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Abstract

Background: DNA methylation is an important type of epigenetic modification involved in gene regulation.
Although strong DNA methylation at promoters is widely recognized to be associated with transcriptional repression,
many aspects of DNA methylation remain not fully understood, including the quantitative relationships between DNA
methylation and expression levels, and the individual roles of promoter and gene body methylation.

Results: Here we present an integrated analysis of whole-genome bisulfite sequencing and RNA sequencing data
from human samples and cell lines. We find that while promoter methylation inversely correlates with gene
expression as generally observed, the repressive effect is clear only on genes with a very high DNA methylation level.
By means of statistical modeling, we find that DNA methylation is indicative of the expression class of a gene in
general, but gene body methylation is a better indicator than promoter methylation. These findings are general in
that a model constructed from a sample or cell line could accurately fit the unseen data from another. We further find
that promoter and gene body methylation have minimal redundancy, and either one is sufficient to signify low
expression. Finally, we obtain increased modeling power by integrating histone modification data with the DNA
methylation data, showing that neither type of information fully subsumes the other.

Conclusion: Our results suggest that DNA methylation outside promoters also plays critical roles in gene regulation.
Future studies on gene regulatory mechanisms and disease-associated differential methylation should pay more
attention to DNA methylation at gene bodies and other non-promoter regions.

Background
DNA methylation refers to the methylation of the car-
bon atom at position 5 of a cytosine (m5C), which mostly
happens within CpG, CpHpG and CpHpH nucleotide
patterns in eukaryotes [1-4]. In differentiated cells of
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mammals, methylation appears predominantly at CpG
dinucleotides, with about 60% to 90% of all CpG sites
methylated [4-6]. DNA methylation is a stable epigenetic
modification involved in many cellular processes, includ-
ing cellular differentiation, suppression of transposable
elements, embryogenesis, X-inactivation and genomic
imprinting [4]. DNA methylation around the 5’ termi-
nus of a gene is well-recognized to be associated with
low gene expression, by actively repressing transcription
or marking already silenced genes [7,8]. Different mod-
els have been proposed for the molecular mechanisms of
DNA methylation in transcriptional repression, includ-
ing the blockage of transcription factor binding, and
the recruitment of transcriptional repressors involved in
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methylation-dependent chromatin remodeling and gene
repression [1,9]. The important roles of DNAmethylation
are also evidenced by the association of aberrant DNA
methylation with various human diseases [10,11].

Previous findings obtained by high-throughput methods
To systematically study DNA methylation at the genomic
scale, it is necessary to identify many, ideally all, methy-
lated sites in a genome. Various high-throughput methods
have been invented for large-scale detection of methyla-
tion events [8,12-14]. These methods differ in the way
genomic regions enriched for methylated or unmethy-
lated DNA are identified, and how genomic locations
of these regions or their sequences are determined. The
former includes the use of methylation-sensitive restric-
tion enzyme digestion [15,16], immunoprecipitation
[17-19], affinity capture [20,21], and bisulfite conver-
sion of unmethylated cytosines to uracils [2-4,22]. The
identities of the collected regions are determined by
microarray [15-19] or sequencing [2-4,20-22]. These
methods have been extensively compared in terms of
their genomic coverage, resolution, cost, consistency and
context-specific bias [23,24].
By integrating gene expression data and global DNA

methylation profiles from these high-throughput meth-
ods, a general genome-wide negative correlation between
promoter methylation and gene expression was observed
in multiple species [25,26]. However, substantial overlap
exists in the distributions of promoter methylation level
between genes with low versus high expression [19,25,26].
It was also suggested that for CpG island promoters,
DNA methylation is sufficient but not necessary for their
inactivation, while for promoters with low CpG content,
hypermethylation does not preclude gene expression [19].
The quantitative relationship between promoter methyla-
tion and gene expression is thus more complicated than
once assumed [14] and the details have not been fully
worked out.
The high-throughput methods have also provided

evidence that there is extensive DNA methylation at
transcribable regions [27]. Gene body methylation was
observed to be positively correlated with gene expression
in some cell types [28,29], but not in others [4]. It was sug-
gested that the positive correlation could either be due to
de novomethylation of internal CpG islands facilitated by
transcription, in which case methylation was the conse-
quence; or due to the repression of anti-sense transcripts
that would down-regulate expression of the sense tran-
script, in which case methylation was the cause [29]. In
contrast, it was also previously proposed that intragenic
DNAmethylation could reduce the efficiency of transcrip-
tion elongation [30,31], which would result in a negative
correlation between gene body methylation and expres-
sion. Furthermore, gene bodymethylation was reported to

be related to the regulation of alternative promoters [32],
and may play a role in RNA splicing [33]. Whether these
mechanisms co-exist and their relative importance in gene
regulation remain not fully explored.
Some of these functional roles of DNA methylation

could depend on histone modifications [34]. Strong pos-
itive or negative correlations between DNA methyla-
tion and various types of histone modifications have
been observed at promoters and gene bodies by high-
throughput experiments [28,32,35,36].

The need for quantitative studies
Most of the findings about promoter and gene body
methylation described above were based on global trends
rather than individual genes. For instance, while promoter
methylation has a general negative correlation with gene
expression, huge variance exists between both the pro-
moter activities and resulting expression levels of genes
with similar methylation levels [19,25,26]. Until now it has
been unclear whether it is possible to construct a quan-
titative model that tells the expression level of an indi-
vidual gene from its DNA methylation pattern alone or
with additional information about histone modifications
around its genomic region. Such quantitative modeling
would be useful for understanding the combined effect of
DNA methylation at different gene sub-elements, such as
promoters, exons and introns, on gene expression. It could
further help elucidate the relative roles of DNA methyla-
tion and other gene regulatory mechanisms in controlling
gene expression, and estimate the degree of cooperation
and redundancy between them. It could also provide a
principal way to identify subsets of genes most affected by
DNA methylation in particular cell types.
In recent studies, genomic regions hypo- or hyper-

methylated in disease samples have been identified by
applying high-throughput methods [37-40]. Having the
ability to estimate the effect of DNA methylation on the
expression of a gene, quantitative modeling could help
identify the most biologically relevant events in disease
states, from potentially long lists of differentially methylated
regions, for downstream validation and functional studies.
Here, we present our work in quantitatively mod-

eling the relationships between DNA methylation and
gene expression using high-throughput sequencing data
that cover the methylome and transcriptome of three
human samples and additional cell lines at single-base
resolution. We show that DNAmethylation is highly anti-
correlated with gene expression only when the methyla-
tion or expression level of a gene is extremely high. We
demonstrate that both promoter and gene body methy-
lation are indicative of gene expression level, but gene
body methylation has a stronger effect overall. Combin-
ing both types of features provides stronger modeling
power than considering each type alone. Statistical models
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constructed from such features can describe the general
relationships between DNAmethylation and gene expres-
sion across different human samples and cell lines. We
further demonstrate that DNA methylation could com-
plement histone modification signals in modeling gene
expression, and that the quantification measure used for
calculating methylation levels has a profound impact on
the modeling process and the corresponding biological
conclusions.

