP experiment [2]. Most
commonly background sequence data sources are gen-
erated from sheared input DNA or mock immunopre-
cipitation (mock-IP) using a non-specific antibody (for
example, IgG). The comparison of the foreground
against the background by peak finding software is often
the basis for specifying the TF-bound regions, usually
delineated with a start, stop, and local maximum read
density position (that is, ‘peakMax’).
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It is clear that the ChIP-seq procedure is working well
for detecting regions bound by sequence-specific TFs.
Analysis of ChIP-seq datasets reveals an enrichment of
the expected TF binding site (TFBS) pattern close to
the peakMax or, where no peakMax is determined, peak
centre positions (hereafter also referred to as ‘peakMax’)
[6,7]. Ab initio pattern discovery software applied to
ChIP-seq data routinely recover the known TFBS pat-
tern [8], and pattern enrichment methods confirm
highly significant enrichment of the TFBS pattern of the
ChIPped TF [9,10]. Additionally, a sufficient number of
replicates have been performed to demonstrate general
consistency between ChIP-seq datasets using the same
cells and antibodies [11].
The properties of DNA in the nucleus have a strong

influence on the results of diverse methods, including
ChIP-seq and DNase I hypersensitivity mapping data
[12]. Both input DNA and diverse ChIPped DNA reveal
a strong tendency for the recovery of sequences from
promoter regions [4,11], indicating that the DNA shear-
ing process favors regions of open or less compact DNA.
These open regions have been demonstrated to be
enriched for TF binding and other indicators of access-
ible DNA such as key histone modifications [13].
One of the open questions about ChIP-seq results is

the not infrequent recovery of peaks under which the
target motif of the ChIPped TF is absent. Such observa-
tions might be attributable to an inadequate understand-
ing of the TF binding specificity, the potential indirect
tethering of a TF to a region through protein-protein
interactions, or non-specific antibody pull-down. Based
on this background, we sought to understand the prop-
erties of ChIP-seq TF binding data, with an emphasis
on the identification of mechanisms to account for the
past observations of peaks lacking the motif of the tar-
geted TF. Based on our research, we report a striking
property of TFBS enrichment around the peakMax for
CTCF-like, JUN-like, ETS-like, and THAP11 motifs
across a broad set of TF ChIP-seq data. The broadly
enriched TFBS classes, which we term ‘zingers’ for their
startling enrichment, can account for a substantial por-
tion of TFBS ChIP-seq data. The zinger regions are
observed to recur across ChIP-seq data from multiple
cell lines and for multiple TFs. These recurring regions
tend to be proximal to structural features defined
by cohesin and polycomb group proteins. A model to
account for the observed properties of zingers is intro-
duced and discussed.

Results
Zingers are TF binding motifs enriched across multiple TF
ChIP-seq datasets
A subset of TF ChIP-seq data has been reported to lack
motifs for the ChIPped TF, suggesting that there may be
additional proteins interacting in a sequence specific
manner with these regions. Drawing together diverse
TF-ChIP-seq data, we sought to determine if character-
ized TFs might account for a portion of the discrepancy.
To measure the enrichment of TF motifs across the com-
piled TF ChIP-seq datasets we performed motif over-
representation analyses, using the oPOSSUM 3.0 software
[9]. We tested 165 position weight matrices (PWMs) se-
lectively curated from the JASPAR development database
(see methods), on 285 human datasets (33 cell-lines) for
101 TFs (ENCODE and other resources; see Materials and
methods). A parallel analysis of mouse data was performed
for 81 datasets (12 cell-lines) encompassing 43 TFs
(ENCODE and other resources; see Materials and methods).
For each oPOSSUM analysis we provided a set of back-
ground sequences of similar length and nucleotide com-
position relative to the ChIP-seq dataset (all peaks were
constrained to 401 bp length). As there were two or more
ChIP-seq datasets for many TFs, generated from different
cell lines or conditions, we averaged the oPOSSUM enrich-
ment scores across all datasets for a given ChIPped TF. The
details of the statistical measures and assessed thresholds
are presented in the methods. Briefly, two oPOSSUM
enrichment scores were used to evaluate the datasets: a
Fisher-log score (to assess enrichment of motifs across
many ChIP-seq peaks) and a Kolmogorov-Smirnov (KS)
centrality score (to assess enrichment of motifs in proxim-
ity to the peakMax position).
Of 165 TF motifs analyzed, CTCF, ETS-like (for example,

GABPA and ELK4), and JUN-like motifs were found to be
both the most enriched and most proximal to the peakMax
across the greatest number of both human (Figure 1A and
binding site logos in 1B) and mouse (Additional file 1:
Figure S1A and binding site logos in S1B) TFs’ datasets.
We refer to such broadly enriched TF motifs as ‘zingers’,
reflecting their potential to confound the analysis and
interpretation of TF ChIP-seq results.
To assess if zinger enrichment is independent of the

ChIPped TFs’ motifs (that is, not over-lapping the ex-
pected motif), we performed a second enrichment analysis
on human ChIP-seq sequences in which the ChIPped TF
motifs were masked (thus restricting the analysis to the
subset of ChIP-seq datasets for which a TF binding profile
is available). We again consider the two metrics of Fisher-
log enrichment score and KS centrality score. The CTCF,
ETS-like, and JUN-like zinger motifs remained enriched
(Additional file 2: Figure S2A).
Short patterns, such as those found by PWMs, can

occur by chance in the genome. To confirm the findings
of zinger-specific enrichment, we shuffled the zinger
PFMs and determined the likelihood of achieving the
frequency of enriched datasets observed for the original
profile (see Materials and methods). In all cases, the com-
parison against the frequency of enriched datasets obtained



Figure 1 Zinger binding motifs are enriched across multiple human ChIP-seq datasets. (A) The histogram displays the results of TFBS motif
enrichment analysis on 281 human ChIP-seq datasets generated with the oPOSSUM 3.0 software. Along the x-axis is the fraction of datasets that
displayed enrichment near the peakMax for a TF profile. The y-axis is the number of TF profiles that were found enriched for a given fraction
of datasets. The profiles most frequently observed to be enriched are labeled on the histogram. The likelihood (P values) of a PWM with the
same width, information content, and GC composition as the CTCF, GABPA, or JUN PWMs to attain the enrichment frequency observed in the
histogram follow: 2.5e-44 for CTCF, 2.8e-09 for GABPA, and 3.7e-08 for JUN. (B) The binding site logos of the 10 TF binding models with enriched
motifs across the greatest number of datasets, manually grouped by motif similarity. Each logo depicts position along the x-axis and information
content (that is, pattern strength) along the y-axis. (C) Motifs detected consistently by ab initio motif discovery across five datasets of 5,000
random sequences. The upper motif is similar to the CTCF logo in section B, while the lower motif is similar to the motif for the THAP11 TF.
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with the shuffled matrices confirmed that the true
zinger motifs’ enrichment was extremely unlikely to
occur by chance (P values are: 2.5e-44 for CTCF, 2.8e-09
for GABPA, and 3.7e-08 for JUN).

