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Abstract 

Background  Breast density is strongly associated with breast cancer risk. Fully automated quantitative density 
assessment methods have recently been developed that could facilitate large-scale studies, although data on associa-
tions with long-term breast cancer risk are limited. We examined LIBRA assessments and breast cancer risk and com-
pared results to prior assessments using Cumulus, an established computer-assisted method requiring manual 
thresholding.

Methods  We conducted a cohort study among 21,150 non-Hispanic white female participants of the Research 
Program in Genes, Environment and Health of Kaiser Permanente Northern California who were 40–74 years at enroll-
ment, followed for up to 10 years, and had archived processed screening mammograms acquired on Hologic or Gen-
eral Electric full-field digital mammography (FFDM) machines and prior Cumulus density assessments available 
for analysis. Dense area (DA), non-dense area (NDA), and percent density (PD) were assessed using LIBRA software. 
Cox regression was used to estimate hazard ratios (HRs) for breast cancer associated with DA, NDA and PD modeled 
continuously in standard deviation (SD) increments, adjusting for age, mammogram year, body mass index, parity, 
first-degree family history of breast cancer, and menopausal hormone use. We also examined differences by machine 
type and breast view.

Results  The adjusted HRs for breast cancer associated with each SD increment of DA, NDA and PD were 1.36 (95% 
confidence interval, 1.18–1.57), 0.85 (0.77–0.93) and 1.44 (1.26–1.66) for LIBRA and 1.44 (1.33–1.55), 0.81 (0.74–0.89) 
and 1.54 (1.34–1.77) for Cumulus, respectively. LIBRA results were generally similar by machine type and breast view, 
although associations were strongest for Hologic machines and mediolateral oblique views. Results were also similar 
during the first 2 years, 2–5 years and 5–10 years after the baseline mammogram.
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Conclusion  Associations with breast cancer risk were generally similar for LIBRA and Cumulus density measures 
and were sustained for up to 10 years. These findings support the suitability of fully automated LIBRA assessments 
on processed FFDM images for large-scale research on breast density and cancer risk.

Keywords  Breast cancer, Mammography, Mammographic density, Risk factors, Epidemiology

Introduction
Mammographic density, or the extent of the breast that 
appears radiopaque on a mammogram, is an established 
breast cancer risk factor [1, 2]. Clinically, breast tissue 
composition is assessed visually by radiologists and cat-
egorized according to the American College of Radiology 
BI-RADS atlas as: (a) entirely fatty; (b) scattered areas of 
fibroglandular density; (c) heterogeneously dense, which 
may obscure small masses; and (d) extremely dense, 
which lowers the sensitivity of mammography [3]. While 
BI-RADS density categories are routinely recorded on 
screening mammography reports because of the poten-
tial for dense tissue to mask the presence of breast cancer, 
quantitative measures are preferred for research studies 
because they provide more information to improve sta-
tistical power, robustness and reproducibility in risk pre-
diction. Early research studies manually assessed breast 
density from film-screen mammograms [1, 4–6]. Over 
the last 2 decades, conventional film mammography 
has been replaced with full-field digital mammography 
(FFDM), obviating the need to digitize film mammo-
grams prior to application of computer-assisted meth-
ods. Several studies have found that quantitative density 
assessments from FFDM images also are strongly associ-
ated with breast cancer risk [7–11].

There are multiple methods for quantitating breast 
density from FFDMs [12]. One of the most common 
and established methods used in research is Cumulus, a 
semi-automated tool that facilitates visual thresholding 
by a trained reader to segment the dense and non-dense 
areas of the breast [13]. The requirement for thresholding 
by a trained reader can be an impediment for conducting 
large-scale studies of thousands of women. More recently, 
several fully automated methods have been developed. 
Two commercial automated and validated tools, Vol-
para [14] and Quantra [15], estimate volumetric density 
but require the raw ‘for processing’ FFDM images which 
are not routinely archived for clinical care. Several com-
mercial tools also are available for automatically quanti-
tating area-based density on processed ‘for-presentation’ 
FFDM images, including Densitas and DenSeeMammo 
[16, 17]. This study focused on the Laboratory for Breast 
Radiodensity Assessment (LIBRA) area-based density 
assessment tool because it is fully automated and publicly 
available, and can be used on both raw and processed 
FFDM images [18]. Briefly, LIBRA delineates the breast 

region by using edge-detection algorithms and applies 
fuzzy c-means clustering to partition the breast region 
into gray-level intensity clusters, which are then aggre-
gated into the final dense tissue segmentation. LIBRA 
density measures have been reported to be associated 
with breast cancer risk in small case–control studies [7, 
9, 11, 18]. However, additional studies in large cohorts 
are needed to evaluate associations with long-term breast 
cancer risk (e.g., 5- or 10-year risk) to further validate 
this automated tool for use in large-scale breast density 
studies.