Results and discussion
Data and global patterns
We obtained whole-methylome bisulfite sequencing data
at single-base resolution from peripheral blood mononu-
clear cells (PBMCs) of three individuals in a family trio:
Father (F), Mother (M) and Daughter (D) from our pre-
vious study (Lee HM et al., Discovery of type 2 diabetes
genes using a multiomic analysis in a family trio, submit-
ted). Correspondingly, we extracted total RNA from the
three samples and performed whole-transcriptome shot-
gun sequencing. After data preprocessing, about 95% of
the resulting reads were uniquely mapped to the human
reference genome (Additional file 1: Table S1).

High correlations betweenmethylation patterns in the three
genomes
We first explored the global patterns of DNA methylation
in the three individuals. Overall, both the absolute num-
ber of methylated cytosines within CpG dinucleotides
(mCG) in 10 kb sliding windows and the density of methy-
lated cytosines with respect to the total number of CpG
dinucleotides within the window (mCG/CG) are highly
correlated among the three individuals (Additional file 1:
Figure S1 for the whole genome, Figure 1 for chromo-
some 1 as an example). The methylation density measure
mCG/CG has been commonly used in various methy-
lome studies to quantify DNA methylation level [4,22,28].
To check if our data were able to capture subtle DNA
methylation differences among the three individuals, we
computed the correlation of every 15 adjacent windows
between each of the three pairs of individuals. To fil-
ter out local fluctuations due to intrinsic randomness in
sequencing experiments, we progressively increased the
window size from 10 kb to 250 kb. When the window
size was 10 kb, both mCG and mCG/CG identified a lot
of regions with poor correlation between two individu-
als (Additional file 1: Figures S2–S7), signifying regions
with potential differential methylation status. When the
window size was increased, the number of poorly corre-
lated regions decreased for both methylation measures,
but the decrease was more rapid for mCG, indicating that
mCG/CG is more sensitive to small fluctuations, in par-
ticular in windows that contain a small number of CpG
dinucleotides.

We collected the low-correlation regions that consis-
tently showed up on the lists at different window sizes,
and used DAVID [41] to test for any functional enrich-
ment of the genes inside these regions. At a significance
level of p = 0.05 after correcting for multiple hypothesis
testing using the Benjamini-Hochberg procedure, some
terms were significantly enriched in these genes, including
O-methyltransferase (p = 0.0057), melatonin metabolic
process (p = 0.023) and hormone biosynthetic process
(p = 0.047) (Additional file 1: Table S2). Notably, mela-
tonin secretion was known to be associated with type 2
diabetes (T2D) [42]. As two of the three samples in our
study were obtained from individuals with T2D (Lee HM
et al., Discovery of type 2 diabetes genes using amultiomic
analysis in a family trio, submitted), our results indicated
that our data were able to capture relevant information
related to the physiological status of the samples.

L-shaped patterns betweenmethylated CpG count and gene
expression
We then examined the relationship between DNAmethy-
lation and expression levels of genes in the three individ-
uals. We computed the average methylation level along
each gene, considering both the gene body and upstream
regions, and plotted these methylation levels against the
corresponding expression levels. The resulting scatter-
plot based on the mCG quantification measure of DNA
methylation (Figure 2A) displays a very clear “L” shape,
in which genes with very high expression levels all dis-
play very low methylation levels, and genes with very
high methylation levels all show very low expression lev-
els. This pattern suggests that for these extreme cases,
there is a negative correlation between DNA methyla-
tion and gene expression. However, the majority of genes
have both low methylation and expression levels, and the
global correlations between DNA methylation and gene
expression when all genes are considered were not strong
(Figure 2A, Pearson correlation = −0.0486, Spearman
correlation = 0.0709), despite significant p-value of the
Pearson correlation due to the large number of genes
involved.
In contrast, the plot based on the normalized mea-

sure, mCG/CG, does not display an L-shaped pattern, but
rather shows a more global negative correlation with gene
expression (Figure 2B, Pearson correlation = −0.1293,
Spearman correlation = −0.3705). When the methylation
levels were plotted against log expression values instead,
the L-shaped patterns became less clear (Additional file 1:
Figure S12a,b), but DNAmethylation and gene expression
were still observed to be weakly anti-correlated.
To get a better understanding on the differences that

exist between different quantification measures for DNA
methylation, we also normalized mCG by the total length
of the measured region (gene body and upstream regions
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Figure 1 DNAmethylation profiles of the three individuals based on 10 kb sliding windows on chromosome 1. Abbreviations: CG: number
of CpG dinucleotides in each window; mCG: number of methylated cytosines within CpG dinucleotides in each window; (F): Father; (M): Mother;
(D): Daughter.
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(A) (B)

(C) (D)
Figure 2 Relationships between the DNAmethylation and expression levels of genes. Each point in the figure corresponds to a gene. The
methylation of a gene is the average level over its body and the 2 kb upstream region. The four panels correspond to the results based on four
different DNA methylation measures. Color indicates number of points (in log2 scale) within a cell when the occupied space is divided into a
500 × 500 grid.

in this case), or by both the number of CpG sites and
the region length. We denote these measures as mCG/len
and mCG/CG/len, respectively. The two corresponding
scatterplots both exhibit some weaker L-shaped patterns
(Figure 2C and D).

These observed differences led us to check whether
we could find positive correlations between gene body
methylation and expression levels as reported in some
previous studies [28,29]. To do that, instead of consider-
ing both upstream regions and gene bodies at the same
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time as in Figure 2, we made separate scatterplots for
upstream regions (Additional file 1: Figure S8) and gene
bodies (Additional file 1: Figure S9).We found a weak pos-
itive correlation between gene body methylation and gene
expression for the mCG/len measure based on Spearman
correlation (Additional file 1: Figure S9c). However, for
the other quantification measures, no significant global
correlations were observed. For mCG, L-shaped patterns
were observed for both upstream regions and gene bod-
ies (Additional file 1: Figures S8a and S9a). We also
checked exons (Additional file 1: Figure S10) and introns
(Additional file 1: Figure S11) separately, and found no sig-
nificant differences between the global patterns of these
plots and those in which they were taken together as gene
bodies. Again, plots based on log expression levels exhib-
ited similar correlation values but less apparent visual
patterns (Additional file 1: Figures S12–S16).
These initial results indicate that the relationship

between DNA methylation and gene expression is com-
plex and non-linear. The expression levels of genes with
very strong methylation levels appear much more affected
by DNA methylation than other genes. Whether DNA
methylation at promoters and gene bodies have oppo-
site quantitative relationships with gene expression also
warrants further investigation.