Ab initio motif discovery of zinger profiles
We sought to determine if ab initio pattern discovery
could recover either novel profiles or known TFBS pro-
files in pooled data, a process requiring a greater signal-
to-noise ratio than the more noise-tolerant oPOSSUM
motif enrichment testing above. Across all of the ChIP-
seq data, we masked the motif of the ChIPped TF and
repeat-masked the sequences (see Materials and methods),
then drew five sets of 5,000 sequences from the ChIP-seq
pool and subjected each set to pattern discovery analysis
using the MEME system [8]. From the five replicate pools,
MEME returned profiles for wide and high information
content patterns. In all cases MEME detected a pattern
consistent with the CTCF binding profile in the top six
results (Figure 1C, top logo) and a profile unknown
to MEME Suite’s TOMTOM pattern similarity scoring
system [14] (Figure 1C, bottom logo). A report from
Ngondo-Mbongo et al. [15] identified that THAP11 binds
to a motif that matches the unknown profile, so we will
hereafter refer to the MEME derived profile as the THAP11
profile. We reviewed oPOSSUM results for the enrichment
of the THAP11 motif, and found that it is consistent with
the zingers for the Fisher-log score enrichment frequency,
but the motif is not frequently observed to be centrally
positioned based on the oPOSSUM KS-score (although it
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is proximal to the peakMax by the heuristic motif enrich-
ment method presented below in this report). Given the
strength of evidence, we elected to classify THAP11 motif
as an additional zinger.

Zinger motif enrichment observed within open chromatin
and genomic datasets
Using the oPOSSUM enrichment analysis procedure, we
sought to determine if the zingers showed enrichment in
other genomic data collections. ChIP-seq data are recog-
nized to be highly enriched with open chromatin re-
gions, and in particular ChIP-seq data for CTCF, one of
the zinger TFs, are known to strongly overlap with
DNase I hypersensitive sites [16,17]. We therefore ana-
lyzed ENCODE DNaseI-seq and Faire-seq data to assess
the enrichment of the zinger motifs. Each region (aver-
age 150 bp) was extended to 401 bp for enrichment ana-
lysis using the oPOSSUM 3.0 software. oPOSSUM
enrichment results revealed the zinger profiles to be the
most frequently enriched within DNaseI-seq and Faire-
seq datasets, showing enrichment near the region centre
in 50% to 100% of the DNaseI-seq datasets, and 20% to
92% of Faire-seq datasets (Additional file 3: Figure S3).
We further assessed the ratio of zinger motifs in DNase
and Faire regions compared to flanking regions, provid-
ing an indication of the portion of each dataset that
could be attributed to zingers: mean values of 47% for
DNaseI-seq and 13% for Faire-seq were obtained (see
Additional file 4: Text S1).
We have observed enrichment of zingers in other open

chromatin associated data such as ChIP-seq data for
helicase-related proteins or histone modifiers (Additional
file 4: Text S1 and Additional file 5: Figure S4), and ChIP-
seq control data (Additional file 4: Text S1 and Additional
file 6: Figure S5). Thus zinger motifs are observed in mul-
tiple classes of genomic datasets.

Visualizing the pattern of motif enrichment
We first used visualization approaches to examine the
distribution of both the motif scores and peakMax prox-
imity for the CTCF, JUN, GABPA, and THAP11 zinger
motifs for several datasets using TFBS-landscape plots
[18]. To visually assess the topological pattern of enrich-
ment of zinger motifs using TFBS-landscape plots, we
extended all analyzed sequences to 1,001 bp (peakMax
position at 501 bp), and plotted the motif position rela-
tive to the peakMax (x-axis; upstream and downstream
of peakMax) and the motif score (y-axis) of the top scor-
ing zinger motif for each peak. As seen in Figure 2, the
motif predictions of zinger PWMs are in general con-
centrated in motif score ranges across all positions rela-
tive to the peakMax, for example, motif scores 70 to 85
for CTCF (Figure 2A), or 80 to 87 for JUN (Figure 2B).
However, proximal to the peakMax, there is a distinctive
enrichment for the zinger motif, most strikingly seen for
CTCF and THAP11 where almost all high scoring motifs
(>85) are located proximal to the peakMax. The enrich-
ment of JUN and particularly GABPA zinger motifs are
less distinctive visually, due to the peakMax proximal
enrichment overlapping the same score range as the
background motifs. In control datasets and with shuffled
matrices we do not see the distinct high scoring popula-
tion of motif scores; we instead see a uniform distribution
along the total 1,001 bp of sequence, which conveys, visu-
ally, the background rate of motif prediction for the PWM
(Additional file 7: Figure S6). The distinctive zinger motif
enrichment allowed for the selection of subsets of peaks
that were enriched for the motif of a TF that was not spe-
cifically targeted by the ChIP-seq experiment.

Defining a set of zinger motif containing peaks
Based on the visualization analysis we used a procedure
for determining the range of motif enrichment relative
to peakMax proximity and motif score enrichment [18].
The outer limits of these ranges of enrichment were then
applied as thresholds that defined ‘enrichment zones’ for
quantitative analysis of ChIP-seq dataset motif compos-
ition (Figure 3; see Materials and methods).
For ease of reference, we will hereafter use ‘zinger mo-

tifs’ to refer to the collection of CTCF, JUN-like, ETS-
like, and THAP11 motifs within the enrichment zones
and ‘zinger motif peaks’ to refer to those peaks within a
dataset that have a zinger motif but not the ChIPped
TF’s motif. Motif predictions outside the enrichment
zones will be referred to as ‘distal-zinger’ motifs.
As anticipated, peaks with the ChIPped TF’s motif

proximal to the peakMax comprised the majority of
most datasets (up to 99% in the best case). After ac-
counting for background ChIPped TF motif rates, the
mean observed portion was 55% (the median was 59%
with a median absolute deviation (MAD) of 27 pp).
There are, however, extreme cases in which the ChIPped
TF’s canonical binding motif is present in less than 10%
of the peaks (Additional file 4: Text S1 and Additional
file 8: Figure S7).
After accounting for background, and excluding two

outliers, up to 45% of a ChIP-seq dataset are zinger
motif peaks with a mean of 12% (median of 9% with a
MAD of 3 pp) (Additional file 9: Figure S8A). The zinger
motif peaks account for up to 69% of the set of peaks
unexplained by the ChIPped TF’s motif, with a mean of
27% (median of 27% with MAD of 14 pp), in datasets
with at least 1% zinger motif peak content (Additional
file 9: Figure S8B); the zinger motif peak enrichment is
visually depicted in a heat map format (Additional file 9:
Figure S8C). For clarity, the portion of zinger motif
peaks are anti-correlated with the portion of ChIPped
TF motif peaks (Additional file 9: Figure S8D).



Figure 2 Zinger motifs are enriched at the peak maximum of non-zinger ChIP-seq datasets. The enrichment plots display the location of
the top scoring motif for each peak relative to the peakMax (the peakMax is at 0) on the x-axis, while the score of the motif is plotted on the
y-axis. The adjacent line plots display the fraction of motifs observed in 5 bp increments. The logo reflecting the binding specificity for each
zinger appears above the related enrichment plot. (A) CTCF motif predictions from NRF1 ChIP-seq (GM12878 cells). (B) JUN motif predictions
from TCF7L2 ChIP-seq (Hct116 cells). (C) GABPA motif predictions from NFKB ChIP-seq (GM19099 cells). (D) THAP11 motif predictions from IRF1
ChIP-seq (K562 cells).
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No strong dependencies detected for zinger motif occurrence
As zinger motifs are present in peaks without the ChIPped
TF’s motif we wanted to determine if there were any char-
acteristics specific to or in common among this set of
peaks. We found that neither the presence nor proportion
of zinger motif peaks within a ChIP-seq dataset is depend-
ent on cell type, as seen in Additional file 10: Figure S9A
Figure 3 The fraction of zinger motif peaks and ChIPped TF motif pe
random selection of 50 datasets for multiple TFs and cell-lines with zinger
motif peak enrichment to the least. Black is the portion of peaks with the C
is the remaining portion of peaks that do not contain either the ChIPped T
for the five most abundant cell lines. Neither, is the
proportion of zinger motif-containing peaks consistent
across multiple datasets for the same TF (Additional
file 10: Figure S9B).
Next we asked if the zinger motifs have a strong tendency

