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Abstract

Background: Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are neoplastic disorders of
hematopoietic stem cells. DNA methyltransferase inhibitors, 5-azacytidine and 5-aza-2′-deoxycytidine (decitabine),
benefit some MDS/AML patients. However, the role of DNA methyltransferase inhibitor-induced DNA hypomethylation
in regulation of gene expression in AML is unclear.

Results: We compared the effects of 5-azacytidine on DNA methylation and gene expression using whole-genome
single-nucleotide bisulfite-sequencing and RNA-sequencing in OCI-AML3 cells. For data analysis, we used an approach
recently developed for discovery of differential patterns of DNA methylation associated with changes in gene expression,
that is tailored to single-nucleotide bisulfite-sequencing data (Washington University Interpolated Methylation
Signatures). Using this approach, we find that a subset of genes upregulated by 5-azacytidine are characterized
by 5-azacytidine-induced signature methylation loss flanking the transcription start site. Many of these genes
show increased methylation and decreased expression in OCI-AML3 cells compared to normal hematopoietic
stem and progenitor cells. Moreover, these genes are preferentially upregulated by decitabine in human primary
AML blasts, and control cell proliferation, death, and development.

Conclusions: Our approach identifies a set of genes whose methylation and silencing in AML is reversed by
DNA methyltransferase inhibitors. These genes are good candidates for direct regulation by DNA
methyltransferase inhibitors, and their reactivation by DNA methyltransferase inhibitors may contribute to
therapeutic activity.
Background
Myelodysplastic syndrome (MDS) is a collection of
neoplastic disorders of hematopoietic stem cells (HSCs)
characterized by inefficient hematopoiesis, peripheral
blood cytopenia, morphologic dysplasia, and susceptibility
to acute myeloid leukemia (AML). AML is characterized
by accumulation of immature myeloid ‘blasts’ in the bone
marrow and peripheral blood [1]. Accrual of epigenetic
abnormalities likely contributes to development of MDS
and AML. For example, promoter DNA hypermethylation
and associated silencing of tumor suppressor gene
CDKN2b, encoding p15INK4b, has been reported in up to
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80% of AML [2]. Accordingly, there has been substantial
interest in application of so-called epigenetic therapies to
combat MDS and AML, most notably, DNA methylation
inhibitors and histone deacetylase inhibitors [3].
In the US, two DNAmethyltransferase inhibitors (DNMTi),

5-Azacitidine (AzaC) and 5-aza-2'-deoxycytidine (decitabine),
are licenced for therapeutic use in MDS/AML [4]. In the UK,
AzaC is approved for use in some adults with MDS, chronic
myelomonocytic leukemia or AML. Decitabine is not
approved for use in the UK. These drugs act as ‘fraudulent
bases’ mimicking cytosine, and once incorporated into DNA
in S phase are able to trap DNMTs. Trapped DNMTs are
degraded by the proteasome resulting in passive hypo-
methylation of the DNA during subsequent replication
cycles [3].
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Initial studies focused on the DNA hypomethylating
activity of DNMT inhibitors as being the basis of their
therapeutic effects. Approximately 60% of human gene
promoters are associated with CpG rich regions termed
CpG islands [5]. CpG islands are typically maintained
free of DNA methylation and this is permissive for gene
expression. However, in many human cancers, a propor-
tion of CpG islands is hypermethylated and this is linked
to silencing of some tumor suppressor genes [6]. Hyper-
methylation of regions of lower CpG density adjacent to
islands, termed CpG island shores, are also linked to si-
lencing [7].
Accordingly, it has been proposed that DNMT inhibitors

cause hypomethylation of promoter regulatory regions of
tumor suppressor genes silenced by DNA methylation,
thereby reactivating cell growth arrest and differentiation.
For example, treatment of AML cell lines and patient blasts
with decitabine induced hypomethylation and reactivation
of expression of p15INK4b [8]. However, other studies have
failed to confirm a strong correlation between promoter
and CpG island hypomethylation and activation of gene
expression [9,10]. Indeed, in addition to causing DNA
hypomethylation, DNMTi cause damage to DNA, and
AzaC is also incorporated into RNA, and these activities
might also contribute to their biological effects [3].
To date, studies investigating the relationship between

AzaC- and decitabine-induced DNA hypomethylation and
gene expression have employed analysis methods that fail
to survey methylation across the entire epigenome [8-10].
For example, frequently used Illumina 27 K and 450 K
arrays sample only a small number of CpGs per CpG
island, and only 27,000 and 450,000 respectively of the
approximately 56 million cytosines in CpG context in the
genome (that is, approximately 28 million dyad CpGs). To
date, no study has compared methylation changes across
all CpGs with changes in gene expression. Therefore, we
set out to investigate the effects of AzaC in a model AML
cell line, using more comprehensive whole genome
bisulfite sequencing (WGBS) to map the DNA methyla-
tion landscape in AzaC untreated and treated cells, and
employing a sophisticated computational approach tai-
lored to whole genome data to unveil relationships
between altered methylation and altered gene expression
(Washington University Interpolated Methylation Signa-
tures (WIMSi)). By this approach, we identified a set of
genes whose is expression is aberrantly repressed by
DNA methylation in AML and reversed by DNMTi,
perhaps contributing to therapeutic effects of DNMTi.

Results
To investigate the effects of AzaC on DNA methylation
and gene expression at the whole genome level, we chose
to work with OCI-AML3 cells as a model. AML3 cells are
derived from AML (FAB M4) harboring a mutation in
nucleophosmin (NPM1) exon 12 and a DNMT3A R882C
mutation [11,12]. Approximately, 35% and 22% of primary
human AML harbor such mutations in NPM1 and
DNMT3a, respectively [13,14]. Since the action of AzaC
as a DNA demethylating agent depends on passive de-
methylation due to downregulation of DNMT1, we first
established an AzaC treatment protocol that downregu-
lated DNMT1 but was not so toxic as to acutely arrest
DNA synthesis and cell proliferation. We found that treat-
ing cells with 0.5 μM AzaC three times at 24-h intervals
(0, 24, and 48 h) and harvesting at 96 h after the first treat-
ment resulted in marked downregulation of DNMT1 at
96 h (Figure 1a). However, this dose of AzaC resulted in
only a modest decrease in the number of viable cells,
compared to untreated controls over the same time course
(Figure 1b). Moreover, by this protocol AzaC induced
only low levels of DNA damage as measured by γH2AX
(Figure 1c), and apoptosis measured by PARP cleavage,
caspase 3 activation, and <2n DNA content (Figure 1d
and Additional file 1: Figure S1a-c). Most important, by
this regimen AzaC did not markedly inhibit cell division,
cell cycle distribution, DNA synthesis, and cell prolifera-
tion (Figure 1e, f and Additional file 1: Figure S1c, d).
Based on these pilot data, we anticipated that treating
AML3 cells with 0.5 μM AzaC three times at 24-h inter-
vals (0, 24, and 48 h) and harvesting at 96 h should permit
DNA synthesis in the absence of DNMT1, and thus pas-
sive genome demethyation.
Accordingly, AML3 cells were treated three times at

24-h intervals with 0.5 μM AzaC in triplicate and har-
vested 96 h after the first treatment. Genomic DNA was
purified from two replicates and subjected to whole gen-
ome bisulfite sequencing (in excess of 15× coverage of
each replicate), yielding a total of 237Gb of sequence
data (Additional file 2: Table S1). In parallel, RNA was
purified from three replicates and analyzed by RNA seq
of poly (A) RNA. Analysis of the DNA methylation data
confirmed that individual replicates of untreated and
treated cells were highly concordant (Additional file 2:
Tables S2 and S3), with paired Spearman coefficients in the
range of 0.79 to 0.94 between like samples (Additional file 2:
Table S4). Importantly, in untreated cells there was also a
strong correlation in promoter CpG methylation and gene
expression between AML3 and primary AML cells (data
from TCGA); Spearman correlation coefficient of 0.79 and
0.85 for CpG methylation and gene expression, respect-
ively (Additional file 3: Figure S2). Absolute levels and
changes (between untreated and treated) in methylation at
non-CpG sites, CHG, and CHH (defined in Material and
Methods), were negligible (untreated to treated, 0.44% to
0.40% (CHG) and 0.43% to 0.39% (CHH)) (Additional file 2:
Table S5 and S6), compared to the frequency of failed bisul-
fite conversion of unmethylated C to U (Additional file 2:
Table S7). Of 56,328,604 cytosines in a CpG context in the
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Figure 1 (See legend on next page.)

Lund et al. Genome Biology 2014, 15:406 Page 3 of 20
http://genomebiology.com/2014/15/8/406



(See figure on previous page.)
Figure 1 Optimization of AzaC treatment protocol. (a) AML3 cells were treated three times with vehicle, 0.5, 1, or 2 μM AzaC (triangle) at 0,
24, 48 h, harvested at 96 h, and western blotted for DNMT1. (b) AML3 cells were treated with vehicle, 0.5, 1.5, or 5 μM AzaC at 12-h intervals and
viability determined by fluorescence assay (Resazurin) at indicated time points. (c) AML3 cells were treated three times with vehicle, 0.5, 1, or
2 μM AzaC (triangle) at 0, 24, 48 h and whole cell lysates western blotted for γH2AX at 72 h. As a positive control, cells were treated with vehicle
or 1 μM etoposide (Eto). (d) AML3 cells were treated three times with vehicle, 0.5, 1, or 2 μM AzaC (triangle) at 0, 24, 48 h, harvested at 72 h, and
western blotted for uncleaved and cleaved PARP. As a positive control, p53 inducible SAOS2 cells were treated with vehicle or doxycycline (Dox).
(e) AML3 cells were treated three times with vehicle, 0.5 or 5 μM AzaC (as indicated by triangle) at 0, 24, 48 h and cumulative cell divisions scored
by CFSE at 96 h. Results from three replicate experiments with SD. (f) AML3 cells were treated three times with vehicle, 0.5, 1, or 2 μM AzaC
(triangle) at 0, 24, 48 h, pulse labelled with BrdU for 1 h at 96-h time point, and DNA content (7-AAD) and DNA synthesis (BrdU) determined by
FACS. (g) AML3 cells were treated three times at 24-h intervals with 0.5 μM AzaC in triplicate and harvested 96 h after the first treatment. Number
of CpGs showing decreased (hypo) and increased (hyper) methylation in AzaC treated cells, compared to untreated cells. (h) Overall percent
methylated basecalls for all reference CpGs, in cells from (g).