Quantitative modeling
To systematically study the quantitative relationships
between DNA methylation and gene expression, we per-
formed statistical modeling by means of machine learn-
ing. The idea is to compute DNA methylation levels at
different sub-regions of a gene as its features, and con-
struct a model that can tell the expression level of any
given gene based on its features. The accuracy of a model
can be quantified by comparing the model outputs and
the actual expression levels of the genes measured by
RNA-seq. We constructed different models using differ-
ent sub-regions and DNA methylation measures, to test
which ones could better explain the observed expression
levels.
Specifically, for each annotated gene, we computed

methylation levels in 16 different sub-regions around its
gene body and flanking regions (Figure 3).Within the gene
body, we defined 6 sub-regions as in a previous study [22],
namely first exon (FirstEx), first intron (FirstInt), inter-
nal exons (IntnEx), internal introns (IntnInt), last exon
(LastEx), and last intron (LastInt). For the upstream and
downstream regions, we defined 5 non-overlapping 400
bp sub-regions each (Up1-Up5 and Dw1-Dw5, respec-
tively). We divided all genes into four equal-sized classes
according to their expression levels, namely Highest,
Medium-high, Medium-low and Lowest, which corre-
spond to genes with expression within the first, second,
third and fourth quartiles, respectively. In the first set of

models, we combined the data from the three individuals
to maximize the amount of data for model construction,
resulting in 53,535 (17,845 × 3) data records from 17,845
genes. We tested our models using a left-out procedure,
in which two-thirds of the genes from all three individ-
uals were used in model training, and the accuracy of a
model was evaluated using the remaining one-third of the
genes. We then repeated the procedure 5 times using dif-
ferent random training and testing sets and reported their
average accuracy, to ensure the reliability of the results.

DNAmethylation is partially indicative of expression class
We first constructed models with all DNA methylation
features from the 16 sub-regions of each gene, using the
mCG methylation measure. We tried 11 different model
construction methods, and found that the Random Forest
method [43] produced models with the highest cross-
validation accuracy, regardless of the exact way model
accuracy was computed (Additional file 1: Figure S17).
We thus used the modeling accuracy of this method as a
proxy of how indicative of gene expression the methyla-
tion features are. Based on the AUC measure (area under
the receiver operator characteristic curve), the accuracy
of the one-class-against-all models for the four expres-
sion classes ranged from 0.63 to 0.82 (Additional file 1:
Figure S18), where a random assignment of genes to
expression classes would result in an AUC value of 0.5,
indicating that the methylation features were able to par-
tially separate genes from different expression classes.
Among the four expression classes, the Lowest expression
class had the highest accuracy, followed by the High-
est, Medium-high and Medium-low classes. These results
are consistent with what we observed from the scatter-
plots, that many genes with the lowest expression levels
have very high methylation patterns, which can sepa-
rate them from genes with higher expression levels. The
genes with the highest expression levels are slightly more
difficult to identify since their signature of low methyla-
tion is also shared by many genes from other expression
classes. Lacking clear signatures from DNA methyla-
tion levels alone, genes in the two medium expression
classes are most difficult to identify. The same trends were
observed when we repeated the analysis with all four DNA
methylation quantification measures and a wide range of
expression class numbers (from 2 to 64, Additional file 1:
Figures S19–S22).

Gene bodymethylation is a stronger indicator of expression
class than promotermethylation
We then compared the models constructed using features
from either the upstream regions, gene bodies or down-
stream regions alone (Figure 4). Methylation levels at gene
bodies were more capable of telling the expression class
of a gene than upstream and downstream regions, for all
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Figure 3 Sub-regions defined for each gene. The transcribed region (body) of a gene is divided into 6 variable-length sub-regions according to
its exons and introns, namely first exon (FirstEx), first intron (FirstIn), last exon (LastEx), last intron (LastIn), internal exons (IntnEx) and internal introns
(IntnIn). The 2 kb upstream region is divided into 5 fixed-length sub-regions Up1-Up5, each of 400 bp. Downstream sub-regions Dw1-Dw5 are
defined analogously. In some analyses these sub-regions are further grouped into meta sub-regions, such as Upstream (Up1-Up5), Body (all the
exonic and intronic sub-regions) and Downstream (Dw1-Dw5).
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Figure 4 Accuracy of Random Forest expression models based on DNAmethylation features quantified by mCG from three individual
sub-regions or their combination. The accuracy values of genes from the four expression classes are shown in the first four bar groups, while the
last bar group shows the average accuracy of the four expression classes.
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four expression classes. Combining features from all sub-
regions gave the bestmodeling accuracy, which shows that
the features from the different sub-regions are not totally
redundant, and may play different roles in gene regula-
tion. These observations stay true for all four methylation
quantification measures (Figure 5 and Additional file 1:
Figure S23). Comparing the modeling accuracy of the
four methylation measures, none of them is clearly better
than the others, although on average mCG/CG/len had a
slightly higher accuracy.
A potential confounding factor of the above analyses is

that the upstream and downstream regions of a transcript
could overlap with the body of another transcript [32].