to co-occur in the same zinger motif peaks. We found that
at most 11% of datasets show a positive association with a
aks varies across ChIP-seq datasets. The pie charts present a
motifs present (>1% zinger). The charts are ordered by greatest zinger
hIPped TF’s motif, red is the portion of zinger motif peaks, and brown
F nor zinger motifs.
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significant P value (Fisher exact P values <0.001 and log
odds ratios >0) for any pairwise co-occurrence of two dif-
ferent zingers within a single peak (the most frequent pair
of zingers being GABPA and THAP11). A few datasets
(17%) show a negative association for zinger motif co-
occurrence with a significant P value (Additional file 11:
Figure S10A). Thus, the zinger motifs are not inter-
dependent. We next evaluated the pairwise tendency for
zinger motif peak enrichment within the same ChIP-seq
datasets, finding unremarkable correlation values (correl-
ation coefficients -0.0233 to 0.3803) (Additional file 11:
Figure S10B).
Lastly we determined whether zinger motif peaks were

consistently located near a feature in the genome. We
evaluated the proximity of zinger-associated regions to
genomic features such as transcription start sites (TSS),
CpG islands, conserved regions, and repeat sequence re-
gions. Comparing the set of zinger motif peaks to peaks
with the ChIPped TF’s motif, we did not detect consist-
ent enrichment tendencies that distinguished between
the two sets of regions (Additional file 4: Text S1).
Peaks containing a zinger motif but lacking the ChIPped
TF motif have low scores
As zinger motifs are an unexpected presence across data-
sets we assessed the quality of the peaks they occur in,
asking if the zinger motifs tended to be in the lower scor-
ing peaks of the dataset. We compared the peak calling
scores of peaks containing the ChIPped TF’s motif against
peaks with a zingers’ motif. The peak scores for the zinger
containing peaks are significantly poorer than for those
peaks with the ChIPped TF’s canonical motif (Wilcoxon
one-tailed test P values <5.0e-05).
Peaks with a zinger motif may be bona fide targets of the
zinger TF
Prediction of TFBSs can suffer from poor specificity, and
as the enriched zinger motifs’ peaks were unexpectedly
found in datasets for non-zinger TFs, we asked if the
zinger motif peaks were actual binding locations for the
zinger TF or not. Therefore we investigated the degree
of agreement (co-occurrence within 100 bp) between
zinger motif peaks with a strong motif score (score >85)
and ChIP-seq data ChIPped for the zingers TF in the
same cell type (Figure 4). On average 75% of zinger CTCF
motif peaks overlapped CTCF ChIP-seq peaks (median
79% with a MAD of 15 pp); 38% of zinger JUN motif
peaks overlapped JUN ChIP-seq peaks (median 38%
with a MAD of 17 pp); and 28% of zinger GABPA motif
peaks overlapped GABPA ChIP-seq peaks (median 27%
with a MAD of 13 pp). In all cases the agreement was
significant (Wilcoxon P values <3.4e-20) with respect to
the distal-zinger control (see Additional file 4: Text S1),
and indicated that many of the zinger regions may be
bona fide binding regions for the zinger TF.
A comparison of the peak scores for the ChIP-seq

peaks that overlapped the set of zinger motif peaks versus
the set of distal-zinger peaks revealed a significant differ-
ence between the two groups (Wilcoxon one-tailed test
significance threshold P value <0.001). The zinger motif
peaks associated with stronger scoring ChIP-seq peaks
than did the distal-zinger peaks for the majority of data-
sets (that is, 81%, 67%, and 79% of CTCF, JUN, and
GABPA ChIP-seq datasets, respectively).

Zinger motif peak regions recur across multiple TF
datasets
As zinger motif peaks are enriched in numerous datasets
for which the zinger is not the targeted TF, we asked
whether the same zinger regions were occurring repeat-
edly across multiple datasets, that is, are the same zinger
regions being ChIPped by many TFs. We pooled the
zinger motif peaks, which by definition lacked the motif
of the ChIPped TF, from across datasets (33 cell lines;
823,574 peaks), requiring that the zinger motif have a
strong motif score of 85 or greater to reduce false posi-
tives. We assigned peaks whose peakMax were within
50 bp of each other into neighbourhoods (see Materials
and methods), and then assessed the recurrence of each
neighborhood, that is, the number of unique TFs whose data-
sets contributed a zinger motif peak to the neighbourhood.
We obtained 257,631 zinger neighbourhoods of which

92,244 neighbourhoods derived from regions ChIPped by
two or more unique TFs. The neighborhoods ChIPped by
two or more TFs are on average 167 bp in width (max-
imum 607 bp), and 77% derive from two or more cell lines.
This amounts to approximately 15.4 Mbp of recurrently
detected zinger motif associated sequence that was
ChIPped by 2 to 41 non-zinger TFs in up to 21 cell lines.
Figure 5 exemplifies the number of TFs that ChIPped
zinger neighbourhoods across chromosomes 1 and 3
(zinger neighbourhood coordinates are provided in
Additional file 12: Dataset S1).
We similarly generated neighborhoods from those re-

gions with neither the ChIPped TF nor zinger motifs (un-
identified motif neighborhoods - 536,546), and from the
regions found to have a high scoring motif (score >85) for
the ChIPped TF and no zinger motif (ChIPped TF neighbor-
hoods - 408,677) (see Materials and methods). The zinger
neighborhoods were found to be ChIPped by significantly
more unique TFs than are the other two sets of neighbor-
hoods (Wilcoxon one-tailed test P value = 0).
The recurrence of the zinger motif peaks across datasets

prompted us to consider the motif content of HOT re-
gions. HOT (high occupancy of transcription-related pro-
teins) regions, as defined by Yip et al. [19], are ChIP-seq
regions that within a single cell line (GM12878, HeLa,



Figure 4 ChIP-seq data for zinger TFs overlaps zinger motif peaks from other TF’s datasets. For each plot, a selection of TF ChIP-seq
datasets is alphabetically ordered by TF name horizontally. The y-axis represents the fraction of peaks that overlap with the zinger TF’s ChIP-seq
peak in experiments performed with the same cell type. Two populations of peaks are plotted per dataset: solid circles represent the subset of
peaks with a peakMax-proximal zinger motif, and open triangles represent the subset of peaks with a distal-zinger motif. (A) CTCF, (B) JUN, or
(C) GABPA. The horizontal dashed line at 0.13 is a qualitatively selected visual aide.
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H1-hESC, HepG2, or K562) demonstrate binding co-
occurrence among chromatin-related factors, general TFs,
and sequence-specific TFs. Yip et al. noted that a substan-
tial portion of a cell-line’s HOT regions are motif-less for
the ChIPped factor, and associate with strong DNaseI sig-
nals. The HOT regions are present in two or more cell
lines in 25% of cases according to Yip et al., while zinger
neighborhoods were noted above to be 77% of cases.
oPOSSUM over-representation analysis on the combined
set of HOT regions found the zinger motifs to be 13 out
of the 20 most enriched patterns, consistent with what
was observed above for the DNaseI-seq/Faire-seq open
chromatin datasets (Additional file 13: Table S1).