Lund et al. Genome Biology 2014, 15:406 Page 4 of 20
http://genomebiology.com/2014/15/8/406
hg18 reference genome, 6,679,526 showed lower methyla-
tion (hypomethylated) in AzaC treated cells, compared
to untreated cells (FDR corrected P value level of 0.05)
(Figure 1g) (Additional file 2: Table S8). One hundred
and ninety-two individual CpGs gained DNA methyla-
tion (hypermethylated) in AzaC treated cells (FDR cor-
rected P value level of 0.05) (Figure 1g, Additional file 2:
Table S8). As expected, analysis revealed an overall de-
crease in cytosine methylation in AzaC treated cells
(Figure 1h), from 66.97% to 32.32% methylcytosine base-
calls at reference CpG sites.
As a platform for understanding the effects of AzaC

on DNA methylation and gene expression, we first ana-
lyzed the relationship between DNA methylation and gene
expression in AzaC untreated proliferating AML3 cells. In
untreated cells, percent methylation was in the range of
0% to 100% (Figure 2a). However, most individual CpGs
were scored as ‘methylated’ (>80% methylated) or ‘partially
methylated’, with only 20% scoring as ‘unmethylated’
(<20% methylated) (Figure 2b). When plotted across a lin-
ear chromosome, a landscape of highly methylated do-
mains interspersed with partially methylated domains was
apparent (Figure 2c). Highly methylated CpGs mapped
predominantly to genic regions (including introns) and
SINE elements (Additional file 4: Figure S3). Compared to
a random distribution across the genome, unmethylated
regions were enriched at CpG islands, 5′ UTRs and pro-
moters (Figure 2d). In these general terms, these features
of the global methylation landscape of AML3 cells are
qualitatively similar to those previously described in can-
cer cells, differentiated cells, primary tissues and senescent
cells [15-20].
Next, we plotted average percent methylation across

gene bodies, promoters, and up- and downstream regions
of composite genes, where transcript start and end sites
(TSS and TES) were the outermost start and end sites, as
defined in Ensembl Human Genes (version 54) for each
gene. Composites were comprised of subgroups of all
genes in the expression dataset, grouped according to level
of expression in proliferating AzaC untreated cells. Within
gene bodies, there was a general trend towards increasing
methylation with increasing expression, as reported pre-
viously [18,21-25]. This trend was most marked among
the more lowly expressed genes (Figure 3a); the highest
expressed genes were not the most highly methylated in
gene bodies. This bimodal pattern was also apparent
when percent methylation along individual genes (includ-
ing up and downstream regions) was plotted as a heatmap,
with genes vertically rank ordered according to level of ex-
pression (Figure 3b). At promoters, increasing expression
was associated with decreased methylation; interestingly,
this trend was most marked in the extent of the unmethy-
lated region downstream of the TSS (Figure 3a). Again,
this trend was also apparent in the heatmap analysis
(Figure 3b). We reasoned that the correlation between
low-level methylation at promoters and high-level gene
expression was likely to reflect hypomethylation of
CpG islands. Consistent with this idea, the most highly
expressed genes also exhibited the highest CpG ratio at
promoters (Figure 3c). Of course, in many cancers, a pro-
portion of CpG islands is methylated and this is associated
with silencing of those genes [26]. In AML3 cells, about
12% of CpG islands overlapping a TSS showed at least
80% methylation (Figure 3d). As expected, these were
expressed at a lower level than genes with unmethylated
CpG islands at the TSS (Figure 3e). In sum, as a general
trend, the highest expressed genes are those harboring
hypomethylated CpG islands at the TSS. A subset of CpG
islands is methylated in AML3 cells and this is associated
with lower expression.
When percent methylation across each linear chromo-

some was compared between AzaC-untreated and treated
cells, decreased methylation was apparent along the length
of the chromosome (Figure 4a). Regardless of initial methy-
lation level, the mean level of methylation after AzaC was
typically about 50% of the untreated level (Figure 4b), a
uniform relative decrease in methylation (Figure 4c). Strik-
ingly, a histogram of relative change of DNA methylation
in 2 kb windows conformed to a normal distribution,
confirming that across the vast majority of windows
there was no difference in tendency to hypomethylation
in the presence of AzaC (Figure 4d). Most specific sequence
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Figure 2 DNA methylation landscape in untreated cells. (a) Histogram of global percentage methylation. The genome is split into
non-overlapping 2 kb windows, and the percentage methylation at CpGs calculated for each window. Y-axis indicates the number of windows
with a given methylation level. (b) Proportion of individual CpGs that are unmethylated (<20% methylated), partially methylated (20% to 80%
methylated) or methylated (>80% methylated). (c) Bisulphite sequencing percentage methylation (orange) and Ensembl genes (blue) over
chromosome 16. (d) Ratios of observed to expected overlap (enrichment) of methylated, partially methylated and unmethylated CpGs (defined as
in (b)) with specified genomic features.
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features of the genome underwent a comparable approxi-
mate 50% loss of methylation (Figure 4e). Some regions,
notably CpG islands, 5′ UTR and gene promoters, under-
went a smaller decrease in methylation, likely because their
starting methylation was already close to zero (Figure 2d).
Of particular note, CpG islands that were heavily
methylated in untreated cells underwent substantial
hypomethylation after AzaC treatment (Figure 4f ).
Despite extensive DNA hypomethylation across the
whole genome, by RNA-seq analysis, a relatively small
proportion of genes significantly altered their expression
(Figure 4g and Additional file 2: Table S9). Of 36,119
annotated genes (Ensembl Human Genes Version 54)
792 were significantly upregulated and 426 were down-
regulated (BH-fdr <0.05) (Additional file 5: Dataset 1,
‘AML3_AzaC_SigDiff_1147’).
Since AzaC induced substantial loss of methylation

across the whole genome, but only a small proportion of
genes altered their expression, we next set out to identify
the parameters that determine altered gene expression.
First, we considered the hypothesis that activation of
gene expression is tightly linked to loss of methylation at
a promoter CpG island. Consistent with this idea, some
activated genes, for example, DAZL, did undergo CpG
island hypomethylation after AzaC treatment (Figure 5a).
However, genome-wide analyses did not support a strong
link between CpG island hypomethylation and activation
of gene expression. Considering the top-most upregulated
genes, some are not linked to promoter CpG islands
whereas others are linked to CpG islands that are only
weakly methylated in untreated cells (Additional file 5:
Dataset 2). Moreover, there was a very small and insignifi-
cant overlap between those genes harboring a methylated
CpG island at the TSS in untreated cells and genes upreg-
ulated by AzaC (P = 0.4195) (Figure 5b).
Although AzaC induced a relatively uniform approxi-

mately two-fold decrease in methylation across the whole
genome, the absolute difference in percent methylation
varied quite widely, depending on the level of methylation
in untreated cells (Figure 5c). However, a dot plot of ab-
solute difference in percent methylation at CpG islands
versus difference in gene expression between untreated
and treated cells failed to show a correlation between al-
tered methylation and altered expression (Figure 5d and
Additional file 6: Figure S4a). Similarly, there was not
a strong link between absolute difference in percent
methylation at CpG island shores and altered expression
(Figure 5e and Additional file 6: Figure S4b). This is the
case whether changes in expression are assessed by fold
change (Additional file 6: Figure S4a, b) or absolute
change in expression (Figure 5d, e). Finally, genes whose
expression increased significantly after AzaC did not show
a greater decrease in promoter methylation than all other
genes (Figure 5f). Together, these results do not support
the hypothesis that CpG island and/or shore hypome-
thylation is primarily responsible for activation of gene
expression by AzaC.
The previous analyses employed a relatively simple quan-

titative analysis of total DNA methylation over defined re-
gions, CpG islands, or shores. Next, we adopted a more
sophisticated approach for discovering differential pat-
terns of methylation associated with changes in gene ex-
pression. In this recently described approach (Washington
University Interpolated Methylation Signatures (WIMSi)
[27]) differential methylation between AzaC-untreated
and treated cells for each gene was first represented as an
interpolated curve, or signature. Genes were then clus-
tered by the shape-based similarity of their methylation
signatures (Figure 6a). Clusters of genes where at least
85% of the genes changed expression in the same direc-
tion and the distribution of expression changes was differ-
ent than the background distribution were then identified.
The resultant clusters of genes all have similar methyla-
tion signatures and show concordant expression changes.
Out of 1,147 genes significantly up- or downregulated
by AzaC (753 upregulated and 394 downregulated
(Additional file 5: Dataset 1)), this approach identified
246 upregulated genes (32.7% of all upregulated genes)
that underwent a similar pattern of decreased methylation
on AzaC treatment (Figure 6a, b and Additional file 5:
Dataset 3, ‘AML3_AzaC_WIMSi_246’). Specifically, these
genes are characterized by a loss of DNA methylation
on AzaC treatment greater than 0.5 to 1 kb 5′ and 3′
from the TSS, but minimal change close to the TSS itself
(Figure 6b, c). This signature reflects the fact that in un-
treated AML3 cells, these genes are primarily methyl-
ated 5′ and 3′ to the TSS, but devoid of methylation at
the TSS (Figure 6d).
To further interrogate the significance of this gene set,