The aim of this study was to examine the association 
between density measures by LIBRA and long-term 
breast cancer risk in a large cohort of over 21,000 women 
undergoing screening mammography by FFDM and fol-
lowed for up to 10 years. We also compare associations 
with breast cancer risk obtained using LIBRA density 
measures with those using Cumulus in the same breast 
cancer screening cohort.

Methods
Setting
This study is ancillary to a genome-wide association 
study of mammographic density [19]. The parent study 
included non-Hispanic white female participants of the 
Research Program in Genes, Environment and Health 
(RPGEH), who completed a health survey and provided 
a saliva sample for genotyping and who had a least one 
archived screening FFDM between 2003 and 2013. The 
RPGEH was established by the Division of Research, 
Kaiser Permanente Northern California (KPNC). Briefly, 
the RPGEH resource enables research on the genetic and 
environmental determinants of common, age-related 
complex health conditions. The resource links together 
surveys, biospecimens and derived data, with longitu-
dinal data from electronic health records (EHRs) on a 
cohort of approximately 400,000 consenting adult KPNC 
members. Genome-wide genotyping was performed on 
DNA extracted from saliva samples of more than 100,000 
RPGEH participants enrolled before 2010 [20].

Mammograms
The EHR was used to identify potentially eligible screen-
ing FFDMs on the cohort. Processed FFDMs in the 
KPNC imaging archive came from 37 different KPNC 
mammography facilities, with 1–5 machines per facility. 
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Over 90% of FFDM machines were manufactured by 
Hologic or General Electric (GE).

The study was restricted to the 24,800 non-Hispanic 
white women with Cumulus density measures who met 
eligibility criteria for a prior study [16]. Briefly, for those 
Cumulus analyses, we identified Hologic or GE mammo-
grams closest to and on or after the RPGEH survey date. 
Assessments included dense area (DA) in cm2, non-dense 
area (NDA) in cm2, and percent density (PD), defined 
as the dense area divided by the total breast area and 
expressed as a percentage. Cumulus assessments were 
done in batches by a single trained reader using the left 
craniocaudal (CC) view for ~ 90% of women; the right CC 
view was randomly selected for ~ 10% of women to blind 
the reader to breast cancer history, because the prior 
study included the right CC view for women with prior 
breast cancer in the left breast. We excluded women 
who had bilateral breast cancer, bilateral breast implants, 
breasts too large to be completely imaged on a single 
exposure, unreadable images or unavailable images [16].

LIBRA density measures were obtained from the 
same FFDM exams included in the prior study of 
Cumulus; however, because assessments are fully auto-
mated we analyzed up to 4 breast views instead of just 
a single right or left CC view. For this current study, we 
further excluded 110 women for whom a LIBRA meas-
ure could not be obtained because of missing data in 
required DICOM fields, 2225 women with a history of 
unilateral breast cancer, and 216 women with unilat-
eral implants (bilateral implants and cancer were pre-
viously excluded [16]). We also excluded women for 
the following reasons: their LIBRA values did not pass 
quality control filters (n = 1110) (see Additional file  1: 
LIBRA quality control steps), they did not have KPNC 
membership data during the follow-up period (n = 16), 
or they did not have at least one mediolateral oblique 
(MLO) and one CC view (n = 13) (Fig. 1).

Non-Hispanic White Women, ages 40-74 with
Screening FFDM and Cumulus measure

N=24,840

Women with 1+ LIBRA measure
N=24,730

Exclude women without LIBRA
N=110

Women without LIBRA QC flags
N=21,179

Women without implants or prior 
breast cancer
N=22,289

Exclude women with:
• Implants (n=216)
• Prior breast cancer (n=2225)

Women with KP membership data
N=21,163

Women with 1+ MLO and 1+ CC view
N=21,150

Exclude women with LIBRA QC flags
N=1,110

Exclude women without 
KP membership data

N=16

Exclude women without 
1+MLO and 1+CC view

N=13

Fig. 1  Study cohort eligibility
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Data sources for cancer diagnoses and covariates
Breast cancer diagnoses were identified from the KPNC 
cancer registry, which reports to the California Cancer 
Registry and to the National Cancer Institute’s Surveil-
lance, Epidemiology and End Results (SEER) program of 
cancer registries. The KPNC registry records informa-
tion on all new primary cancers (except non-melanoma 
skin cancer) diagnosed among KPNC members. Data 
elements and quality assurance measures are similar to 
SEER. Age at mammogram was determined based on 
date of birth and date of the mammogram, both from the 
EHR. We used the body mass index (BMI) from the EHR 
measured at the patient visit closest to mammogram 
date. The RPGEH survey provided self-reported infor-
mation on parity and family history of breast cancer. The 
KPNC pharmacy database, which records all dispensed 
outpatient and inpatient prescriptions, was used to deter-
mine use of menopausal hormones within the 5  years 
prior to FFDM.