Zinger neighbourhoods tend to occur close to regions
occupied by cohesin
Recurring open chromatin enrichment across datasets
suggested that structural properties of chromatin might
contribute to zinger motif recovery across ChIP experi-
ments [12]. Cohesin is a protein noted for both its role in
gene regulation and DNA structure [20,21]. It is a multi-
subunit complex, which is believed to form a ring like
structure around DNA, and has been well documented in
its role of sister chromatid interaction during the mitotic
metaphase. Cohesin has also been implicated in promoting
interaction between enhancers and core promoters of
active genes in embryonic stem cells [21] and in chromo-
somal looping [22]. Chromosomal looping may be a struc-
tural element that is conducive to DNA shearing under the
stress of sonication. Additionally, cohesin or associated
proteins may function as a ‘loading station’ by bringing to-
gether proteins bound to remote regulatory elements and
promoter regions that will in turn regulate transcription
within the looped region [23].
We evaluated the proximity of the zinger neighborhoods

to cohesin-interacting regions. Zinger neighborhoods are



Figure 5 Zinger motif peaks recur across datasets for multiple TFs. The plots present two distinct neighbourhood sets (as defined in the
text): one set derived from zinger motif peaks (red) and the other from ChIPped TF motif peaks without zinger motifs (black). The x-axis gives the
neighborhood position on a chromosome: (A) chromosome 1, (B) chromosome 3. The y-axis is the number of unique TFs that ChIPped a peak
in a neighborhood. A horizontal dotted line at y = 5 is given for visualization purposes, to highlight that there are many zinger neighborhood
locations (red) that were ChIPped by multiple unique TFs.
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enriched for proximity (that is, within 500 bp) to cohesin
regions (via RAD21 and SMC3 ChIP-seq) compared to
the ChIPped TF neighborhoods or unidentified motif
neighborhoods (Fisher exact one-tailed test P value of 0
for both comparisons; 77% of the zinger neighborhoods
observed for multiple TFs are proximal, while 46% of
the unidentified motif and 13% of the ChIPped TF
neighborhoods are so positioned). The neighborhoods
for unidentified motif peaks were also significantly more
proximal to cohesin than neighborhoods from ChIPped
TF peaks (Fisher exact one-tailed test P value of 0). As
some of the neighborhoods contain CTCF zinger attrib-
uted regions, and cohesin is known to interact with CTCF
[24,25], we removed neighborhoods within 500 bp of a
CTCF ChIP-seq region and repeated the analysis. Re-
gardless of the depletion of CTCF associated neighbor-
hoods, the zinger neighborhoods remained significantly
closer to cohesin (Fisher exact one-tailed test P value of
0 for all comparisons).
Another system noted to impact chromatin structure

are the polycomb group proteins (including polycomb
repressive complex 1 (PRC1) and polycomb repressive
complex 1 (PRC2) forms), which are implicated in the
remodeling of chromatin. In drosophila, PRC1 has been
noted to interact with cohesin to co-regulate active
genes [26]. We used ChIP-seq data for the constituent
proteins CBX and EZH2 proteins to identify regions
bound by the PRC1 and PRC2 complexes, respectively.
We found that the zinger neighborhoods were signifi-
cantly closer to CBX peaks and EZH2 peaks than are the
neighborhoods derived from either ChIPped TF motif
peaks, or from unidentified motif peaks (Fisher exact
one-tailed test P value of 0). We observed that the PRC1
and PRC2 peaks proximal to the zinger neighborhoods,
tend to be those that are also within 500 bp of cohesin
(Fisher exact one-tailed test P value <7.6e-160 for PRC1,
and P = 0 for PRC2). The unidentified motif neighbor-
hoods are, in turn, significantly closer to PRC regions
than the neighborhoods derived from peaks with the
motif for the ChIP-seq experiment’s targeted TF.
Thus, the zinger neighborhoods, and to a lesser degree

the unidentified motif neighborhoods, are associated with
cohesin and polycomb repressive complex regions. This
suggests that these diverse regions, which were initially
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identified as not containing the motif of the ChIPped TF,
and yet in many cases enriched for an alternative motif
(zingers), may be part of a structure involving cohesin. Such
a structure could influence the tendency for these regions
to be detected recurrently across diverse ChIP-seq data.

Discussion
ChIP-seq experiments are increasingly used to investigate
how sequence-specific DNA binding TFs regulate gene
expression. In this report, we introduce ‘zingers’: four clas-
ses of TFBSs that display significant binding site enrich-
ment, unexpectedly proximal to the peakMax, across
ChIP-seq binding experiments for other TFs. Within indi-
vidual TF ChIP-seq experiments, up to 45% of peaks are
Figure 6 A model to account for zinger motif enrichment across ChIP
compatible with the observed enrichment of zinger motifs across diverse T
ChIPped TF, the magenta oval represents the zingers, the remaining colour
with the DNA, and the red loop represents cohesin and polycomb group p
station. Multiple proteins may interact within a local region, from which TF
structural components such as cohesin and polycomb group proteins are k
DNA loading station segments might be recovered in a ChIP-seq experime
zinger motif is present in trans (upper) or in cis (lower). (C) Indirect binding
mediating protein. The zinger motif is again present in trans (upper) or in c
the loading station, providing an abundance of epitopes, thus increasing th
observed that lack the canonical TF binding motif and
contain a zinger motif, with a mean of 12% (median 9%).
While biased to the lower scoring peaks in other TF
ChIP-seq data, the same zinger-associated regions tend to
be high scoring peaks within datasets ChIPped for the
zinger TF; indicating these regions are likely bound by the
zinger TF. The zinger motif peaks derive from 257,631 re-
gions (neighborhoods) in the genome, 36% of which are
observed recurrently across datasets for diverse TFs, in
sharp contrast to neighborhoods containing only the
ChIPped TF’s motif, which recur relatively infrequently.
Some regions lacking both the ChIPped TF’s motif and
a zinger motif, are also recurrently observed. Both
zinger motif and unidentified motif neighborhoods are
-seq datasets. A TF loading station model is presented that is
F ChIP-seq data and cell lines. The dark blue oval represents the
ed ovals represent TFs or other proteins or complexes that engage
roteins. The grey strands are chromatin. (A) Overview of a loading
s may disperse to search for other regulatory regions. Zingers and
ey features. Panels B, C, and D present specific scenarios under which
nt. (B) Direct binding. The ChIPped TF directly binds to a TFBS, while a
. The ChIPped TF is present due to an indirect interaction, involving a
is (lower). (D) Non-specific events. Numerous proteins are present at
e probability of being recovered in a ChIP-seq experiment.
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positioned proximal to structural regions defined by the
presence of cohesin and polycomb group complexes. Ac-
counting for the contribution of zinger-associated regions
to global studies of regulatory sequences will be a consid-
eration for future analysis of ChIP-seq data.
Understanding the underlying biochemical mechanism