we repeated the same differential methylation/expression
analysis, but compared the same 1,147 genes to the dif-
ference in methylation between AML3 cells and normal
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human hematopoietic stem and progenitor cells (HSPC)
previously reported by Hannon and co-workers [28]. This
directly tested whether there are methylation changes from
HSPC to AML3 cells that correlate with gene expression
changes in AML3 cells upon treatment with 5-AzaC.
This analysis identified 336 genes that exhibited a similar
methylation difference between AML3 and HSPC (Figure 6e
and Additional file 5: Dataset 4, ‘Split WIMSi_336’).
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between global average untreated methylation and treated methylation. Reference CpGs are placed into integer bins (in the range of 0 to 100)
corresponding to AzaC-untreated% methylation. The mean AzaC-treated% methylation (b) and mean relative difference (c) are calculated for the CpGs
in each bin, and plotted. (d) Distribution of methylation differences approximates a normal distribution. The genome is split into non-overlapping 2 kb
windows, and the relative difference in methylation at CpGs calculated for each window. (e) Methylation changes within genomic features. Mean
percentage methylation over specified genomic features, for AzaC-untreated (blue) and AzaC-treated (red) cells. (f) Methylation plotted for untreated
and treated CpG islands. Histogram of percentage CpG methylation at CpG islands for AzaC untreated (blue) and AzaC treated (red) cells. (g) Classification
of gene expression changes after AzaC treatment. Proportion of genes that are up- and downregulated (BH-fdr <0.05), unchanging (BH-fdr >0.05) and
unexpressed in either sample (FPKM= 0). Up, 792; down, 426; no change, 20,385; unexpressed, 14,516. See Additional file 5: Dataset 1.
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Figure 5 AzaC-induced changes in gene expression are not linked to gross hypomethylation of CpG islands. (a) Smoothed percentage
methylation plot of the DAZL promoter region, showing individual CpGs (dots) and smoothed methylation (lines) for untreated (red) and treated
(blue). (b) Overlap between genes with a methylated CpG island overlapping TSS (mCpG > 80%) and upregulated genes (BH-fdr <0.05). (c)
Reference CpGs are placed into integer bins (in the range of 0 to 100) corresponding to AzaC untreated% methylation. The mean difference in
methylation is calculated for the CpGs in each bin, and plotted. (d) Scatter plot of difference in expression versus difference in CpG island
methylation at genes with a CpG island within 10 kb of the TSS, showing all genes (blue) and significantly regulated genes (red). (e) Scatter plot
of difference in expression versus difference in CpG island shore methylation at genes with a CpG island within 10 kb of the TSS, showing all
genes (blue) and significantly regulated genes (red). (f) Histogram of relative methylation differences for upregulated and all genes. The relative
difference in the promoter (+/- 2 kb TSS) methylation for significant upregulated (red) and all genes (blue) is calculated and the distribution
is plotted.
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Specifically, these show more methylation in AML3
compared to HSPC, most marked 5′ and 3′ to the TSS
(Figure 6e). Remarkably, all of these genes were upregulated
on AzaC treatment of AML3 (Additional file 5: Dataset 4).
Of the 246 genes showing decreased methylation on AzaC
treatment of AML3 and the 336 genes showing increased
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(See figure on previous page.)
Figure 6 AzaC reverses a specific signature of aberrant promoter DNA methylation and associated gene silencing in AML. (a) Clusters
of upregulated genes with similar differential methylation signatures [27]. Orange highlight regions, 75% upregulated. (b) Differential methylation
up and downstream of TSS (0 bp). Y-axis, differential methylation, -1 to 1, complete hypomethylation and hypermethylation, respectively. Fold
change (log2) gene expression is indicated (>0 = upregulated by AzaC) (Black to red, extent of upregulation). (c) Average differential methylation
in AML3 -/+AzaC, over 246 genes identified by the gene list tool. (d) Average fraction methylation (Y-axis) around TSS of 246 genes in AzaC-untreated
AML3. (e) Average plot of differential methylation, HSPC, and AML3 cells, over 336 genes identified by the gene list tool. (f) Overlap between 246
genes differentially methylated between AzaC-treated and untreated AML3 ((AML3_AzaC_WIMSi_246), Additional file 5: Dataset 3) and 336 genes
differentially methylated between HSPC and AML3 ((Split WIMSi_336), Additional file 5: Dataset 4) (2.18-fold enrichment over random (P < 1 × 10-37),
Additional file 5: Dataset 5)). (g) Overlap between 246 genes differentially methylated between AzaC-treated and untreated AML3 (AML3_AzaC_
WIMSi_246) and genes downregulated in expression in AML3 cells compared to both HSPC data sets (NIH and UNSW) and significantly regulated by
AzaC in AML3) (Additional file 5: Dataset 6, HSPC_AML Expr both Down_259). Eighty-four gene overlap represents a 1.5-fold enrichment over random
(P < 3 × 10-6) (Additional file 5: Dataset 7). (h) Overlap between 246 genes differentially methylated between AzaC-treated and untreated AML3
(AML3_AzaC_WIMSi_246) and genes upregulated in expression in AML3 cells compared to both HSPC data sets (NIH and UNSW) and significantly
regulated by AzaC in AML3 (HSPC_AML Expr both Up_410) (Additional file 5: Dataset 8). Fifty-six gene overlap represents a 1.57-fold depletion over
random (P <1× 10-6) (Additional file 5: Dataset 9). (i) Fraction of 246 genes differentially methylated between AzaC-treated and untreated AML3
(AML3_AzaC_WIMSi_246) with indicated gene expression in AML3 and HSPC cells (NIH or UNSW datasets).
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methylation between HSPC and AML3, 157 were in com-
mon, a significant (P <1 × 10-37) 2.18-fold enrichment over
random (Figure 6f and Additional file 5: Dataset 5, ‘Over-
lap_157’). Thus, genes in the AML3_AzaC_WIMSi_246
gene set tend to show increased promoter methylation in
AML3 compared to HSPC.
Accordingly, we reasoned that genes in the AML3_A-

zaC_WIMSi_246 gene set might tend to be silenced in
AML3 compared to HSPC. To test this, we identified all
those genes whose expression is downregulated in AML3
compared to HSPC, based on two previously published
HSPC gene expression datasets [29,30], and whose expres-
sion is significantly regulated by AzaC treatment of AML3
(Additional file 5: Dataset 6, ‘HSPC_AML_Expr both
Down_259’). Conversely, we identified all those genes
whose expression is upregulated in AML3 compared to
HSPC and whose expression is significantly regulated
by AzaC treatment of AML3 (Additional file 5: Dataset 8,
‘HSPC_AML_Expr both Up_410’). We then assessed over-
lap between the AML3_AzaC_WIMSi_246 gene set and
these two gene sets. A substantial proportion of the 246
gene set were silenced in AML3 cells compared to normal
HSPC (Additional file 5: Dataset 7, ‘Overlap_84’, 84 gene
overlap represents a 1.5-fold enrichment over random
(P < 3 × 10-6)), but a much smaller proportion was acti-
vated in AML3 cells compared to HSPC (Additional file 5:
Dataset 9, ‘Overlap_56’, 56 gene overlap represents a 1.57-
fold depletion over random (P <1 × 10-6)). Consistent with
this, the AML3_AzaC_WIMSi_246 genes were expressed
at relatively lower levels in AML3 than in HSPC (Figure 6i).
In sum, the AML3_AzaC_WIMSi_246 gene set tends to
be silenced in AML3 compared to HSPC.
Analysis of public TCGA primary AML data to compare

CpG island methylation and expression of the AML3_A-
zaC_WIMSi_246 genes according to mutation status of
known epigenetic regulators, NPM1 and DNMT3A (any
somatic mutation in NPM1 or DNMT3A, and irrespective
of normal or abnormal karyotype), revealed very high
correlation coefficients between WT/WT AML and
the other three genotypes (DNMT3A/NPM1 mutant/
WT, WT/mutant, and mutant/mutant (somatic muta-
tion status determined from TCGA)), for both gene ex-
pression and promoter CpG methylation (Additional file 7:
Figure S5). Thus, across a broad spectrum of AML,
NPM1, and/or DNMT3A mutation status does not
greatly affect promoter methylation and expression of
the 246 genes. However, previous studies have shown
that normal karyotype DNMT3A R882 mutant AML
exhibit focal CpG hypomethylation at sites throughout
the genome [31], whereas normal karyotype IDH1
R132 or IDH2 R140 mutant AML exhibit global hyperme-
thylation [32]. In line with this, we observed a trend to-
wards relative hypomethylation of the 246 genes in
normal karyotype AML harboring DNMT3A R882 point
mutations, and hypermethylation in normal karyotype
AML harboring IDH1 R132 or IDH2 R140 mutations
(Additional file 8: Figure S6a). In the case of DNMT3A
R882 and IDH2 R140 mutations, the methylation differences
compared to normal karyotype AML wild type at these
positions were P <0.05 (Additional file 8: Figure S6b).
Most notably, in the case of DNMT3A R882 mutant
AML, the 246 genes exhibited a significantly greater loss
of methylation than all genes (or three randomly selected
groups of 246 control genes), whereas in IDH1 R132 and
IDH2 R140 mutant AML the 246 genes showed signifi-
cantly greater gain of methylation than all and control
genes (Figure 7a, b, and c). Despite these differences in ex-
pression, there was no significant difference in the level of
gene expression between any of the wild-type and mutant
genotypes (data not shown).
While analysis of transcription factor binding sites