Statistical methods
We generated scatter plots and Pearson correlation coef-
ficients to compare density measures from LIBRA vs. 
Cumulus. Cox regression was used to estimate hazard 
ratios (HRs) for breast cancer associated with DA, NDA 
and PD, with time since baseline mammogram as the 
time scale. Women entered the cohort at the time of their 
baseline mammogram, and were followed until diagno-
sis of breast cancer (event) or censored at death, end of 
KPNC membership or end of study period (12/31/2021), 
whichever came first. We modeled DA, NDA and PD as 
continuous variables in units of the standard deviation 
(SD) in the full cohort. Prior studies have applied differ-
ent transformations to density measures, including no 
transformation, log and square-root transformation, [9, 
11] so we assessed each of these to increase comparabil-
ity across studies. Cox regression does not require con-
tinuous covariates to be normally distributed, so we did 
not consider normality when assessing transformations. 
Since reporting HRs in SD units assumes that the risk 
increases linearly, we assessed the linearity of the associa-
tions for each transformed density measure (Additional 
file 2: Figure S1). In our final analyses, we used log trans-
formation for LIBRA and Cumulus measures of DA and 
PD, and untransformed LIBRA and Cumulus measures 
for NDA. To maximize adjustment for age and BMI (kg/
m2), these variables were modeled using splines. Par-
ity was categorized as nulliparous, parous, or missing. 
History of breast cancer in a first-degree family mem-
ber was categorized as yes or no. The use of menopau-
sal hormones was categorized as none, estrogen alone, 
or estrogen plus progestin within the 5  years prior to 
the index mammogram. Analyses of Cumulus density 

measurements were also adjusted for image batch [19]. 
Separate multivariable Cox regression models were fit 
for Hologic and GE mammograms, and the estimates 
were also combined using random effects meta-analysis. 
For LIBRA density measurements, separate models were 
fit for CC and for MLO views, using the average of the 
right and left views when both were available. We used 
the average to reduce noise and improve the robustness 
of our estimates.

Results
The eligible study population included a total of 21,150 
women and 988 incident breast cancer diagnoses within 
10 years of follow up (Table 1). There were 17,970 women 
with a baseline mammogram on a Hologic machine 
and 3180 women with a baseline mammogram on a GE 
machine. The distribution of baseline characteristics dif-
fered somewhat between the two cohorts, but in both 
groups most women were between 50 and 70 years of age 
at baseline mammogram, had no family history of can-
cer, were parous and had not used postmenopausal hor-
mones in the prior 5 years.

Scatter plots of measures from LIBRA (average of left 
and right views) versus Cumulus (one view, 90% left) on 
CC views acquired on Hologic FFDM machines show 
very high correlation for NDA (r = 0.97), moderate corre-
lation for DA (r = 0.69), and moderate to good correlation 
for PD (r = 0.80) (see Fig.  2). Results were very similar 
for measures on processed GE FFDM images. While our 
main results used the average of the left and right views 
on LIBRA to reduce noise, we also examined correlations 
of LIBRA and Cumulus measures on the left CC view and 
found that correlations were very similar to the average 
of the two CC views on LIBRA. For example, the correla-
tion of LIBRA and Cumulus measures for PD on Hologic 
FFDM machines was r = 0.79 for the left CC view only, 
and r = 0.80 for the average of left and right CC on LIBRA 
versus left CC on Cumulus.

The fully adjusted HRs for the association between 
each of the density measures and breast cancer risk are 
presented in Table 2. Results for LIBRA differed slightly 
by view, with slightly stronger associations for MLO than 
for CC views. Results for both LIBRA and Cumulus also 
differed by machine type, with slightly stronger associa-
tions for measures obtained from Hologic than from GE 
FFDM images. LIBRA results for the MLO view were 
very similar to Cumulus results, whereas LIBRA results 
for the CC view were generally weaker than for Cumulus. 
Results when adjusting only for age and BMI (and batch 
for Cumulus) (Additional file 3: Table S1) were quite sim-
ilar to those in Table 2 from fully adjusted models.