For instance, for a multi-exon gene, if it has a transcript
that does not involve the first exon of the gene, DNA
methylation at the promoter of the transcript would be
counted as gene body methylation of the gene, which may
confuse the statistical models. To study how much this
would affect the results, we repeated the statistical mod-
eling using the subset of genes with only one annotated
transcript isoform. Comparing the resulting models based
on different feature sets (Additional file 1: Figure S24),
gene bodies still showed stronger modeling power than
upstream and downstream regions, and the best accuracy
was still obtained by combining features from all three
sub-regions.
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Figure 5 Comparison of the modeling accuracy based on different DNAmethylation measures. The Random Forest expression models
based on the four quantification measures of DNA methylation are shown by different colors. The modeling accuracy involving different subsets of
genes from different expression classes are shown in the first four rows, while the last row shows the average accuracy of the four expression
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It was previously shown that DNA methylation of
the first exon is linked to transcriptional silencing [44].
We checked whether the higher modeling accuracy of
gene body feature was merely due to some strong fea-
tures extended from the promoter to the first exon.
Specifically, we considered two more sub-regions, namely
gene bodies excluding the first exons (Genebody–
FirstEx) and upstream regions including the first exons
(Upstream+FirstEx). We observed that including the first
exon in the upstream regions (Upstream+FirstEx) or
gene bodies (Genebody) indeed increased the modeling
accuracy as compared to having it excluded (Upstream
and Genebody–FirstEx, respectively), thus confirming the
important role of this sub-region in signifying expression
levels (Additional file 1: Figure S25). On the other hand,
when we compared upstream and gene body regions, we
found that the modeling accuracy of Genebody–FirstEx
was higher than Upstream, and that of Genebody was
higher than Upstream+FirstEx when all annotated genes
were considered (Additional file 1: Figure S25). The same
trends were also observed when only genes with one
annotated transcript isoform were considered (Additional
file 1: Figure S24), except for a slightly higher accuracy
of Upstream than Genebody–FirstEx when the mCG/len
methylation measure was used. Altogether, our results
show that in general, DNA methylation at gene bod-
ies is a stronger indicator of the expression class than
DNA methylation at promoters, and it is neither due to
overlapping definitions of promoters and gene bodies for
multi-transcript genes, nor signals coming from the first
exon only.
We also compared the modeling accuracy of exons and

introns. For all four quantification measures, methyla-
tion levels at exons were consistently a better indicator of
expression than methylation levels at introns (Additional
file 1: Figure S25), but again the modeling accuracy was
higher when both types of features were considered than
when either one was used alone.
To test if the above observations are sensitive to the way

we define expression classes, we also used a second way
to divide genes into four expression classes covering equal
range of log-expression values. The results (Additional
file 1: Figure S26) show that all the main observations
discussed above remain unaffected.

Quantitative relationships between promoter and gene body
methylation
Since both promoter and gene body methylation are
indicative of gene expression to a certain extent, we
next explored whether they carry redundant information.
When plotting the DNA methylation levels at these two
regions for all genes, the distributions based on the four
quantification measures were found to be very different
(Additional file 1: Figure S27). An L-shaped pattern was

observed for mCG (Additional file 1: Figure S27a) and less
obviously for mCG/len (Additional file 1: Figure S27c),
but not for the other two measures (Additional file 1:
Figure S27b and d). Notably, when mCG/CG was used
for quantification, the genes were divided into two large
clusters (Additional file 1: Figure S27b). Both clusters dis-
play very high level of gene body methylation, but one
with very high and the other with very low promoter
methylation. We also created scatterplots for studying the
relationships between the length, the number of CpGs,
and the number of methylated CpGs in each sub-region,
for each of the 16 types of sub-regions (Additional file 1:
Figures S28–S30). The scatterplots between number of
CpGs and number of methylated CpGs reveal some inter-
esting patterns about the two clusters in the mCG/CG
plot (Additional file 1: Figure S29). For most gene body
sub-regions except FirstEx and to some degree LastEx,
the genes form a straight line along the diagonal line
CG=mCG, showing that the different genes actually have
different absolute number of CpGs at their gene bodies,
but most of their internal exons and internal introns are
fully methylated. In contrast, for the upstream and down-
stream sub-regions, as well as the first exon, the genes
form a tilted V-shaped pattern, with a group of genes
lying close to the diagonal CG = mCG and another group
lying close to the vertical axis mCG = 0, which corre-
spond to the extreme cases with fully methylated and fully
unmethylated CpGs.
To gain more insights into the relationships between

promoter and gene body methylation, we included in our
analysis the expression levels of the genes (Additional
file 1: Figure S31). The three-dimensional scatterplot
based on the mCG measure displays the sharpest pat-
tern among the four plots (Additional file 1: Figure S31a),
which shows a “triple-inverse” relationship between pro-
moter methylation, gene body methylation and gene
expression. This triple-inverse relationship indicates that
a gene can either have a high promoter mCG level, a
high gene body mCG level, or a high expression level,
but not two or three of them simultaneously. This rela-
tionship between the three quantities is consistent with
the L-shaped patterns we previously observed in the 2D
plots (Additional file 1: Figures S8a, S9a and S27a). These
results suggest that in terms of the absolute number of
methylated CpG sites, either strong promoter methylation
or strong gene bodymethylation alone is sufficient to indi-
cate low expression, and it is not required for a gene to
redundantly have both indicators.

Potential role of gene bodymethylation for genes with
CpG-poor promoters
It has been proposed that for CpG island promoters, DNA
methylation is a sufficient but not necessary condition for
gene inactivation, while for CpG-poor promoters, DNA
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methylation does not preclude expression [19]. To check
whether the same observations could be made in our data,
we plotted the expression level of different groups of genes
according to their promoter CpG levels (Figure 6A and B).
Indeed, the expression levels of genes with a large num-
ber of CpG dinucleotides in their promoter regions were
more strongly affected by the DNA methylation in these
regions. Specifically, for both mCG and mCG/CG mea-
sures, promoter methylation was more anti-correlated
with gene expression for genes with highest or medium
promoter CpG levels (first two bar sets of the figures) than
those with lowest promoter CpG levels (last bar sets of

the figures). Genes with lowest promoter CpG levels were
largely insensitive to promoter methylation, and had low
expression levels in general.
For this group of genes with CpG-poor promoters, can

gene body methylation indicate their expression levels?
To answer this question, we again divided genes into
three groups according to their promoter CpG counts, but
this time we studied the correlation between gene body
methylation and expression levels of each group instead
(Figure 6C andD). For bothmCG andmCG/CG, the genes
with CpG-poor promoters do exhibit some weak differ-
ential expression patterns as gene body methylation level
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Figure 6 Relationship between DNAmethylation and gene expression for genes with different promoter CpG levels. The four panels
show the expression levels of different subsets of genes and their corresponding methylation levels at upstream (A and B) or transcribed regions
(C and D). Panels A and C involve the use of the mCG methylation measure, while panels B and D involve the use of the mCG/CG measure. Within
each panel, the genes are first divided into three subsets according to their promoter CpG levels, which correspond to three bar groups. For each
subset, the genes are further divided into another level of three subsets based on their methylation level. Finally, for each of the resulting subset of
genes, their distribution of expression levels is shown by a Box and Whisker plot.
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varies, but the correlation between gene body methyla-
tion and expression was positive for mCG and negative for
mCG/CG. These results suggest a potential role of gene
body methylation in regulating genes with CpG-poor pro-
moters, although the exact mode of regulation is yet to be
understood.