(from [33]) in gene promoters did not reveal any tran-
scription factor binding sites to be substantially enriched
in a large proportion of the AML3_AzaC_WIMSi_246
genes (data not shown), assessment of gene ontology using
Ingenuity pathway analysis showed that the aforementioned
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(See figure on previous page.)
Figure 7 Genes upregulated by AzaC in AML3 are preferentially impacted by mutations that affect DNA methylation and upregulated
by Decitabine in patient primary AML blasts. (a) Difference between mean promoter methylation of normal karyotype primary AML WT or
mutant at DNMT3A R882 for the indicated groups of genes (all, AML3_AzaC_WIMSi_246 (Aza/246) or three groups of 246 randomly selected
genes). P value (Wilcoxon test) of AML3_AzaC_WIMSi_246 versus all other groups <0.001. (b) As (a), but the difference between IDH1 R132 and
WT. P value of AML3_AzaC_WIMSi_246 versus all other groups <0.001. (c) As (a), but the difference between IDH2 R140 and WT. P value of
AML3_AzaC_WIMSi_246 versus all other groups <0.001. (d) Log2 fold change in expression of AML3_AzaC_WIMSi_246 genes (blue) and all genes
(red) in patient primary blasts after treatment with decitabine. Data from [9]. Sixteen out of 17 patients showed a P value <0.001 (Fisher’s Exact).
See Additional file 5: Dataset 10 for P value of difference between AML3_AzaC WIMSi (246) genes and all genes. (e) As (a), but 662 genes out of
1,147 genes regulated by AzaC in AML3 (Additional file 5: Dataset 1) that are most divergent from signature identified by WIMSi depicted in
Figure 6c (AML3_AzaC_662). See Additional file 5: Dataset 10 for P value of difference between AML3_AzaC WIMSi (246) genes and
AML3_AzaC_662 genes.
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246 are enriched in genes potentially linked to therapeutic
activity of AzaC, including cell movement, cell death and
survival, and cell growth and proliferation (Table 1). To fur-
ther assess the potential therapeutic relevance of this
AzaC-responsive 246 gene set, we analyzed their expression
levels in patient-derived primary AML blasts treated
in vitro with the related DNMTi, decitabine, using a dataset
previously published by Ley and co-workers [9]. Of the 246
AzaC-responsive genes, 230 were represented in the Ley
and coworkers dataset [9], and these genes were consist-
ently more upregulated by decitabine than all genes, across
a group of 17 patients (Figure 7d and Additional file 5:
Dataset 10). In contrast, the 662 genes (in the original set
of all genes regulated by AzaC in AML3, AML3_AzaC_
SigDiff_1147) for which WIMSi did not find evidence
of a correlation between methylation and expression
(‘AML3_AzaC_662’) were not more upregulated by
decitabine than all genes (Figure 7e and Additional file 5:
Dataset 10). Thus, using WIMSi’s methylation signature ap-
proach, we have identified a subset of genes regulated by
AzaC treatment of AML3 that are more likely than other
AzaC-regulated genes to be upregulated by decitabine in
primary patient blasts.

Discussion
To date, most WGBS analyses of human cancers have
been performed on solid tumors [15-17]. DNA methylation
analyses in AML have tended to employ less comprehen-
sive methods, such as Illumina arrays, reduced representa-
tion bisulfite sequencing (RRBS) and methylated DNA
Table 1 Results of IPA analysis of 246 genes identified by
WIMSi in AzaC-treated AML3 cells (AML3_AzaC WIMSi
(246))

Molecular and cellular function Number genes P value

Cell death and survival 102 <0.004

Cellular movement 68 <0.004

Cellular function and maintenance 80 <0.004

Cellular growth and proliferation 106 <0.004

Cell-to-cell signaling and interaction 63 <0.004

The five top-scoring ‘molecular and cellular functions’ are shown.
immunoprecipitation (MeDIP)-seq. While these studies
obviously have their own important strengths, such as
throughput of multiple primary samples from patients
[9,34-36], no previous study has performed WGBS on pri-
mary AML blasts or cell lines. Nor have previous studies
examined the effects of DNMTi on DNA methylation and
gene expression, employing such comprehensive methods
as WGBS and RNA-seq. This is important because
DNMTi are used in the clinic, yet the relationship between
their effects on DNA methylation and gene expression is
unclear.
Accordingly, we report here the first WGBS analysis of

DNA methylation in an AML cell line. We also report
the effects of AzaC treatment on DNA methylation and
gene expression. Based on simple quantitative analyses
of methylation at promoters, CpG islands, and shores,
there was no significant correlation between loss of DNA
methylation and change in gene expression. However, a
more sophisticated search algorithm identified a subset of
upregulated genes with a signature loss of methylation
flanking the TSS. Remarkably, many of these same genes
gained methylation in AML3 cells compared to normal
hematopoietic stem and progenitor cells and this was typ-
ically accompanied by their downregulation in AML3
cells. These genes have functions in cell movement, cell
death and survival, and cell growth and proliferation and
are preferentially upregulated on decitabine treatment of
patient-derived primary AML blasts. Hence, these genes
are candidates for genes whose expression is aberrantly re-
pressed by DNA methylation in AML and reversed by
DNMTi treatment.
Globally, the DNA methylation landscape of proliferat-

ing AML cells, without AzaC treatment, is reminiscent
of other solid tumor epigenomes analyzed by WGBS
[15-17]; large regions of near complete DNA methyla-
tion are interspersed with regions of partial methylation
and much more focal regions that are largely depleted of
DNA methylation. As in normal genomes, regions lack-
ing DNA methylation are predominantly at promoters
containing CpG islands [18]. However, as is typical of
cancer genomes, a proportion of CpG islands is methylated
[26]; in AML3 cells, about 12% of CpG islands overlapping
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gene TSS are methylated. Consistent with the link between
CpG island hypermethylation and gene silencing [26],
genes with methylated CpG islands tend to be expressed
at a lower level than genes with unmethylated CpG
islands. As shown previously in other cell types, at gene
bodies there is general trend towards increasing gene body
methylation with increasing expression, although this rela-
tionship breaks down at the most highly expressed genes
[18,21,22,24,25].
Treatment of AML3 cells with AzaC resulted in a near-

uniform approxiamte 50% decrease in methylation across
the whole genome. Only promoters, CpG islands and 5′
UTRs underwent a slightly more modest decrease, pre-
sumably because many of these regions are unmethylated
or barely methylated even prior to AzaC treatment. In
contrast, previous reports have suggested that AzaC and
decitabine cause preferential loss of DNA methylation at
some regions of the genome [9,34,37]. While differences
between cell lines, primary blasts, and DNMTi treatment
protocols might account for some differences, the 15×
genome-wide coverage achieved in our study unambigu-
ously reveals a uniform decrease across the genome in this
study. Of course, a 50% decrease in methylation across the
whole genome results in a greater absolute loss of methy-
lation at highly methylated regions, compared to lowly
methylated regions. In fact, from this perspective our data
appear consistent with those of Ley and coworkers [9].
In sum, at least in AML3 cells, there is no locus-specific
preferential loss or retention of DNA methylation.
In contrast to the uniform loss of methylation across

the genome, AzaC caused highly targeted gene-specific
changes in gene expression. Specifically, 792 genes were
significantly upregulated, and 426 downregulated. Since
about 12% of genes with a CpG island overlapping the
TSS harbor a methylated CpG island in AzaC-untreated
cells, and since methylation is associated with decreased
expression in these cells, we initially asked whether upreg-
ulation of gene expression was associated with CpG island
hypomethylation. However, based on simple quantitative
analyses of methylation at promoters, CpG islands, and
shores, there was no significant correlation between loss
of DNA methylation and change in gene expression. Pre-
vious studies, for example employing Illumina 450 K ar-
rays or Sequenom technology targeted to selected genes,
similarly failed to observe a strong link in this regard
[9,10,38-43]. Conceivably, failure to observe widespread
upregulation of hypomethylated genes in in vitro studies
depends, in part, on lack of appropriate in vivo signals and
environmental factors. Obviously, this issue can only be
addressed in humans in the context of clinical studies.
Regardless, a major advantage of WGBS data lies in

the ability to perform unbiased searches for patterns of
methylation (at the single nucleotide level) that correlate
with expression [20,27]. Indeed, a more sophisticated
search algorithm, WIMSi [27], identified a subset of 246
upregulated genes with a shared signature loss of methyla-
tion flanking the TSS. Increased expression of these genes
after AzaC, associated with a common methylation loss
signature, tentatively suggests that these genes might be
directly regulated by DNA methylation. In further support
of this idea, many of these same genes gained methylation
in AML3 cells compared to normal hematopoietic stem
and progenitor cells and this was typically accompanied
by their downregulation. Conceivably, these are genes
whose is expression is aberrantly repressed by DNA methy-
lation in AML and reversed by AzaC treatment of AML;
the remainder of the genes regulated by AzaC in AML3
might be regulated as a secondary consequence of these
candidate primary targets, or might be regulated via ef-
fects of AzaC on RNA or DNA damage. Consistent with
these 246 genes being directly regulated by DNA methyla-
tion, these genes were also significantly and preferentially
upregulated in decitabine-treated human primary AML
blasts, compared to all genes and even genes regulated by
AzaC in AML3 but lacking the loss of methylation signa-
ture characteristic of the 246 genes. Since AzaC and deci-
tabine share the ability to induce DNA hypomethylation,
but differ in some other respects such as AzaC’s preferen-
tial incorporation into RNA, this points to the 246 genes
being regulated by DNA methylation. Underscoring the
power of the WGBS and WIMSi analysis approach, the
original authors of this decitabine study reported a limited
correlation between change in DNA methylation and ex-
pression [9], likely because the array-based approach had
insufficient coverage of promoter CpGs. The 246 AzaC-
regulated genes are involved in processes the can reason-
ably drive anti-neoplastic activity, cell death, cell movement,
and cell proliferation, supporting the view that reversal of
silencing of these genes by DNMTi contributes to thera-
peutic activity. If so, methylation and/or expression status
of these genes might have utility as biomarkers to predict
and/or monitor patient response to DNMTi.