by which the zinger-associated regions are observed across
such diverse datasets remains to be resolved. However,
based on the findings in this investigation, we present a
‘loading station’ model consistent with our state of under-
standing (Figure 6). Cohesin/polycomb and zinger proteins
are proposed to participate in demarcation and stabilization
of inter-segment interactions of DNA at which TFs bind.
At these ‘stations’, the ChIPped TF may be present via direct
(Figure 6B) or indirect (Figure 6C) interactions with
the DNA, and either in cis- or trans- arrangements with a
zinger TFBS. In a ChIP experiment, assuming covalent
linking of the ChIPped TF and the cohesin-paired DNA,
the patterns of motif enrichment observed in this report
could emerge, including the presence or absence of motifs
for both the ChIPped TF and a zinger. Alternatively, or pos-
sibly in combination, there may exist zinger-containing re-
gions (Figure 6D) at which many proteins are present (at a
cell population level). Such regions may contain a diverse
range of epitopes and therefore be more likely to be recov-
ered in ChIP-seq experiments, especially with polyclonal
antibodies. Within this model, TFs may ‘visit’ cohesin and
zinger marked regions, resulting in a low but consistent re-
covery of reads in a ChIP-seq experiment. The model ac-
counts for recurring detection of zinger motif peaks, the
proximity of the peaks to cohesion interacting regions, and
why the zinger motifs may be present in the sequence even
when the ChIPped TF’s motif is absent.
From a broader mechanistic perspective, a loading sta-

tion mechanism is consistent with the ‘hop-skip-jump’
theory for how TFs efficiently search the nucleus to arrive
at their TFBSs [27]. The proposed loading station model
is supported in recent literature. Faure et al. [23] propose
a role for cohesin in stabilizing large protein-DNA com-
plexes. While this manuscript was under review, Taipale
et al. [28] published a study using the LoVo cell line sug-
gesting that cohesin participates in holding chromatin
open during cell division to facilitate TFs relocating back
to those regions once division is complete.
The zinger content of every ChIP-seq dataset should be

evaluated, consistent with a growing effort to critically
evaluate such data [12,29,30]. For instance, the STAT1
(GM12878) ChIP-seq dataset exceeds 30% of peaks with
zinger motifs proximal to the peakMax, while STAT1 mo-
tifs occur only at the background frequency. We propose
a general approach for the study of zinger content. For
each ChIP-seq dataset, the peak regions should be
scanned for the presence of the ChIPped TF motif in
proximity to the peakMax. The peaks lacking a ChIPped
TF motif should be compared to the recurring zinger
neighborhoods (Additional file 12: Dataset S1). The por-
tion of the dataset overlapping the neighborhoods gives
insight into the overall specificity of the experiment.

Conclusions
We have identified zinger motifs that are frequently
enriched across a portion of TF ChIP-seq data, including
CTCF-like, ETS-like, and JUN-like motif families, and
THAP11. As high-throughput ChIP-seq data informs
genome annotation, research into gene regulation may
be impacted by zinger motif derived annotations. Mov-
ing forward it will be important to determine the preva-
lence of zinger-like motifs in ChIP-seq data in diverse
organisms, probe the structural properties of the zinger
regions, and develop computational approaches to sys-
tematically identify recurring zinger regions in large-
scale genome annotation. Ultimately, understanding the
biophysical processes that result in the zinger motif en-
richment in ChIP-seq data may provide broader insight
into the mechanisms of transcription regulation.

Materials and methods
Datasets
For our analyses, we used ENCODE ChIP-seq datasets
(human and mouse), ENCODE DNaseI-seq and Faire-seq
data, and human ChIP-seq controls [1] downloaded from
the UCSC ENCODE database [31]. We also incorporated
non-ENCODE ChIP datasets downloaded from GEO:
(1) GSE11431 - 13 mouse ESC datasets [32]; (2) GSE25532 -
mouse NFYA data in ES cells [33]; (3) GSE17917 and
GSE18292 - human KLF4, POU5F1, cMYC, NANOG, and
SOX2 data [34]; and (4) GSE22078 - human and mouse
CEBPA and HNF4A [35]. Where only the mapped data
were available, we used FindPeaks 4.0 [36] to call peaks
using the following parameter options: dist_type 1 200
-subpeaks 0.6 -trim 0.2 -duplicatefilter. The ENCODE
broadPeak datasets frequently occurred in replicate; to
avoid duplication, only the replicate with the most peaks
of a pair was used for analyses.
Where coordinates were provided as NCBI36/hg18 or

NCBI36/mm8, they were first converted to GRCh37/
hg19 or NCBI37/mm9, using a locally installed version
of the UCSC lift-over tool [37]. We then used the
Ensembl API to retrieve sequences from GRCh37/hg19
and NCBI37/mm9 assemblies.
The ENCODE ChIP-seq data are in one of two formats,

narrowPeak and broadPeak. Both formats contain two col-
umns pertaining to statistical significance of the peaks
(also known as peak scores): one is a P value, the other a q
value (bonferroni corrected). We used the q value field
when it was assigned, and otherwise used the P value field.
As peaks are reported in a multitude of lengths, in the

range of 1 bp to greater than 5,000 bp, we trimmed or
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extended all peaks to a constant length centered at the
peak maximum for narrowPeak format datasets, or at
the peak centre for broadPeak format and DNase-seq/
Faire-seq datasets. For enrichment visualization and de-
termining heuristic boundaries of enrichment we used
1,001 bp sequences, oPOSSUM TFBS enrichment ana-
lysis input was 401 bp sequences, and ab initio motif de-
tection input was 201 bp sequences.
Position frequency matrices (PFMs) were obtained

from the JASPAR [38] development 4.0_alpha database
of transcription factor models (prior to 2013, April).
Where the JASPAR PFM did not agree with the consen-
sus in the literature we performed an ab initio analysis
on the top 500 peaks (selected by peak score) of two or
more ChIP-seq datasets for the given TF, using a locally
installed version of the MEME software [8]. MEME re-
sults were then checked against the literature and for en-
richment in a different ChIP-seq dataset for the given
TF. MEME position specific probability matrices (PSPM)
were converted to PFMs by transposing the PSPM and
multiplying each letter (A, G, C, T) frequency in the
matrix by the number of sites found by MEME. The
PFMs were subsequently converted to position weight
matrices (PWMs), using the TFBS Perl Module [39],
only PWMs based on PFMs with information content
(IC) greater than 8 bits were retained. The PFMs used in
this study are provided in Additional file 14: Dataset S2.
For those analyses using datasets of shuffled matrices,

the datasets were generated by random permutation of all
columns of the originating PFMs, excluding the lower in-
formation content columns on the edges (2 columns on
each side for all cases, except for the wider CTCF PWM
for which 3 columns on each side were held constant).

Motif over-representation analysis
Motif over-representation analyses were performed with
a locally installed version of oPOSSUM 3.0 [9]. We used
the sequence-based analysis option with default settings,
except for specifying the use of the JASPAR develop-
ment PFM matrices (Additional file 14: Dataset S2). We
trimmed or extended all peaks to 401 bp. Backgrounds
for the over-representation analyses came from the map-
pable portion of the genome, and were chosen to match
the sequence length and mononucleotide GC compos-
ition distribution of each dataset.
The oPOSSUM Fisher-log enrichment score is derived

from a one-tailed Fisher exact probability test, based on
the hypergeometric distribution which compares the
number of sequences that contain a motif for the TF of
interest in the target and background datasets. The
negative natural logarithm of the Fisher test probabilities
is the reported Fisher-log score. Thus a Fisher-log score
of 6.91 or higher is equivalent to a P value of 0.001 or
lower. Fisher-log enrichment scores of ‘infinite’ value
were set to either 500 or to 100 past the maximum non-
infinite Fisher-log score.
The oPOSSUM KS centrality score is the negative loga-

rithm of the probabilities from a Kolmogorov-Smirnov
test. Thus a KS score of 6.91 or higher is equivalent to a
P value of 0.001 or lower. The Kolmogorov-Smirnov tests
whether a TF’s motifs are positionally enriched at the cen-
ter of the target sequences relative to the motifs in the
background set of sequences. KS ‘infinite’ enrichment
scores were set to 100.
To calculate the number of datasets enriched for a