Generality of the quantitative models
All the results above were based on quantitative mod-
els both constructed and tested on the same individuals
(albeit on different subsets of genes), using data from one
single cell type (PBMC). To test if these models are gen-
erally useful for signifying expression classes, we collected
single-base resolution bisulfite sequencing and RNA-seq
data for two cell lines, H1 human embryonic stem cells
(hESC) and the human lung fibroblast line IMR90, from

the Roadmap Epigenomics Project [45] (Additional file 1:
Table S3). We constructed models using DNA methyla-
tion and expression data from one individual/cell line, and
applied the models to predict the expression class of genes
in another individual/cell line based on its DNA methyla-
tion profile alone. To ensure the generality of the models,
the genes used for training in the first individual/cell line
and the genes used for testing in the second individual/cell
line were mutually exclusive.
The results (Figure 7) show that, for all combinations

of training and testing individuals/cell lines, the predic-
tion accuracy was much higher than random predictions
(which would have an AUC value of 0.5). Models con-
structed from any one of the three individuals were able to
predict the expression classes of genes in another individ-
ual with an average AUC of about 0.9, which is expected
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Figure 7 Generality of the quantitative models. Random Forest expression models were constructed using methylation and expression data
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upstream, transcribed and downstream regions. These models were used to predict the expression levels of genes in another individual/cell line,
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values of the genes in different expression classes, and their overall average, are shown in different bar groups. Within each bar group, the accuracy
values based on the four DNA methylation measures are shown.
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as these samples all contained PBMC from individuals
in the same family. More interestingly, the other data
set combinations also have prediction accuracy of about
0.75 on average, which demonstrate the generality of the
constructed models. These cross-sample results recon-
firm our earlier findings that the more extreme expres-
sion classes are better indicated by methylation patterns.
Moreover, among the four methylation quantification
measures used, mCG, mCG/len andmCG/CG/len consis-
tently provided better modeling accuracy than mCG/CG
(Figure 7), which indicates that the commonly-used quan-
tification measure of DNA methylation, mCG/CG, is not
necessarily the best in signifying gene expression classes.

Quantitative relationship with histonemodifications
Our quantitative models based on DNAmethylation were
able to achieve reasonable accuracy in identifying the
expression class of a gene, but they also show that DNA
methylation alone is not informative enough to signify
precise expression levels. We have previously shown that
histone modifications are strong indicators of expression
levels [46,47]. Therefore, we next explored the relation-
ship between DNA methylation and histone modifica-
tions in terms of indicating gene expression, and tested
whether information on gene expression conveyed by
DNA methylation is totally subsumed by that of histone
modifications. It was previously shown that promoter
methylation was negatively correlated with H3K4me3
(histone 3 lysine 4 trimethylation) in the human brain [32],
and gene body methylation was positively correlated with
H3K36me3 and negatively correlated with H3K27me3 in a
B-lymphocyte cell line [28]. To study the quantitative rela-
tionships between DNA methylation and histone modifi-
cations in the context of indicating expression levels, we
compared statistical models that involve either only DNA
methylation features, only histone modification features,
or both.
We collected ChIP-seq data for 26 types of histone

modification from the H1 embryonic cell line from
the Roadmap Epigenomics Project (Additional file 1:
Table S3). As with DNA methylation, we computed the
average signal of each type of histone modification in
the same 16 sub-regions for each gene. Although some
histone marks are known to be enriched in particular sub-
regions, this knowledge is limited to some well-studied
types of histone modifications. We therefore considered
all sub-regions and let the Random Forest method identify
the features most useful for indicating expression levels.
As expected, some of the models constructed from his-

tonemodification features alone had high cross-validation
accuracy (Figure 8). Consistent with previous findings,
the two strongest feature sets were H3K36me3 and
H3K4me3, which mark actively transcribed regions and
active promoters, respectively [48]. Models based onDNA

methylation features alone were not as accurate as those
constructed from these histone modification features
well-known for their roles in marking gene activities, but
were more accurate than many other types of histone
modification such as H3K9me3 and H3K4me1 (Figure 8).

DNAmethylation and histonemodifications contain
non-redundant information about gene expression
Interestingly, regardless of the type of histone modifica-
tion and the DNA methylation measure used, combining
both types of features consistently increased the accu-
racy of the corresponding models involving only histone
modification features or only DNA methylation features.
Even for the strongest histone modification feature set
derived from H3K36me3, incorporating DNA methyla-
tion features still led to an improvement of modeling
accuracy by about 6%, from AUC value of 0.83 to 0.88 for
mCG/CG/len, which indicates that the two types of sig-
nals were not completely redundant in terms of signifying
gene expression.
To better understand how DNA methylation com-

plements histone modification in indicating expres-
sion classes, we examined the DNA methylation and
H3K36me3 signal levels of two types of genes, namely (1)
those with expression classes correctly identified by the
model involving only mCG/CG/len features but not by the
model involving only H3K36me3 features, and (2) the vice
versa, i.e., those with expression classes correctly identi-
fied by the H3K36me3 model but not the mCG/CG/len
model. The genes with expression classes correctly iden-
tified by the mCG/CG/len model only displayed higher
mCG/CG/len levels (Figure 9A, blue lines and areas) and
lower H3K36me3 levels (Figure 9B), indicating that in
general they were the less transcribed genes. Among the
different sub-regions, as expected the ones best sepa-
rating the two groups of genes in terms of H3K36me3
signals were those within the gene bodies, and to a lesser
extent those at downstream regions (Figure 9B). Interest-
ingly, in terms of mCG/CG/len levels, the sub-regions that
best separate the two groups of genes were the exonic
regions, especially the first exon (Figure 9A), indicating
that methylation levels at exonic regions not only play cru-
cial roles in models involving DNA methylation features
alone, but could also be important in complementing his-
tone modifications in indicating the expression class of a
gene.
As in the case of DNA methylation, histone mod-

ification features were most successful in identifying
genes with lowest expression levels (Additional file 1:
Figure S32). However, even the strongest histone modi-
fication features were not significantly better than DNA
methylation in identifying these genes. In contrast,
some of them were much better in identifying genes
with medium expression levels, suggesting that DNA
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Figure 8 Joint effects of DNAmethylation and histone modifications on gene expression. The four panels compare Random Forest
expression models with only DNA methylation features (straight line with triangle markers), only histone modification features (orange bars), or both
(blue bars). The four panels involve DNA methylation levels computed by different quantification measures. For DNA methylation and any type of
histone modifications, its signal level is computed as the average over the upstream, transcribed and downstream regions of a gene. In each panel,
the first 26 bar groups correspond to models involving one of the 26 types of histone modification, while the last bar group corresponds to the
model involving all 26 types of histone modification.

methylation mainly indicates the coarse on/off status of
a gene, while some histone marks provide more fine-
grained details about the precise expression levels.
We examined the relationships between DNA methyla-

tion and histone modifications in more detail by plotting
their values in different sub-regions of genes (Additional
file 1: Figures S33–S34). In particular, we reconfirmed
previous findings that DNA methylation and H3K4me3
negatively correlate at the upstream region (Figure 10).
However, whether gene body methylation positively
or negatively correlates with H3K36me3 depends on
the DNA quantification measure (Figure 11), with the

correlation being most positive for mCG/len, and most
negative for mCG/CG.