Conclusions
In sum, our WGBS and WIMSi data analysis approach
has identified a set of genes whose methylation and si-
lencing in AML is reversed by DNMTi. Known genetic
determinants of altered genome methylation in AML,
namely DNMT3A, IDH1, and IDH2 mutations, also pref-
erentially impact methylation of this group of 246 genes
in normal karyotype primary AML. These genes are
good candidates for direct regulation by DNMTi, and
their reactivation by DNMTi may contribute to thera-
peutic activity. Consequently, regulation of these genes
by DNMTi might serve as a biomarker to monitor on-
target activity of DNMTi in patients, and perhaps to pre-
dict therapeutic response. This study also demonstrates
the ability of WIMSi to reveal relationships between
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DNA methylation and gene expression, based on single-
nucleotide bisulfite-sequencing and RNA-seq data.

Materials and methods
Antibodies
Antibodies to the following targets were used in this study:
actin (A1978, Sigma); DNMT1 (AB19905, Abcam);
γH2AX (05-636, Millipore), PARP (9542P, Cell Signaling),
and 5′-BrdU (347580, Becton Dickinson).

Cell culture, AzaC treatment, and cell viability assays
OCI-AML3 cells were obtained from DSMZ [44] and au-
thenticated using Applied Biosystems AMPF/STR identi-
fier kit (short tandem repeat multiplex assay). Cells were
cultured in suspension in RPMI media supplemented with
FBS 20%, Penicillin 5%, and L-Glutamine 5%, incubated at
37°C in humidified conditions and 5% CO2. To passage,
cells were counted by hemocytometer and either centri-
fuged to a pellet and resuspended in fresh media or resus-
pended in 50% fresh media at a concentration of 0.5 ×
106/mL every 2 to 3 days. For long-term storage cells were
centrifuged to a pellet and resuspended in 1 mL freezing
media (70% RPMI/20% FBS/10% DMSO) in batches of be-
tween 4 and 10 × 106/mL and stored in cryovials at -80°C.
AzaC was dissolved from lyophilised powder into

culture-sterile DMSO to produce a 20 mM stock solu-
tion and stored as 15 μL aliquots at -80°C. For each new
experiment a fresh aliquot of AzaC was diluted in
RPMI/20% FBS to produce a 2 mM working stock which
was diluted directly onto cells in culture.
Viable cells were counted using vital dye (trypan blue)

to assess membrane integrity. All counts were performed
in duplicate or triplicate. Where indicated, cell viability
was also assessed using the indicator dye Rezasaurin to
measure metabolic capacity of the cells, according to the
manufacturer’s instructions (CellTiter-Blue, Promega).

Western blotting
Cell lysates were prepared by resuspending cells in freshly-
boiled 1x Laemmli SDS sample buffer. Protein quantitation
was performed by Bradford assay (Bio-Rad). Western blot-
ting was performed as described previously [45].

Activated caspase assays
NucView 488 Caspase 3 substrate was used to detect cas-
pase 3 activity as a reflection of apoptosis, according to
manufacturer’s instructions (Biotium).

Cell cycle analysis
DNA content was measured by FACS in fixed, perme-
abilized 7-AAD-stained cells, as described previously [46].
Cell cycle distribution was modelled from DNA content
using FlowJo [47]. Two color 7-AAD and 5-BrdU cell
cycle analysis was performed as described previously [48].
CFSE assays
CFSE staining was used to track cumulative cell divisions,
as described previously [49].

Bisulfite sequencing
Bisulfite sequencing of duplicate samples of genomic DNA
from untreated and AzaC-treated AML3 cells was per-
formed by BGI Tech.

DNA methylation data analysis/statistics
Processing and alignment of Bisulfite sequencing reads
Sequence reads are transformed in silico to fully bisulfite
converted forward (C- > T) and reverse (G- > A) reads.
The converted sequences are aligned against a converted
human reference genome (hg18) in each combination:
(1) forward (C- > T) reads aligned to forward (C- > T)
genome, (2) reverse (G- > A) reads aligned to reverse
(G- > A) genome, (3) forward (C- > T) reads aligned to
reverse (G- > A) genome, (4) reverse (G- > A) reads
aligned to forward (C- > T) genome. During the library
preparation process genomic fragments representing
alignments (3) and (4) are generated in the PCR step
however they are not sequenced and only fragments
corresponding to alignments (1) and (2) are read. As a
result only uniquely matching alignments from (1) and
(2) are retained. Alignment was performed using bis-
mark [50] (version 0.5.1), based on the Bowtie [51]
aligner (version 0.12.7). Unaligned reads resulting from
the initial alignments from these libraries were trimmed
15 bp from the 5′ end in order to remove the adapter
sequences, as some libraries contained these sequences
and realigned.
For each aligned sequence tag, the original unconverted

sequence is compared against the original unconverted
reference genome and the methylation status is inferred.
Sequences aligned from (1) and (2) give information on
cytosines on the forward and reverse strands, respectively.
To remove PCR bias a deduplication step removes po-

tential duplicate reads, where both ends of the fragment
align to the same genomic positions on the same strand,
only one of the reads is retained. To control for potential
incomplete bisulfite treatment any reads with more than
three methylated cytosines in non-CpG contexts are dis-
carded. Additional file 2: Table S1 details the sequence
yields at each stage of this process. Additional file 2:
Tables S2, S5, and S6 detail the number of methylated
and unmethylated bases sequenced within CpG, CHG,
and CHH contexts (H = A, C, or T). Additionally, reads
are mapped against the unmethylated lambda genome
which was added to bisulfite sequencing reactions, giving
the number of methylated bases allowing combined
error rate resulting from sequencing errors and
incomplete bisulfite conversion (Additional file 2: Table S7)
to be determined.
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Identification of methylated cytosines
Processed reads are aggregated on a per CpG basis
(number of bases read supporting methylated/unmethylated
status). At each reference cytosine the binomial distri-
bution was used to identify whether a subset of the
genomes within the sample were methylated at this loca-
tion. Methylcytosines were identified while keeping the
number of false positives below 1%. The probability of
sequencing an observed number of cytosines given the
identified error rates from the lambda alignment was
determined using the binomial distribution. At each refe-
rence cytosine the number of trials in the binomial test
was the read depth and the number of successes in the
test was equal to the number of cytosines sequenced at
that base. The probability was then corrected using the
BH-FDR function and the list of CpG sites was thresholded
at the 0.01 FDR level. See Additional file 2: Table S3.
A two-tailed Fisher’s exact test was used to identify

CpGs that were differentially methylated. Only CpG
determined using the binomial distribution in at least
one sample, with at least three reads in at least one
condition and with at least one read in the other condi-
tion, were considered for testing. P values were
corrected using the BH-FDR function to control false
positives at a rate of 5%. At this stage replicates were
pooled for subsequent analysis.

Percentage CpG methylation in genomic windows
The percentage CpG methylation for a given window was
calculated as the total number of methylated cytosines
sequenced (at CpG sites for that window), divided by the
total number of cytosines sequenced (at CpG sites for that
window), multiplied by 100.

Difference and relative difference in CpG methylation
Difference in CpG methylation was defined as the diffe-
rence between the treated and untreated percentage
methylation. Relative difference in CpG methylation was
defined as the difference in CpG methylation divided by
the untreated percentage methylation.

Global methylation
The whole genome was split into non-overlapping 2 kb
windows. For each window the start position was the
nearest upstream reference CpG site to the end of the
previous window. The percentage CpG methylation (AzaC
untreated and treated), and relative difference in CpG
methylation was determined for each window as
previously described. Windows with no reads at all CpG
sites, in either dataset were omitted.

Genomic features
The genomic features genic, exonic, 5′ UTR, and 3′ UTR
were downloaded from Biomart (Ensembl genes version
54), and CpG Islands, SINEs, LINEs, STRs, LTRs, low
complexity DNA, DNA transposons, and satellite repeats
were downloaded from UCSC (hg18). Promoter regions
were defined as TSS +/- 2 kb, and intronic regions as
genic and non-exonic (overlapping exons were merged).
CpG island shores were defined as the 2 kb flanking the
CpG island, and CpG island shelves as the 2 kb flanking
the shores [7].

CpG ratio
The observed-to-expected CpG Ratio was calculated as:
(CpGs in window * window length)/(Number of Gs in
Window * Number of Cs in window) [42].

Determination of observed-to-expected overlaps
Overlaps were computed on a per base pair basis be-
tween two datasets (A and B). For every region within A
the number of base pairs that were occupied by a region
within B was computed. A permutation test was per-
formed in order to determine the background genomic
average expected overlap. One thousand sets of regions
with properties (length distribution and chromosome
distribution) equal to set B were generated. Randomly
generated regions of B were prevented from being gen-
erated within unsequenced regions of the genome (as
defined by UCSC mapping and sequencing track - gap).
The overlap of A and B was repeated for each randomly
generated set of B to determine the average expected
random overlap. P values were estimated empirically
from the observed overlaps of the randomly generated
sets.

Methylation difference plots
Data bins were created for the integer values 0 to 100
and initialized as empty lists. For each CpG site within
the pooled data the methylation percentage for AzaC
untreated and treated samples was calculated, considering
only CpGs with minimum coverage of 10 reads in at least
one sample and three reads in both samples. Methylation
percentage of the AzaC untreated sample was truncated
to an integer value and used to select an appropriate data
bin into which the treated sample methylation percentage
was appended and the average of each bin was computed
giving the corresponding final methylation percentage in
treated cells. Difference in methylation was defined as the
difference between final and starting average methylation
percentages, and relative difference in methylation was
defined as the difference in methylation divided by the
average starting methylation percentages.

Smoothed methylation plots
The pooled whole genome methylation data were pro-
cessed using the BSmooth algorithm from the bsseq
(v0.8.0) package within Bioconductor as described in
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[52]. A modified version of the bsseq plotSmoothData
function was created to plot the smoothed data with
individual CpGs shown (addPoints = True) but while
suppressing the vertical ablines.