motif we first obtained the average Fisher-log score and
KS log score for datasets ChIPped for the same TF.
Once we had a set of scores for each TF, we used a bin-
ary count of 1 or 0 to indicate whether both of the
oPOSSUM enrichment scores passed a threshold based
on the standard deviation (SD) of the scores or not (two
SD for Fisher-log scores and one SD for KS log scores).
This yielded the number of datasets with enrichment
around the sequence midpoint for each of the 165 TFs.
We then applied a further correction to compensate for
the bias created by multiple datasets for families of TFs
that recognize the same motif (for example, JUN, JUND,
JUNB, AP1, FOS, FOSL1, FOSL2, and BATF PWMs all
recognize a TGA(g/c)TCA consensus). The number of
motif-family members, minus one, was subtracted from
the count of datasets for each of the member TFs, for
example, if JUNB were enriched in 20 TF datasets, and 9
of those datasets were ChIPped for a TF that recognizes
the JUN-motif family consensus, then a count of eight
would be subtracted from 20. The 165 TFs were then
ranked according to this final number of associated datasets.

Motif over-representation analysis with shuffled matrices
To assess the probability of a PWM’s predictions being
enriched within as many datasets as observed with the
zinger PWMs, we shuffled the PFMs of the zingers and
fit a distribution to the results. We generated 100 shuf-
fled matrices as described above. We performed oPOS-
SUM enrichment analyses with the shuffled PWMs, on
the same human datasets as used to generate Figure 1.
The oPOSSUM results were evaluated as outlined above.
However, we applied the enrichment score thresholds
for each dataset as was set for the original PWMs. We
then counted the number of datasets within which each
shuffled profile was enriched, and fit a zero-adjusted
logarithmic distribution (ZALG) to the counts. The dis-
tribution was selected using the fitDist() function in
the R statistical package GAMLSS 4.1-5 [40], and the
parameters describing the distribution were obtained
with gamlss family ZALG and the gamlss() function. We
tested for goodness-of-fit of the distribution to the data
by generating datasets from the random generation func-
tion, rZALG, and assaying the similarity of the generated



Worsley Hunt and Wasserman Genome Biology 2014, 15:412 Page 12 of 16
http://genomebiology.com/2014/15/7/412
distributions to our data using a chi-squared test. The fit-
ted distribution function was then used to determine the
probability of the shuffled PWMs obtaining a result as ex-
treme as the original PWM. The probability was calcu-
lated with the density function for the zero-adjusted
logarithmic distribution (dZALG).

Motif prediction
Motif prediction was performed with C-code adapted
from the TFBS Perl Module [39], reporting relative motif
scores. Motifs predicted by a PFM are not permitted to
overlap by more than one-fifth the PFM length (this set-
ting is intended to equate to the low information con-
tent flanks of a PWM), for example, a 7 bp motif could
only overlap a neighboring motif by 1 bp.
For post-oPOSSUM analyses, we predicted the presence

of zinger motifs using one PWM per zinger TF motif fam-
ily as proxy, to prevent redundancies. CTCF-like motifs
were predicted with the CTCF PWM, ETS-like motifs
with the GABPA PWM, JUN-like motifs with the JUN
PWM, and THAP11 motifs with a THAP11 PWM.

MEME suite tools
MEME [8] analyses were run using the following op-
tions: -dna -nmotifs 10 -minw 6 -maxw 15 -maxsize
2000000 -mod zoops -revcomp. TOMTOM [14] ana-
lyses were run with default values, aside from increasing
the E-value threshold to 20, from the web server.

Repeat-masking
Masking of repeat elements was performed using a local
installation of RepeatMasker (RMBlast) [41] and RepBase
[42], using default settings.

Data processing and statistical analyses
Data processing and statistical analyses were done with a
combination of in-house Unix and R scripts (R version
2.14.1) [40]. Throughout the manuscript we report the
combination of median and the median absolute devi-
ation (MAD), a measure of dispersion around the me-
dian. For a normal distribution the median and MAD
are the same values as the mean and SD.

TFBS-landscape visualization plots
To visualize peakMax proximal enrichment of TF motifs
within ChIP-seq datasets, the top scoring predicted
motif in each region for the given TF PWM, was plotted
relative to its signed distance from the peakMax (using
the R basic statistical package [40]). The dense horizon-
tal ranges of motif scores spanning all positions relative
to the peakMax, such as seen in the Figure 2 plots, are
observed for the combination of most PWMs and ChIP-
seq datasets, and are likely a mixture of both false and
true TFBS predictions. Those motif matches that are
distal to the peakMax are anticipated to be less reliable,
as the observed frequency is consistent with background
rates of motif prediction. If we take enrichment proximal
to the peakMax as a measure of confidence for the pre-
dictions we can determine a distance threshold and
motif score threshold (see next section) at a point where
motif frequency proximal to the peakMax is greater than
the flanking distal motif frequency. Using this threshold,
we can select a sub-population of peaks that are less
likely to have arisen by chance.

Heuristic boundaries of enrichment
We assessed the enrichment of motif distance to the
peakMax and motif score, using a heuristic method for
topological motif enrichment [18], which we outline in
brief here. To determine whether a motif was proximal
to the peakMax, we used heuristic distance boundaries
derived from the density of the top scoring motif for
each 1,001 bp region. We identified the location, relative
to the 501st bp, at which the density of motifs exceeds
that of the distal region (approximately 175 to 500 bp
distant from the peakMax). This change in density is ob-
served in the TFBS-landscape plots of Figure 2, where
there is a constant density of motif scores in the distal
regions and an increase in the density of motif scores
within approximately 100 bp of the peakMax. The heur-
istic distance boundaries were set at the transition point.
A similar procedure was applied to determine a thresh-
old for the motif score, where the motif score threshold
was set at the point where the motif enrichment prox-
imal to the peakMax was at least 20% higher than the
flanking enrichment. The region defined by the distance
boundaries and the motif score threshold, was termed
the ‘enrichment zone’. The enrichment zone was subse-
quently used to specify peakMax enriched proximal mo-
tifs. On average, an enrichment boundary was ±90 bp
from the peakMax, and the motif relative score thresh-
old was 82.
The heuristic analysis of motif enrichment across data-

sets reports that on average a CTCF zinger motif is
enriched above a motif score threshold of 79, while for
JUN the average was 86, for GABPA it was 83, and for
THAP11 it was 84. CTCF and THAP11 in particular
consistently have enrichment above a motif score
threshold of 85 that is strongly distinct from the flanking
regions of similar score range, as seen in Figure 2A and
D. The regions that flank the peakMax proximal enrich-
ment in Figure 2 are representative of the background
expectation of a PWM’s motif prediction. Thus, to re-
duce the presence of false positive predictions in subsets
of peaks we analyzed, we selected, where noted in the
main text, peaks with a motif scoring above the motif
score threshold of 85. The use of a single threshold per-
mits the processing of data as a single unit. A motif
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score of 85 is also the default threshold score in the
oPOSSUM software.