A small number of DNAmethylation and histonemodification
features are sufficient tomaximally indicate gene expression
When we combined features derived from DNA methyla-
tion and all 26 types of histonemodifications, the resulting
model had a higher accuracy than all the models involving
single histone modification and/or DNA methylation fea-
tures (Figure 8). To test if it is possible to achieve the same
accuracy with a smaller number of feature sets, we applied
a forward feature selection procedure. Specifically, we
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Figure 9 DNAmethylation and H3K36me3 levels of genes the expression classes of which were correctly identified by either the
mCG/CG/len model but not the H3K36me3model, or vice versa. In the figures, the solid lines represent the median signal value of all genes in
the group, and the shaded area of the same color tone marks the 25-th precentile to 75-th percentile range.

started with either an empty set of features, or all DNA
methylation features based on one quantification mea-
sure. We then iteratively added the set of features for
the type of histone modification that could maximize the
accuracy gain, until no more sets could lead to any fur-
ther improvements. Depending on the DNA methylation
features included in the first step, maximal accuracy was
achieved by 6-8 feature sets in total (Additional file 1:
Figure S45).
Consistent with the single-feature-set results,

H3K36me3 and H3K4me3 were always the features
first incorporated into the models. The features next
incorporated include those that involve H3K79, and the
repressive mark H3K27me3. For the DNA methylation
measures mCG, mCG/CG and mCG/CG/len, including
DNA methylation features resulted in final models with
higher accuracy than the one involving histone modifi-
cation features alone, indicating that DNA methylation
has non-negligible roles in these models with maximal
modeling accuracy.
Since the AUC values were increased most by

H3K36me3 and H3K4me3, and these two marks are well-
known to be most indicative of expression levels, we
believe similar results would be obtained if we had applied
other feature selection methods.

Conclusions
Previous studies have examined high-level qualitative
relationships between DNAmethylation and gene expres-
sion. In this work, we have demonstrated that DNA
methylation status alone can indicate the expression class
of a gene with fairly high accuracy. The generality of our
models has been confirmed by their cross-sample/cell line

modeling capability. Our models provide a means to ana-
lyze the detailed quantitative relationships between DNA
methylation and expression, with systematic assessments
of the level of expression variations explainable by DNA
methylation.
We showed that two groups of genes have particularly

clear methylation profiles in our data, namely genes that
lie on both ends of the spectrum – those with very high
methylation and very low expression levels, and those with
very high expression and very lowmethylation levels. If we
apply a simple classification of genes into those with high
or low expression and DNA methylation levels, among
the four possible combinations, the one with both high
expression and high DNAmethylation is almost devoid of
genes when three out of the four DNA methylation quan-
tification measures were used. The resulting scatterplots
exhibit clear L-shaped patterns (Figure 2), which corre-
spond to an exclusive OR (XOR) relationship between
DNA methylation and gene expression. Our results indi-
cate that on the one hand, strong DNA methylation is
sufficient to indicate low expression of a gene, but on
the other hand, while low DNA methylation is permissive
of transcription, the actual expression level of a gene is
largely determined by other factors.
We further demonstrated that one class of such factors

is histone modification. Some types of histone modifi-
cation, including H3K4me3 and H3K36me3, are much
stronger indicators of precise expression levels of indi-
vidual genes than DNA methylation. However, we found
that incorporating DNAmethylation features consistently
improved the modeling power of the models involv-
ing either of these histone marks alone, or even the
one involving all types of histone modification combined
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Figure 10 Relationships between the DNAmethylation (y-axis) and H3K4me3 (x-axis) at the upstream regions of genes, based on the
four DNAmethylation measures.

(Figure 8). Notably, we found that DNAmethylation levels
at exonic regions helped determine the expression class of
some genes in ourmodels whenH3K36me3 features failed
to do so.
A key finding of this study is that gene body methy-

lation is a stronger indicator of expression class than
promoter methylation for genes in all expression classes.
Our results are consistent with the strong effects of gene
body methylation on expression previously observed in
plants [49,50]. We provided evidence that the stronger
modeling power of gene body methylation could not be

explained by the effects of first exons alone or biases
caused by the presence of multiple transcript isoforms
in a single gene, nor was it affected by the quantifi-
cation measure of DNA methylation levels. We also
found that combining both promoter and gene body
DNA methylation features resulted in a better modeling
accuracy of gene expression classes. The “triple-inverse”
pattern observed between promoter methylation, gene
body methylation and gene expression (Additional file 1:
Figure S31a) suggests that promoter and gene body
methylation exert repressive effects on different sets of
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Figure 11 Relationships between the DNAmethylation (y-axis) and H3K36me3 (x-axis) at the transcribed regions of genes, based on the
four DNAmethylation measures.

genes. Previous studies have proposed that promoter
methylation is linked to blockage of transcription factors,
while gene body methylation is related to the recruitment
of transcriptional repressors and reduction of transcrip-
tional elongation [1,9,31]. The potentially divergent roles
of DNA methylation at the two types of regions are con-
sistent with the higher modeling accuracy achieved in our

study when both types of features were considered. Since
the on/off role of promoter methylation appears to affect
a relatively small set of genes with extreme methylation
levels, we speculate that the effect of gene body methyla-
tion on reducing transcription efficiency may be a more
general mechanism that affects a broader group of genes,
which provides a plausible explanation for the stronger
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modeling power of the gene body methylation features in
our current study.
We propose that the different functions of DNAmethy-