Composite plot generation
To generate composite gene profiles the Ensembl gene
annotation (version 54) was used to identify the outermost
transcript start and end sites (TSS and TES) for each of
the Ensembl genes in the expression dataset. The area be-
tween these sites, for each gene, was classified as the gene
body and split into 50 windows of equal size (each corre-
sponding to 2% of the total gene body). Ten additional
1 kb windows were prepended (appended) to the start
(end) of the gene to provide genomic context. The AzaC
untreated percentage methylated CpGs for each window
was determined.

Genes by decile plot
Expressed Genes (FPKM > 0) were ranked by expression
and placed into appropriate ranked decile bins. For each
composite plot window, the percentage methylation was
averaged for all genes in each decile.

Gene body heatmap
Heatmaps were generated where the y-axis corresponds
to Ensembl genes ordered by expression value in AzaC
untreated RNA-seq dataset and the x-axis to percentage
CpG methylation in the composite plot windows described
previously and their position along genes. Genes for which
greater than 50% of windows contained no reference CpGs
were omitted.

TSS centered heatmaps
The area around each TSS was split into 200 bp win-
dows spanning 5 kb upstream and downstream of the
TSS. The percentage CpG methylation and observed-to-
expected CpG ratio for each window was determined.
Heatmaps were generated where the y-axis was as the
gene body heatmap, and the x-axis to the described
windows and their position relative to the TSS. Genes
for which greater than 50% of windows contained no
reference CpGs were omitted.

RNA sequencing
Samples were prepared for RNA sequencing (RNA-seq)
according to the Illumina manufacturer’s instructions.
Samples were sequenced using the Illumina GAIIX se-
quencer. For analysis, RNA-seq paired-end reads are
aligned to the human genome (hg18) using a splicing-
aware aligner (tophat). Reference splice junctions are pro-
vided by a reference transcriptome (Ensembl build 54), and
novel splicing junctions are determined by detecting reads
that span exons that are not in the reference annotation.
Aligned reads are processed to assemble transcript iso-
forms, and abundance is estimated using the maximum
likelihood estimate function (cuffdiff ) from which dif-
ferential expression and splicing can be derived. See
Additional file 2: Table S9. RNA-seq gene expression
data from HSPC cells [29,30], was processed using edgeR
and an FDR cutoff of 0.1.

Comparison of gene expression and DNA methylation
data
For direct comparisons of gene expression to DNA methy-
lation in Figure 5 and Additional file 6: Figure S4, the full
list of 1,218 significantly changed genes (including 71 small
RNAs) was used.

Comparison of AML and AML3 methylation
The Cancer Genome Atlas (TCGA) Illumina Human
Methylation 450 k Array data for AML was downloaded
from the TCGA data portal [53]. The hg18 genomic co-
ordinates for each CpG probe was identified using the
Illumina Human Methylation 450 k Array annotation
file obtained from GEO [54]. To allow reasonable com-
parison, the TCGA methylation data were filtered to re-
move all CpGs where there were fewer than 10 reads in
our pooled AML3 BS-Seq dataset. Next, for each gene
(NCBI gene annotation 36.1): the mean beta value across
all samples, for all CpGs within 2 kb of the TSS, was cal-
culated. Finally the mean beta values were plotted
against the mean% CpG methylation at the equivalent
CpGs in the pooled AML3 data. To generate smoothed
scatter plots the R (v3.0.2) function smoothscatter was
used, using the transformation function x^1. Spearman
correlations were calculated using the R function cor.test
method = ‘spearman’.

Comparison of AML and AML3 expression
The Cancer Genome Atlas (TCGA) RNA-seq V2 data for
AML was downloaded from the TCGA data portal [53].
For each gene, the mean read count across all TCGA
samples was calculated. For each gene, the mean read
count across all AML3 RNA-seq samples was calculated
using HTSeq [55]. Finally expression values (log2) for
AML were plotted against the equivalent values (log2) in
AML3, using R (v3.0.2) as above.

Comparison of TCGA AML subtypes data preparation
The Cancer Genome Atlas (TCGA) Patient and Mutation
data for AML were downloaded from the TCGA data por-
tal [53]. Mutation subtypes (number of samples) were iden-
tified as: WT/WT (120 genes), WT/mut (23 genes), mut/
WT (26 genes), and mut/mut (28 genes) for DNMT3A and
NPM1, respectively. Where WT corresponds to no somatic
mutations identified, and mut corresponds to at least
one somatic mutation identified in the sample. Additional
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mutation subtypes (number of samples) were identified as:
NK DNMT3A R882+ (20 samples), NK DNMT3A R882-
(82 samples), NK IDH1 R132+ (10 samples), NK IDH1
R132- (92 samples), NK IDH2 R140+ (12 samples), and
IDH2 R140- (90 samples). Where NK indicates normal
karyotype and +/- indicates the presence/absence of the
specific mutation in the sample.

Using the TCGA illumina human methylation 450 k array
data for AML
For each gene (NCBI gene annotation 37), the mean beta
value across all samples of each mutation subtype, for all
CpGs within 2 kb of the TSS, was calculated.

Using the RNA-seq V2 data for AML
For each gene, the mean read count across all samples
of each mutation subtype was calculated.

Comparison of TCGA AML subtypes, scatter, and boxplots
To generate the TCGA AML mutation subtype scatter
plots, the expression and methylation data described above
were filtered to include only the 246 upregulated genes iden-
tified by WIMSi between AML3 and AML3+AzaC. Scatter
and boxplots were then generated comparing each mutation
subset to its appropriate control, for both methylation and
expression. For expression a log2 scale was used. Pearson
Correlation Coefficients were calculated using Libre Office
(v4.0.2.2). Wilcoxon tests were performed using the R
(v3.0.2) function wilcox.test. To generate control random
gene lists, the python (v2.7.4) library random.py was used.

Identification of altered methylation associated with
altered gene expression by WIMSi
This was performed as described in [27]. For this approach,
methylation signatures were created for each gene by inter-
polating the differential methylation scores over a fixed win-
dow relative to the gene’s transcription start site (TSS). The
geneset was significant changed genes (Additional file 5: Data-
set 1, not including 71 small RNAs). A curve similarity metric,
Dynamic Time Warping, was used to cluster genes together
based on the shape of the differential methylation data in the
window. We then identified clusters of genes with similar pat-
terns that have coordinated differential expression. To gene-
rate a gene list, we executed this procedure over many 5 kb
windows around the TSS and selectively combine the results.
Duplicates from AzaC treated and untreated were aver-

aged and cross-referenced with Ensembl to determine the
TSS. Genes with no sites having a differential methylation
level of at least 0.2 within the window were removed.
Genes for which methylation could not be interpolated
due to a low number of sites in the region were removed.
Signatures were clustered for 23 5 kb windows overlapping
every 500 bp, covering the area from 8 kb upstream of the
TSS to 8 kb downstream. Clusters that were significantly
up- or downregulated compared to the overall set of ex-
pression values were then identified (Kolmogorov-Smirnov
test; FDR <0.05 using Benajmini-Hochberg). The Fréchet
distance was computed using a scaling factor between the
x-axis (bp) and y-axis (differential methylation score) of
2,500 bp to 1 unit. A minimum cluster size of 10 and a
minimum cluster purity of 0.85 were used. Gaussian
smoothing (σ = 50) was applied to the signatures before
clustering. A gene was included in the final list if at least
two of its replicates were present in a significant cluster
for at least three of the 5 kb windows.

Analysis of decitabine-treated AML cells
Processed expression values were downloaded from GEO
(GSE40442). Expression values were averaged across probes
for each Refseq gene. For each gene differential expression
was computed as log2(decitabine treated expression/Mock
treated expression). Differential expression values for each
sample from the 246 AzaC responsive genes (AML3_AzaC_-
WIMSi_246) were compared to all genes using Fisher’s Exact
test. To identify genes likely not regulated by methylation, we
ran the WIMSi gene list tool and found 662 genes (out of
1,147 genes differentially expressed in AzaC treated AML3
cells) that were not flagged as significant in any window.

Data access
RNA seq data from human CD34+ HSPC (UNSW) GEO
accession, GSM1097887 [30].
RNA seq data from human CD34+ HSPC (NIH) GEO

accession, GSM651554 [29].
DNA methylation data from human HSPCs GEO acces-

sion, GSE31971 [28].
Microarray data from DAC treated AML cells, GEO

accession GSE40442 [9].
TCGA data were from the TCGA data portal ([53]).
New datasets in this MS:
RNA-seq supplementary data: [56].
BS-seq supplementary data: [57].

Additional files

Additional file 1: Figure S1. Optimization of AzaC treatment protocol.
(a) AML3 cells were treated three times with vehicle, 0.5, 1, or 2 μM AzaC
at 0, 24, 48 h and assayed by FACS at 96 h for activated caspase 3. As a
positive control, cells were treated with vehicle or 1 μM etoposide (Eto).
(b) AML3 cells were treated three times with vehicle, 0.5, 1, or 2 μM
AzaC at 0, 24, 48 h and DNA content measured by FACS at 72 h in
AAD-stained cells. (c) Cell cycle distribution, including <2n DNA content
(Sub G1), was determined from (b). (d) AML3 cells were treated three
times with vehicle, 0.5, 1, or 2 μM AzaC at 0, 24, 48 h and proliferation of
viable cells measured by trypan blue exclusion assay.