Background expectation of motif predictions
To estimate the proportion of regions in a given dataset
in which motifs may result from background motif pre-
diction, we compared the count of regions with motifs
in the enrichment zone relative to the count of regions
with motifs at least 50 bp outside the enrichment zone.
The distal ‘zone’ from which counts were determined,
was set to be the same length of sequence as the enrich-
ment zone, that is, if the enrichment zone was 200 bp
wide, then the distal zone was also 200 bp wide (100 bp
from 5′ and 100 bp from 3′ of the region center). To es-
timate the proportion of regions in the enrichment zone
with false positives, we divided the number of regions
with motifs in the distal zone by the number of regions
with motifs in the enrichment zone. See Additional file 4:
Text S1 for the estimated overall background expectation
of ChIPped TF and zinger motif prediction.
Calculating the background corrected estimates of

ChIPped TF and zinger motif proportions within a data-
set was done by subtracting the distal zone count from
the enrichment zone count for the ChIPped TF or each
zinger. For the ChIPped TF, the corrected count was di-
vided by the size of the dataset. For the four zingers, the
four corrected counts were first summed, and then di-
vided by the size of the dataset.

Heatmaps and correlation between zinger motifs
Heatmaps were created with the heatmap.2() function
from the R statistical package: gplots, with the distance
measure as ‘manhattan’ and the ‘ward’ agglomeration
method for clustering.
The heatmap of zinger motif peak log2 fold enrich-

ment was generated using the log2 fold enrichment of
zinger motif peaks with motif score 85 or greater, rela-
tive to distal-zinger peaks of similar score range. Where
the fold enrichment was below 1.5 we assigned a mini-
mum value, represented as a grey colour in the heatmap,
to facilitate visualization.
A heatmap of zinger motif inter-dependency within

datasets was generated using the set of zinger motif
peaks with motif scores equal to or greater than 85, and
a 2×2 confusion matrix for each pair of zinger motifs. A
Fisher exact P value <0.001 was taken to indicate signifi-
cance and the sign of the log odds ratio to indicate
whether a positive or negative association existed. The
values used to generate the heatmap were 1-pvalue for
positive associations, -1*(1-pvalue) for the negative asso-
ciations, and 0 for the non-significant P values.
The pairwise correlation of zinger motif peaks for the

different zingers, across datasets, was assessed using
the log2 fold enrichment values generated for the above
heatmap. The correlations were evaluated with both
Pearson correlation and Spearman’s rank order correl-
ation (R basic statistical package: cor() function).

ChIP-seq controls
We obtained controls from a range of cell types and EN-
CODE consortium groups, and processed the mapped
reads with FindPeaks. We used the peak height to rank
the control peaks, and then selected the top 70,000
peaks. The number of peaks was chosen to match the
average size of the ChIP-seq datasets. The peaks were
then scored with the zinger PWMs and the enrichment of
the motifs with respect to the peakMax was evaluated.

Evaluating proximity of zinger motif peaks to genomic
features
We compared the genomic feature proximity of zinger
motif peaks, with those peaks containing the ChIPped
TF’s motif and lacking zinger motifs. We measured the
distance between the peakMax and the middle of the
feature, which in the case of transcription start sites
(TSSs) was simply the starting coordinate of the tran-
script. We used only those datasets for which we had at
least 200 zinger motif peaks. The number of peaks that
were within 500 bp, 1 kb or 5 kb of the TSS, or within
500 bp of CpG islands, conserved regions or repeat-
masked regions were compared between the zinger
motif peaks and the ChIPped TF peaks using a Fisher
exact test. For the results of a zinger to be considered
striking we required that at least 60% of the datasets
with zinger motifs show statistical significance in one
direction, that is, either 60% of datasets tend to be prox-
imal to a feature, or 60% of datasets tend to be distal to
a feature.

Comparing zinger regions from non-zinger ChIP-seq
datasets to peaks ChIPped by the zinger TF
We assessed the proximity of the zinger motif peaks
with a high scoring zinger motif (score >85) to ChIP-seq
peaks ChIPped by the zinger’s TF to determine whether
the zinger motif peaks found in datasets for which the
zinger is not the targeted TF, are potential bona fide
binding regions for the zinger TF. In all cases we re-
quired that the zinger motif peaks and zinger TF’s ChIP-
seq data be from the same cell line. To call a zinger
motif peak in agreement with the zinger TF’s ChIP-seq
data we required that the peakMax of the zinger motif
peak be within 100 bp of a peakMax in the zinger TF’s
dataset. This 100 bp distance reflects the average range
of enrichment for a TF’s motif relative to the peakMax.
The assessment of the distal-zinger peaks, that is, those
peaks with motifs not proximal to the peakMax, relative
to the zinger TF’s ChIP-seq dataset was performed in
the same manner.
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Generation of ChIP-seq peak neighborhoods
To determine the degree of recurrence for a zinger motif
peak region across multiple datasets we pooled all zinger
motif peaks that had a high scoring (score >85) zinger
motif from all datasets. We then calculated the inter-
zinger distances between each zinger motif peak and its
nearest neighbour in the 3′ direction on the plus strand.
Consecutive peaks that were within 50 bp of their near-
est neighbor were merged into a ‘zinger neighborhood’.
The distance of 50 bp was chosen as a stringent measure
of proximity between zinger motif peaks. For each
neighborhood, we counted the number of unique TFs
that ChIPped the zinger motif peaks and the number of
unique cell lines. We provide the coordinates for the
zinger neighborhoods in Additional file 12: Dataset S1.
We generated neighborhoods from the remaining two

groups of peaks in a similar manner: those with the
ChIPped TF motifs and lacking zinger motifs (‘ChIPped
TF neighborhoods’), and those without either motif (‘un-
identified motif neighborhoods’). For the ChIPped TF
neighborhoods we required that there be a high scoring
motif (score >85) for the ChIPped TF. Neighborhood
widths were <150 bp on average. As stated in the main
text, zinger motif peaks may be bona fide binding re-
gions for the zinger TF. Thus, after generating the
neighborhood sets, we removed from the ChIPped TF
neighborhoods those regions that were within 300 bp
(measured centre to centre of the zinger neighborhoods
to ensure that comparisons were made between distinct
neighborhood sets. We also removed from the ChIPped
TF neighborhoods those regions that overlapped the un-
identified motif neighborhoods in the same manner.

Neighborhood proximity to cohesin and polycomb
repressive complex
To assess whether a neighborhood is proximal to a re-
gion occupied by cohesin or the polycomb repressive
complex (PRC) 1 or 2, we generated three datasets by
combining the ENCODE ChIP-seq data for the cohesin
proteins, RAD21 and SMC3, into a one dataset; combin-
ing the ENCODE ChIP-seq data for CBX to form a data-
set for PRC1 occupancy, and lastly combining EZH2
ChIP-seq data into a dataset for PRC2 occupancy. We
then assessed how many zinger neighborhoods were sit-
uated within 500 bp of one of the three protein com-
plexes, measuring from the center of a neighborhood to
the ChIP-seq peakMax, and compared this to the two
other neighborhoods.

Additional files

Additional file 1: Figure S1. Zinger motifs are enriched across multiple
mouse ChIP-seq datasets. (A) The histogram displays the results of TFBS
motif enrichment analysis on 81 mouse ChIP-seq datasets generated with
the oPOSSUM 3.0 software. Along the x-axis is the fraction of datasets
that displayed enrichment near the peakMax for a TF profile. The y-axis is
the number of TF profiles that were found enriched for a given fraction
of datasets. The profiles most frequently observed to be enriched are
labeled on the histogram. (B) The binding site logos of the nine TF
binding models with enriched motifs across the greatest number of
datasets, manually grouped by motif similarity. Each logo depicts position
along the x-axis and information content (that is, pattern strength) along
the y-axis.