lation in transcriptional regulation are better reflected by
multiple quantification measures rather than one single
measure. It is possible that the raw number of methy-
lated CpG sites, mCG, is a proxy of the total time of an
elongating polymerase being slowed down by gene body
methylation. Another quantification measure, the num-
ber of methylated CpG sites per unit length, mCG/len,
may be more related to the average speed reduction
of the elongating polymerase. Finally, the commonly-
used density measure mCG/CG represents a comparison
between methylated and unmethylated CpG sites in a
given genomic region, which may reflect the “competi-
tiveness” of the region for events such as protein binding.
In this study, we demonstrated that these quantification
measures used to represent methylation levels at a given
genomic region could exhibit drastically different patterns
when analyzed together with gene expression and his-
tone modification signals. However, all of them were able
to model expression classes reasonably well and none of
them was clearly better than all the others. Further inves-
tigations are needed to study the detailed mechanistic
meanings of these different quantification measures.
Our results offer several possible explanations for the

apparent discrepancies among previous studies examin-
ing the relationships between gene body methylation and
gene expression, that in some studies they were observed
to be positively correlated [31,32] and in others, nega-
tively correlated [28,29,51,52]. We found that substan-
tially different correlation values could be obtained by
using different quantification measures of DNA methy-
lation, and different ways to compute the correlations.
For example, whereas rank-based Spearman correlation
is more strongly affected by the bulk of genes with low
methylation and expression levels as they occupy a wide
range of rank values, value-based Pearson correlation is
more influenced by genes with more extreme methyla-
tion and expression levels. Calculating correlations using
different subsets of genes, such as all genes versus only
those with observable expression values, could also lead to
very different conclusions. The discrepancies in the pre-
vious studies could be due to these and other subtle data
processing and analysis details.
Further studies will be needed to elucidate how pro-

moter and gene body methylation of different transcripts
of a gene are coordinated. Signals that cover a broad
area, such as DNA methylation over whole transcript
bodies, have a high chance of interfering with other tran-
scripts. The coordination would be simplest if promoter
and gene body methylation both take on a repressive role,
and different transcript isoforms of a gene co-express in
a synchronized manner. In that case, DNA methylation

would be mainly responsible for marking genes with
all transcripts repressed. The co-expression of transcript
isoforms was indeed observed in large-scale sequencing
data from human cells [53], although it is still unclear
whether the different isoforms expressed simultaneously
in the same cell, or actually different subsets of them
were expressed in different sub-populations of the cells
from which RNA was extracted and sequenced. Alterna-
tively, intragenic DNA methylation that intersects pro-
moters of some transcripts may be involved in regulating
the use of alternative promoters [32]. Whether other,
more complex types of coordination exist is yet to be
studied.
Our study of the quantification measures at different

genic sub-regions was facilitated by whole-genome bisul-
fite sequencing data at single-base resolution. Some other
experimental methods produce data at a lower resolution
(such as ChIP-based or affinity-capture-based methods),
have incomplete genome coverage, especially at tran-
scribed regions (such as some array-based methods), or
provide information for only some types of DNA methy-
lation quantification. Nevertheless, whole-genome bisul-
fite sequencing has a relatively high cost, and it requires
extensive computations in data processing. For practi-
cal purposes, it would be crucial to choose a suitable
experimental method based on the goal of the study. For
example, methylation profiles are obtained from case and
control samples in some disease studies, to identify differ-
entially methylated regions with functional consequences.
Our results offer new insights into choosing the suit-
able experimental method by indicating that for the vast
majority of genes with moderate or low methylation lev-
els, their expression levels are only weakly reflected by
methylation levels, but more strongly affected by other
factors. Therefore, if one is to make hypotheses based
on the methylation data alone, it is more reasonable
to consider only genes with extreme methylation levels.
These extreme cases can probably be identified using low-
resolution data with partial genome coverage. In contrast,
if one wants to identify all differentially methylated genes
for downstream experimental testing of their functional
effects, data with higher resolution can probably provide
more details about subtle differences that exist among
the various samples. Additionally, it has recently been
proposed that methylation at distal enhancer sites may
cause differential gene expression in disease samples [54],
the study of such phenomena would better be conducted
using data with whole-genome coverage.

Materials andmethods
Sample collection
We collected DNA methylation and gene expression data
from a family trio from our previous study (Lee HM et al.,
Discovery of type 2 diabetes genes using a multiomic
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analysis in a family trio, submitted). In the following, we
briefly descirbe the sample collection, data generation and
data processing proceses.
Blood samples were obtained from a Chinese fam-

ily trio consisting of a father, a mother and a daughter,
which we denote as F, M and D, respectively. Periph-
eral bloodmononuclear cells (PBMCs) were isolated using
Ficoll-Paque stepwise gradient centrifugation. The iso-
lated PBMCs were divided for DNA and RNA extraction.
Total DNAwas prepared using proteinase K digestion and
phenol extraction. Total RNAwas extracted by Trizol (Life
Technologies, Carlsbad, CA, USA) following the manu-
facturer’s protocol. The quality of the RNA samples was
checked by Bioanalyzer (Agilent Technologies, Palo Alto,
CA, USA) before they were subjected to sequencing.

Methylome sequencing and data processing
Bisulfite sequencing and data processing were carried out
as described previously [22]. DNA was fragmented by
sonication to 100 to 500 bp in size, followed by end-
blunting, dA addition at the 3’end and ligation of adapters.
The adapter sequence containedmultiplemethylcytosines
to allow monitoring of the efficiency of the bisulfite con-
version. Unmethylated cytosines were converted to uracils
by bisulfite treatment using a modified protocol from
Hayatsu [55]. DNA fragments in the size range of 320 to
380 bp were gel-purified for sequencing. All procedures
were performed according to the manufacturer’s instruc-
tions. Converted DNA was subjected to 50 bp paired-
end sequencing using an Illumina Solexa GA sequencer
(Illumina, San Diego, CA, USA). All the raw data were
processed by the Illumina Pipeline v1.3.1 (Illumina, San
Diego, CA, USA).
The cleaned reads generated were aligned to the refer-

ence human genome hg18 as follows. Since DNA methy-
lation is strand-specific, the two strands of the reference
human genome were modified separately in silico to
convert all C’s to T’s, to generate a combined 6 Gbp
target genome for aligning reads after bisulfite conver-
sion. Correspondingly, the sequencing reads were also
transformed using the following criteria: (1) observed
C’s in the forward reads were replaced by T’s; and (2)
observed G’s in the reverse reads were converted to A’s.
The transformed reads were then aligned to the mod-
ified target genome using the SOAP2 aligner [56]. All
the reads mapped to unique locations with minimum
mismatches and clear strand information were defined
as uniquely matched reads, and were used to determine
the methylated Cytosines. According to the alignment
results, the unconverted C’s and G’s from the original read
sequences before the transformation were used to identify
the methylated Cytosines. Bases with low quality scores
were filtered to ensure accuracy of the results. The methy-
lated Cytosines were defined as those having a significant

number of reads supporting its methylated status, with
less than 1% FDR according to a binomial distribution,
as suggested previously [22]. All the Cytosine positions
were then lifted over to the reference human genome hg19
by the LiftOver utility provided by the UCSC Genome
Browser [57] for downstream analyses.