Additional file 2: Table S1. Sequence yield. Table S2. CpG
methylation. Table S3. Methylated CpG sites. Table S4. Spearman
correlation coefficients. Table S5. CHG methylation. Table S6. CHH
methylation. Table S7. Error rates. Table S8. Individual CpG differences.
Table S9. RNA sequencing.

http://www.biomedcentral.com/content/supplementary/s13059-014-0406-2-S1.pdf
http://www.biomedcentral.com/content/supplementary/s13059-014-0406-2-S2.pdf
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Additional file 3: Figure S2. Comparison of promoter DNA
methylation and gene expression in AML3 cells and primary AML cells.
(a) Smoothed scatter plot of mean promoter (TSS -/+2 kb) methylation of
all genes (NCBI36.1) in primary AML (based on β-values from TCGA) versus
promoter (TSS -/+2 kb) methylation of all genes in AML3. (b) Smoothed
scatter plot of mean expression (log2 read counts) of all genes in primary
AML (from TCGA) versus expression of all genes in AML3.

Additional file 4: Figure S3. Genome distribution of DNA methylation.
Number of methylated, partially methylated, and unmethylated CpGs
(defined as in Figure 2 (b)) overlapping specified genomic features.

Additional file 5: Datasets 1 to 10.

Additional file 6: Figure S4. Relationship of gene expression to
methylation. (a) Scatter plot of fold change in expression versus
difference in CpG island methylation at genes with a CpG island within
10 kb of the TSS, showing all genes (blue) and significant regulated
genes (red). (b) Scatter plot of fold change in expression versus difference
in CpG island shore methylation at genes with a CpG island within 10 kb
of the TSS, showing all genes (blue) and significant regulated genes (red).

Additional file 7: Figure S5. Comparison of expression and promoter
methylation of AML3_AzaC WIMSi (246) genes across different primary
AML genotypes. (a) Scatter plots of gene expression in primary AML cells
(DNMT3A WT and NPM1 WT) versus primary AML of indicated genotypes
(DNMT3A/NPM1 status as indicated). Pearson correlation coefficient (PCC)
is indicated. (b) Scatter plots of promoter (β-value, TSS -/+2 kb) methylation
in primary AML cells (DNMT3A WT and NPM1 WT) versus primary AML of
indicated genotypes (DNMT3A/NPM1 status as indicated). Pearson correlation
coefficient (PCC) is indicated. Mutation status from TCGA.

Additional file 8: Figure S6. Comparison of promoter methylation
of AML3_AzaC WIMSi (246) genes across different primary AML normal
karyotype genotypes. (a) Scatter plots of mean promoter methylation
(mean β-value, TSS -/+2 kb) of all AML3_AzaC WIMSi (246) genes in all
normal karyotype primary AML (DNMT3A, IDH1, IDH2 WT, as indicated)
versus normal karyotype primary AML of indicated mutant genotypes
(DNMT3A R882, IDH1 R132, IDH2 R140, as indicated). Pearson correlation
coefficient (PCC) is indicated. Mutation status from TCGA. (b) Box plots
of mean promoter methylation (mean β-value, TSS -/+2 kb) of all normal
karyotype AML for each AML3_AzaC WIMSi (246) gene, comparing AML
WT and mutant at indicated position. P value (Wilcoxon test) WT versus
mutant = 0.0097, 0.0600, 0.0236 for DNMT3A R882, IDH1 R132, and IDH2
R140, respectively.

Competing interests
The authors declare that they have no competing interests

Authors’ contributions
KL performed experiments, provided critical intellectual input, and wrote
the manuscript. JC performed data analysis and provided critical intellectual
input. NDV performed data analysis and provided critical intellectual input.
TM performed data analysis and provided critical intellectual input. NAP and
WC assisted with experiments MC provided critical intellectual input. JRE
performed data analysis and provided critical intellectual input. PDA
conceived the study, provided critical intellectual input, and wrote the
manuscript. All authors read and approved the final manuscript.

Acknowledgments
We thank Dr. Alice Baudot for p53 inducible SAOS2 cells. Whole genome
bisulfite sequencing was performed by BGI Tech. Work in the lab of PDA is
supported by CRUK program grant A10250 (renewal A16566). Work in the
lab of JRE is supported by grants NIH 4-R00-CA127360-02, NIH
1R21LM011199-01, and DOD BC101296P1. MC was supported by the Scottish
Funding Council SSCF scheme (SCD/04).

Author details
1Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK.
2Beatson Institute for Cancer Research, Glasgow G61 1BD, UK. 3Paul
O’Gorman Leukemia Research Centre, Glasgow G12 0ZD, UK. 4Center for
Pharmacogenomics, Washington University School of Medicine, St Louis, MO
63110, USA.
Received: 12 March 2014 Accepted: 9 July 2014

References
1. Weinberg OK, Seetharam M, Ren L, Seo K, Ma L, Merker JD, Gotlib J,

Zehnder JL, Arber DA: Clinical characterization of acute myeloid leukemia
with myelodysplasia-related changes as defined by the 2008 WHO
classification system. Blood 2009, 113:1906–1908.

2. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB: Distinct
patterns of inactivation of p15INK4B and p16INK4A characterize the
major types of hematological malignancies. Cancer Res 1997, 57:837–841.

3. Kelly TK, De Carvalho DD, Jones PA: Epigenetic modifications as
therapeutic targets. Nat Biotechnol 2010, 28:1069–1078.

4. Kihslinger JE, Godley LA: The use of hypomethylating agents in the
treatment of hematologic malignancies. Leuk Lymphoma 2007,
48:1676–1695.

5. Takai D, Jones PA: Comprehensive analysis of CpG islands in human
chromosomes 21 and 22. Proc Natl Acad Sci U S A 2002, 99:3740–3745.

6. Baylin SB, Jones PA: A decade of exploring the cancer epigenome - biological
and translational implications. Nat Rev Cancer 2011, 11:726–734.

7. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H,
Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP:
The human colon cancer methylome shows similar hypo- and
hypermethylation at conserved tissue-specific CpG island shores.
Nat Genet 2009, 41:178–186.

8. Paul TA, Bies J, Small D, Wolff L: Signatures of polycomb repression and
reduced H3K4 trimethylation are associated with p15INK4b DNA
methylation in AML. Blood 2010, 115:3098–3108.

9. Klco JM, Spencer DH, Lamprecht TL, Sarkaria SM, Wylie T, Magrini V, Hundal J,
Walker J, Varghese N, Erdmann-Gilmore P, Lichti CF, Meyer MR, Townsend RR,
Wilson RK, Mardis ER, Ley TJ: Genomic impact of transient low-dose decitabine
treatment on primary AML cells. Blood 2013, 121:1633–1643.

10. Claus R, Pfeifer D, Almstedt M, Zucknick M, Hackanson B, Plass C, Lübbert M:
Decitabine induces very early in vivo DNA methylation changes in blasts
from patients with acute myeloid leukemia. Leuk Res 2013, 37:190–196.

11. Quentmeier H, Martelli MP, Dirks WG, Bolli N, Liso A, Macleod RA, Nicoletti I,
Mannucci R, Pucciarini A, Bigerna B, Martelli MF, Mecucci C, Drexler HG,
Falini B: Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and
cytoplasmic expression of nucleophosmin. Leukemia 2005, 19:1760–1767.

12. Tiacci E, Spanhol-Rosseto A, Martelli MP, Pasqualucci L, Quentmeier H,
Grossmann V, Drexler HG, Falini B: The NPM1 wild-type OCI-AML2 and the
NPM1-mutated OCI-AML3 cell lines carry DNMT3A mutations. Leukemia
2012, 26:554–557.

13. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C,
Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS,
Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M,
McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL,
Hundal J, Cook LL, Conyers JJ, et al: DNMT3A mutations in acute myeloid
leukemia. N Engl J Med 2010, 363:2424–2433.

14. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R,
Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A,
Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F,
Pelicci PG, Martelli MF, GIMEMA Acute Leukemia Working Party: Cytoplasmic
nucleophosmin in acute myelogenous leukemia with a normal karyotype.
N Engl J Med 2005, 352:254–266.

15. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG,
Wen B, Wu H, Liu Y, Diep D, Briem E, Zhang K, Irizarry RA, Feinberg AP:
Increased methylation variation in epigenetic domains across cancer
types. Nat Genet 2011, 43:768–775.

16. Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A,
Ye Z, Kuan S, Edsall LE, Camargo AA, Stevenson BJ, Ecker JR, Bafna V,
Strausberg RL, Simpson AJ, Ren B: Global DNA hypomethylation coupled
to repressive chromatin domain formation and gene silencing in breast
cancer. Genome Res 2012, 22:246–258.

17. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y,
Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA, Van Den Berg D, Laird PW:
Regions of focal DNA hypermethylation and long-range hypomethylation
in colorectal cancer coincide with nuclear lamina-associated domains. Nat
Genet 2012, 44:40–46.

18. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery
JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V,

http://www.biomedcentral.com/content/supplementary/s13059-014-0406-2-S3.pdf
http://www.biomedcentral.com/content/supplementary/s13059-014-0406-2-S4.pdf
http://www.biomedcentral.com/content/supplementary/s13059-014-0406-2-S5.xls
http://www.biomedcentral.com/content/supplementary/s13059-014-0406-2-S6.pdf
http://www.biomedcentral.com/content/supplementary/s13059-014-0406-2-S7.pdf
http://www.biomedcentral.com/content/supplementary/s13059-014-0406-2-S8.pdf


Lund et al. Genome Biology 2014, 15:406 Page 20 of 20
http://genomebiology.com/2014/15/8/406
Millar AH, Thomson JA, Ren B, Ecker JR: Human DNA methylomes at base
resolution show widespread epigenomic differences. Nature 2009,
462:315–322.

19. Edwards JR, O’Donnell AH, Rollins RA, Peckham HE, Lee C, Milekic MH,
Chanrion B, Fu Y, Su T, Hibshoosh H, Gingrich JA, Haghighi F, Nutter R,
Bestor TH: Chromatin and sequence features that define the fine and
gross structure of genomic methylation patterns. Genome Res 2010,
20:972–980.