Additional file 2: Figure S2. Zinger motifs are enriched across multiple
human datasets after masking the ChIPped TF’s motif. (A) The histogram
displays the results of TFBS motif enrichment analysis on 281 human
ChIP-seq datasets in which the ChIPped TFs motifs were masked. Results
were generated with the oPOSSUM 3.0 software. Along the x-axis is the
fraction of datasets that displayed enrichment for a TF profile. The y-axis
is the number of TF profiles that were found enriched near the peakMax
for a given fraction of datasets. The profiles most frequently observed to
be enriched are labeled on the histogram. (B) The binding site logos of
the TF binding models with enriched motifs across the greatest number
of datasets, manually grouped by motif similarity. Each logo depicts
position along the x-axis and information content (that is, pattern
strength) along the y-axis.

Additional file 3: Figure S3. DNaseI-seq and Faire-seq datasets are
enriched for zinger motifs. The histograms display the results of TFBS
motif enrichment analysis on (A) DNaseI-seq datasets and (B) Faire-seq
datasets. Results were generated with the oPOSSUM 3.0 software. Along
the x-axis is the fraction of datasets that displayed enrichment for a TF
profile. The y-axis is the number of TF profiles that were found enriched
for a given fraction of datasets. The profiles most frequently observed to
be enriched are labeled on the histogram. (C) The binding site logos of
the TF binding models with enriched motifs across the greatest number
of either DNaseI-seq or Faire-seq datasets. The logos are manually
grouped by motif similarity, except for the bottom row. Each logo depicts
position along the x-axis and information content (that is, pattern
strength) along the y-axis.

Additional file 4: Text S1. Additional observations regarding zinger
motifs and zinger motif peaks.

Additional file 5: Figure S4. ChIP-seq datasets for non-sequence-specific
proteins are enriched for zinger motifs. The enrichment plots display the
location of the top scoring motif for each peak relative to the peakMax
(the peakMax is at 0) on the x-axis, while the score of the motif is
plotted on the y-axis. The adjacent line plots display the fraction of
motifs observed in 5 bp increments. The logo reflecting the binding
specificity for each zinger appears above the related enrichment plot.
(A) CTCF motif predictions on ChIP-seq data for WHIP, a helicase
interacting protein. (B) JUN motif predictions on ChIP-seq data for p300,
a histone acetyltransferase. (C) GABPA motif predictions on ChIP-seq
data for CCNT2, a cyclin regulator of CDK9 kinase. (D) THAP11 motif
predictions on ChIP-seq data for CHD2, a chromodomain helicase.

Additional file 6: Figure S5. Input and mock-IP control data are enriched
for zinger motifs. The enrichment plots display the location of the top
scoring CTCF motif for each peak relative to the peakMax (the peakMax
is at 0) on the x-axis, while the score of the motif is plotted on the
y-axis. The adjacent line plots display the fraction of CTCF motifs
observed in 5 bp increments. The logo reflecting the binding specificity
for CTCF appears above the related enrichment plot. (A) Input regions
from the HUVEC cell line. (B) IgG rabbit mock-IP regions from GM12878 cells.

Additional file 7: Figure S6. Shuffled zinger PWMs are not enriched
proximal to the peakMax. The enrichment plots display the location of the
top scoring motif for each peak relative to the peakMax (the peakMax is
at 0) on the x-axis, while the score of the motif is plotted on the y-axis. The
adjacent line plots display the fraction of motifs observed in 5 bp
increments. The logo reflecting the binding specificity for each zinger
appears above the related enrichment plot. (A) Enrichment of CTCF motifs
on the NRF1 (GM12878) dataset. (B) Enrichment of shuffled-CTCF motifs on
the same NRF1 (GM12878) dataset. (C) Enrichment of JUN motifs on the
TCF7L2 (Hct116) dataset. (D) Enrichment of a shuffled-JUN motif on the
same TCF7L2 (Hct116) dataset.
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Additional file 8: Figure S7. Untreated STAT1 ChIP-seq data show
strong zinger motif enrichment and not STAT1 motif enrichment. The
enrichment plots display the location of the top scoring motif for each
peak relative to the peakMax (the peakMax is at 0) on the x-axis, while
the score of the motif is plotted on the y-axis. The adjacent line plots
display the fraction of motifs observed in 5 bp increments. The logo
reflecting the binding specificity for each zinger appears above the
related enrichment plot. (A) STAT1 motif predictions on STAT1 ChIP-seq
from untreated GM12878 cells. No STAT1 motif. (B) CTCF motif
predictions on STAT1 ChIP-seq from untreated GM12878 cells. (C) STAT1
motif predictions on STAT1 ChIP-seq from IFNγ treated HeLa cells. STAT1
motif is present. (D) CTCF motif predictions on STAT1 ChIP-seq form
IFNγ treated HeLa cells.

Additional file 9: Figure S8. The distribution of zinger motif content
varies across ChIP-seq datasets. (A, B) For those datasets with at least
a 1% zinger component, the histograms present the distribution of
observed zinger motif peak content. The x-axis reports the proportion
of zinger motif peaks within an analyzed dataset, and the y-axis the
frequency of such observations. The black vertical dashed line represents
the mean, the blue vertical dashed line represents the median, and the
red vertical dashed line represents the point where two-thirds of the
datasets are to the right of the line. The asterisk indicates the maximum
zinger proportion, excluding outliers. (A) Analysis performed on entire
ChIP-seq datasets. (B) Analysis on the set of peaks unaccounted for by
the ChIPped TF motif. (C) A heatmap of the individual zingers’ motif
peaks log2 fold enrichment in the set of peaks unaccounted for by the
ChIPped TF and with a strong motif score (score 85 or greater). Fold
enrichment less than 1.5 is grey. The rows are individual datasets, the
columns are the zingers. (D) A scatterplot of the proportions of zinger
motif peaks (y-axis) and ChIPped TF motif peaks (x-axis) in each dataset.

Additional file 10: Figure S9. The proportion of a dataset with zinger
motifs is not dependent on cell-line nor the ChIPped TF. (A) The x-axis is
the proportion of datasets composed of zinger motif peaks. The y-axis is
a density value reflecting the fraction of datasets with zinger motifs.
The five cell lines are K562 (black), GM12878 (blue), HeLa (red), H1-hESC
(green), and HepG2 (magenta). There are no significant differences
between the distributions per Wilcoxon test P values. (B) The TFs
analyzed are listed on the horizontal access. The y-axis is the maximum
difference of zinger proportions observed between two ChIP-seq datasets
for the same TF.

Additional file 11: Figure S10. Zinger motifs and zinger motif peaks are
not strongly correlated. (A) A heatmap of significance for inter-dependence
between pairs of zinger motifs in zinger motif peaks. Positive associations
with a significant Fisher exact P value (P value <0.001) are yellow, negative
associations with a significant Fisher exact P value are red, and non-significant
P values are grey. The color density reflects P value significance, with the
densest colors being P values closest to 0. The columns are individual
datasets; the rows are the six possible zinger pairs. (B) A correlation matrix
presenting both Spearman’s rank (lower diagonal) and Pearson (upper
diagonal) correlation coefficients for the pairwise association of zinger motif
peak enrichment within the same ChIP-seq datasets.

Additional file 12: Dataset S1. Genomic coordinates for zinger
neighborhoods (tab delimited).

Additional file 13: Table S1. The top 20 motifs from motif
over-representation analysis on HOT regions.

Additional file 14: Dataset S2. Position frequency matrices.
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