Transcriptome sequencing and data processing
Total RNA extracted from each sample was enriched by
oligo-dT to get the polyA+ fraction for sequencing. The
polyA+ mRNAs were then fragmented and converted to
cDNA by reverse transcription. After ligation of the 5’
and 3’ sequencing adaptors to the cDNA, DNA fragments
were size-selected for 75 bp paired-end sequencing by
Illumina Genome Analyzer II using standard procedures.
All the raw data were processed by the Illumina Pipeline
v1.3.1. All sequencing reads were trimmed dynamically
according to the algorithm provided by the -q option of
the BWA tool [58]. After trimming, read pairs with both
sides having at least 35 bp were retained and mapped
to the human reference genome hg19 using TopHat [59]
(v.1.1.4) with the following parameters: microexon-search,
butterfly-search and -r 20. The expression value of a gene
was computed by the RPKM (reads per kilobase of exons
per million mapped reads) measure [60], defined as the
number of reads that cover it (inmillion reads) normalized
by its length (in kilobase) and the total number of reads in
the data set.

Definition of the four DNAmethylation quantification
measures
We defined four methylation measures based on methy-
lated CpG sites. The first measure is the absolute number
of methylated CpG sites in a region, denoted as mCG.
The second measure is the density of methylated CpG
sites relative to the total number of CpG sites in a region,
denoted as mCG/CG. The third measure is the density of
methylated CpG sites relative to the length of a region,
denoted as mCG/len. The fourth measure is the num-
ber of methylated CpG sites normalized by both the total
number of CpG sites and the length of a region, denoted
as mCG/CG/len.

Visualizing global DNAmethylation patterns and
computing local correlations between two individuals
We constructed global DNA methylation profiles of the
three individuals as follows. We first divided up the
human genome into 10 kb windows. In each window, we
computed the DNA methylation level based on one of
the four quantification measures. We then visualized the
resulting global patterns using IGV [61] and Circos [62].
To compute local correlations of DNA methylation pro-
files between two individuals, we divided up the genome
into fixed-length windows (of size 10 kb, 50 kb, 100 kb or
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250 kb), and computed the DNAmethylation level in each
window. For every 15 consecutive windows, we then com-
puted the Pearson correlation between two individuals
(F vs. M, F vs. D or M vs. D). The resulting distributions of
correlation values were visualized using Box and Whisker
plots.

Enrichment analysis of regions with lowmethylation
correlations
We collected regions with methylation correlations less
than 0.5 between any two of the three individuals based
on the mCG quantification measure. We found that most
of the regions obtained from the analysis based on 100 Kb
window size consistently showed up on the list at different
window sizes, and thus we focused on this list of regions.
We extracted the genes within these regions and submit-
ted it to the DAVID tool [41] for enrichment analysis with
default parameters. The p-values reported were corrected
by the Benjamini-Hochberg procedure [63].

Definition of gene sub-regions
For analyses involving genes, we considered the level 1
and level 2 protein-coding genes annotated in Gencode
v7 [64], based on composite gene models. We defined the
body of a gene as the first transcription start site of its
annotated transcripts to the last transcription termination
site of its annotated transcripts. Within the gene body, we
defined any region annotated as an exon in any of the asso-
ciated transcripts as an exon of the gene. We then defined
sub-regions of a gene as shown in Figure 3 and explained
in the Results section. We discarded genes with less than
4 exonic regions after merging overlapping exons from
different transcripts, resulting in a set of 17,845 genes.

Definition of expression classes
By default we defined gene expression classes as follows.
We first combined the genes from the three individuals
into a set of 53,535 (17,845×3) genes. Each of them was
then assigned to one of four expression classes, namely
the “Highest”, “Medium-high”, “Medium-low” and “Low-
est” classes, which contained genes with expression levels
within the first, second, third and fourth quartiles on the
list of expression values sorted in descending order. The
Lowest expression class could contain genes with zero
RPKM values. In some analyses, we also defined other
numbers (2, 8, 16, 32 or 64) of expression classes in similar
ways.
We also tested a second way of defining expression

classes, in which classes A, B, C and D contained genes
with expression level within (logmin+3x, logmax],
(logmin+2x, logmin+3x], (logmin+x, logmin+2x]
and [ logmin, logmin+x], respectively, where min and
max are the minimum and maximum expression values
among all genes, respectively, and x = (logmax− logmin)

4 .

Statistical modeling
We used 11 different methods to construct statisti-
cal models, including 5-Nearest Neighbors, 10-Nearest
Neighbors, 20-Nearest Neighbors, Naive Bayes, Bayesian
Network, Decision Trees (C4.5), Random Forests, Logistic
Regression, Support Vector Machine (SVM) with linear
kernel, SVM with second-degree polynomial kernel, and
SVM with Radial Basis Function (RBF) kernel. We used
the implementation of all these methods inWeka [65]. We
constructed statistical models using these methods with
features derived from DNA methylation and/or histone
modification levels of the different genic sub-regions. We
first constructed models for the three individuals using
their combined data. We randomly sampled 1/3 of the
genes as a left-out testing set. The remaining 2/3 of the
genes were used to perform model training. The con-
structed model was then applied to the left-out set to
compute the accuracy. For each setting, we repeated the
process five times to compute an average accuracy of the
five models.
We also tested the generality of our models by con-

structing models using the DNA methylation and gene
expression data of a random set of 2/3 of the genes from
one single individual/cell line for training, and applying
the model to predict the expression levels of the remain-
ing 1/3 of the genes in another individual/cell line based
on the DNA methylation levels in this individual/cell line.

Collection and processing of cell line data
We downloaded data for human embryonic stem cells and
human lung fibroblast line IMR90 produced by Roadmap
Epigenomics [45] from the Gene Expression Omnibus
(GEO) [66] web site. The RPKM measure was used to
compute the level of histone modification in each given
region. For data sets with replicates, we used the mean
values of the replicates for computing the histone modifi-
cation signals.

Data availability
All raw sequencing reads have been deposited into NCBI
Sequence Read Archive under entry SRP033491. All the
processed data files used in this study can be found at
http://yiplab.cse.cuhk.edu.hk/means/.
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