20. Cruickshanks HA, McBryan T, Nelson DM, Vanderkraats ND, Shah PP, van
Tuyn J, Singh Rai T, Brock C, Donahue G, Dunican DS, Drotar ME, Meehan
RR, Edwards JR, Berger SL, Adams PD: Senescent cells harbour features of
the cancer epigenome. Nat Cell Biol 2013, 15:1495–1506.

21. Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP: A human B cell
methylome at 100-base pair resolution. Proc Natl Acad Sci U S A 2009,
106:671–678.

22. Hellman A, Chess A: Gene body-specific methylation on the active X
chromosome. Science 2007, 315:1141–1143.

23. Aran D, Toperoff G, Rosenberg M, Hellman A: Replication timing-related
and gene body-specific methylation of active human genes. Hum Mol
Genet 2011, 20:670–680.

24. Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK: On the presence and role
of human gene-body DNA methylation. Oncotarget 2012, 3:462–474.

25. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church
GM: Targeted and genome-scale strategies reveal gene-body methyla-
tion signatures in human cells. Nat Biotechnol 2009, 27:361–368.

26. Sproul D, Meehan RR: Genomic insights into cancer-associated aberrant
CpG island hypermethylation. Brief Funct Genomics 2013, 12:174–190.

27. Vanderkraats ND, Hiken JF, Decker KF, Edwards JR: Discovering high-
resolution patterns of differential DNA methylation that correlate with
gene expression changes. Nucleic Acids Res 2013, 41:6816–6827.

28. Hodges E, Molaro A, Dos Santos CO, Thekkat P, Song Q, Uren PJ, Park J,
Butler J, Rafii S, McCombie WR, Smith AD, Hannon GJ: Directional DNA
methylation changes and complex intermediate states accompany
lineage specificity in the adult hematopoietic compartment. Mol Cell
2011, 44:17–28.

29. Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W, Zhao K: Chromatin
signatures in multipotent human hematopoietic stem cells indicate the
fate of bivalent genes during differentiation. Cell Stem Cell 2009, 4:80–93.

30. Beck D, Thoms JA, Perera D, Schütte J, Unnikrishnan A, Knezevic K, Kinston
SJ, Wilson NK, O'Brien TA, Göttgens B, Wong JW, Pimanda JE: Genome-wide
analysis of transcriptional regulators in human HSPCs reveals a densely
interconnected network of coding and noncoding genes. Blood 2013,
122:e12–e22.

31. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA,
Fulton R, Meyer MR, Erdmann-Gilmore P: The R882H DNMT3A mutation
associated with AML dominantly inhibits wild-type DNMT3A by blocking
its ability to form active tetramers. Cancer Cell 2014, 25:442–454.

32. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat
N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters
JK, Liu W, Choe SE, Fantin VR, Paietta E, Löwenberg B, Licht JD, Godley LA,
Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A: Leukemic IDH1 and
IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function,
and impair hematopoietic differentiation. Cancer Cell 2010, 18:553–567.

33. Wasserman WW, Sandelin A: Applied bioinformatics for the identification
of regulatory elements. Nat Rev Genet 2004, 5:276–287.

34. Yan P, Frankhouser D, Murphy M, Tam HH, Rodriguez B, Curfman J,
Trimarchi M, Geyer S, Wu YZ, Whitman SP, Metzeler K, Walker A, Klisovic R,
Jacob S, Grever MR, Byrd JC, Bloomfield CD, Garzon R, Blum W, Caligiuri MA,
Bundschuh R, Marcucci G: Genome-wide methylation profiling in
decitabine-treated patients with acute myeloid leukemia. Blood 2012,
120:2466–2474.

35. Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I,
Milne TA, Huang Y, Biswas D, Hess JL, Allis CD, Roeder RG, Valk PJ, Löwenberg B,
Delwel R, Fernandez HF, Paietta E, Tallman MS, Schroth GP, Mason CE, Melnick A,
Figueroa ME: Base-pair resolution DNA methylation sequencing reveals
profoundly divergent epigenetic landscapes in acute myeloid leukemia.
PLoS Genet 2012, 8:e1002781.

36. Saied MH, Marzec J, Khalid S, Smith P, Down TA, Rakyan VK, Molloy G,
Raghavan M, Debernardi S, Young BD: Genome wide analysis of acute
myeloid leukemia reveal leukemia specific methylome and subtype
specific hypomethylation of repeats. PLoS One 2012, 7:e33213.
37. Hagemann S, Heil O, Lyko F, Brueckner B: Azacytidine and decitabine
induce gene-specific and non-random DNA demethylation in human
cancer cell lines. PLoS One 2011, 6:e17388.

38. Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, Plass C,
Niemeyer CM, Lübbert M: The DNA methyltransferase inhibitors azacitidine,
decitabine and zebularine exert differential effects on cancer gene expression
in acute myeloid leukemia cells. Leukemia 2009, 23:1019–1028.

39. Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, Shin JJ, Harbom KM,
Beaty R, Pappou E, Harris J, Yen RW, Ahuja N, Brock MV, Stearns V, Feller-Kopman
D, Yarmus LB, Lin YC, Welm AL, Issa JP, Minn I, Matsui W, Jang YY, Sharkis SJ,
Baylin SB, Zahnow CA: Transient low doses of DNA-demethylating agents
exert durable antitumor effects on hematological and epithelial tumor cells.
Cancer Cell 2012, 21:430–446.

40. Mossman D, Kim KT, Scott RJ: Demethylation by 5-aza-2′-deoxycytidine in
colorectal cancer cells targets genomic DNA whilst promoter CpG island
methylation persists. BMC Cancer 2010, 10:366.

41. Schmelz K, Sattler N, Wagner M, Lubbert M, Dorken B, Tamm I: Induction of
gene expression by 5-Aza-2′-deoxycytidine in acute myeloid leukemia
(AML) and myelodysplastic syndrome (MDS) but not epithelial cells by
DNA-methylation-dependent and -independent mechanisms. Leukemia
2005, 19:103–111.

42. Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, Schübeler D:
Distribution, silencing potential and evolutionary impact of promoter DNA
methylation in the human genome. Nat Genet 2007, 39:457–466.

43. Qiu X, Hother C, Ralfkiær UM, Søgaard A, Lu Q, Workman CT, Liang G, Jones
PA, Grønbæk K: Equitoxic doses of 5-azacytidine and 5-aza-2′deoxycytidine
induce diverse immediate and overlapping heritable changes in the
transcriptome. PLoS One 2010, 5:e12994.

44. Leibniz Institute DSMZ-German Collection of Microorganisms and Cell
Cultures. [http://www.dsmz.de/home.html]

45. Harlow E, Lane D: Antibodies: A laboratory manual. Cold Spring Harbor, NY:
Cold Spring Harbor Laboratory Press; 1988.

46. Crissman HA, Steinkamp JA: Rapid, simultaneous measurement of DNA,
protein, and cell volume in single cells from large mammalian cell
populations. J Cell Biol 1973, 59:766–771.

47. Flowjo. [http://www.flowjo.com]
48. Dolbeare F, Gratzner H, Pallavicini MG, Gray JW: Flow cytometric

measurement of total DNA content and incorporated
bromodeoxyuridine. Proc Natl Acad Sci U S A 1983, 80:5573–5577.

49. Lyons AB, Parish CR: Determination of lymphocyte division by flow
cytometry. J Immunol Methods 1994, 171:131–137.

50. Krueger F, Andrews SR: Bismark: a flexible aligner and methylation caller
for Bisulfite-Seq applications. Bioinformatics 2011, 27:1571–1572.

51. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol
2009, 10:R25.

52. Hansen KD, Langmead B, Irizarry RA: BSmooth: from whole genome
bisulfite sequencing reads to differentially methylated regions.
Genome Biol 2012, 13:R83.

53. TCGA public data. [https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?]
54. GEO public data. [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GPL13534]
55. Anders S, Pyl PT, Huber W: HTSeq — A Python framework to work with

high-throughput sequencing data. 2014. bioRxiv preprint.
56. GEO public data. [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=khcfkyoonngfbof&acc=GSE55123]
57. GEO public data. [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=erczewmadpsnrep&acc=GSE55124]

doi:10.1186/s13059-014-0406-2
Cite this article as: Lund et al.: DNMT inhibitors reverse a specific
signature of aberrant promoter DNA methylation and associated gene
silencing in AML. Genome Biology 2014 15:406.

http://www.dsmz.de/home.html
http://www.flowjo.com/
https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=khcfkyoonngfbof&acc=GSE55123
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=khcfkyoonngfbof&acc=GSE55123
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=erczewmadpsnrep&acc=GSE55124
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=erczewmadpsnrep&acc=GSE55124

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Discussion
	Conclusions
	Materials and methods
	Antibodies
	Cell culture, AzaC treatment, and cell viability assays
	Western blotting
	Activated caspase assays
	Cell cycle analysis
	CFSE assays
	Bisulfite sequencing
	DNA methylation data analysis/statistics
	Processing and alignment of Bisulfite sequencing reads
	Identification of methylated cytosines
	Percentage CpG methylation in genomic windows
	Difference and relative difference in CpG methylation
	Global methylation
	Genomic features
	CpG ratio
	Determination of observed-to-expected overlaps
	Methylation difference plots
	Smoothed methylation plots
	Composite plot generation
	Genes by decile plot
	Gene body heatmap
	TSS centered heatmaps

	RNA sequencing
	Comparison of gene expression and DNA methylation data
	Comparison of AML and AML3 methylation
	Comparison of AML and AML3 expression
	Comparison of TCGA AML subtypes data preparation
	Using the TCGA illumina human methylation 450 k array data for AML
	Using the RNA-seq V2 data for AML
	Comparison of TCGA AML subtypes, scatter, and boxplots
	Identification of altered methylation associated with altered gene expression by WIMSi
	Analysis of decitabine-treated AML cells
	Data access

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