HRs for the association of both LIBRA and Cumulus 
measures with breast cancer risk were generally similar 
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for the periods ≤ 2  years, 2–5  years and 5–10  years 
after the baseline mammogram, although the inverse 
association of NDA with risk appeared to be stronger 
with longer follow-up (Table  3). HRs for the asso-
ciation of both LIBRA and Cumulus measures with 
breast cancer risk also did not appear to differ mark-
edly when restricting follow-up to ≤ 2  years, ≤ 5  years 
or ≤ 10  years (Additional file  4: Table  S2) similar to 
results for non-overlapping time intervals (Table  3). 
For example, the HRs per SD for LIBRA PD (MLO 
view) were 1.37 (95% CI, 1.08–1.75), 1.43 (1.27–
1.62) and 1.45 (1.28–1.65) for ≤ 2  years, ≤ 5  years 
and ≤ 10 years, respectively.

Discussion
In our study of over 21,000 non-Hispanic white women 
and nearly 1000 breast cancer cases, we found that 
LIBRA measures of dense area, non-dense area, and 
percent density on processed images acquired from 
both Hologic and GE FFDM machines were associated 
with breast cancer risk. Moreover, the magnitude of the 
associations using fully automated LIBRA measures 
were generally quite similar to that of operator-depend-
ent Cumulus measures. Results for LIBRA measures 
on the MLO view were the most similar to Cumulus 
results. We also found that both LIBRA and Cumulus 
density measures were significantly associated with 

Table 1  Baseline characteristics of incident breast cancer cases and the full cohort, by machine type

a Within 5 years prior to mammogram date

Characteristic Hologic GE

Cases Cohort Cases Cohort

N % N % N % N %

Total 812 100.0 17,970 100.0 176 100.0 3180 100.0

Age at mammogram

 40–49 43 5.3 1867 10.4 11 6.2 532 16.7

 50–59 200 24.6 4837 26.9 48 27.3 965 30.4

 60–69 383 47.2 7563 42.1 81 46.0 1265 39.8

 70+  186 22.9 3703 20.6 36 20.5 418 13.1

Mammogram year

 2004–2007 60 7.4 695 3.9 42 23.9 571 18.0

 2008–2009 284 25.0 5235 29.1 122 69.3 2285 71.9

 2010–2011 263 32.4 6605 36.8 12 6.8 300 9.4

 2012–2013 205 25.2 5435 30.2 0 0 24 0.8

BMI

 24 or less 283 34.8 7020 39.1 74 42.0 1415 44.5

 25–29 281 34.6 5871 32.7 62 35.2 1029 32.4

 30–34 137 16.9 3081 17.1 26 14.8 489 15.4

 35–39 60 7.4 1246 6.9 8 4.6 168 5.3

 40+  51 6.3 752 4.2 6 3.4 79 2.5

First-degree family history of breast cancer

 No 714 87.9 16,498 91.8 155 88.1 2902 91.3

 Yes 98 12.1 1472 8.2 21 11.9 278 8.7

Use of postmenopausal hormonesa

 None 550 67.7 12,401 69.0 95 54.0 1886 59.3

 Estrogen alone 94 11.6 2095 11.7 26 14.8 460 14.5

 Estrogen + progestin 127 15.6 2287 12.7 49 27.8 563 17.7

 Other 41 5.1 1187 6.6 6 3.4 271 8.5

Parity

 Nulliparous 44 5.4 1087 6.0 17 9.7 247 7.8

 Parous 645 79.4 13,959 77.7 127 72.2 2308 72.6

 Missing 123 15.2 2924 16.3 32 18.2 625 19.6
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increased breast cancer risk over a 10-year follow-up 
period, with similar magnitudes in both the near-term 
(≤ 2  years) and long-term (5–10 years). These findings 
provide further evidence that associations of mammo-
graphic density with near-term breast cancer risk are 
not largely explained by masking, and reflect breast 

tissue characteristics that predispose to future malig-
nant transformation.

Our findings are largely consistent with a few smaller 
case–control studies that have also reported results on 
the association between LIBRA density assessments and 
breast cancer risk with comparison to Cumulus measure-
ments [7, 9, 11]. The first by Busana et al. [11] was a UK 
study of 414 breast cancer cases and 684 controls, and all 
FFDMs were acquired on GE machines. They used the 
CC view only and compared results using processed and 
raw images. The study found slightly stronger associa-
tions for Cumulus than LIBRA measures, and that asso-
ciations were also slightly stronger for both measures on 
processed vs. raw images. The adjusted (age, body mass 
index, menopausal status, parity, age at menarche, ever-
use of oral contraceptive and hormonal therapy) OR 
per SD of DA on processed GE images was 1.39 (95% 
CI, 1.17–1.64) for LIBRA and 1.53 (95% CI, 1.30, 1.79) 
for Cumulus, which are fairly similar to our findings for 
both measures on processed GE images. The second by 
Nguyen et  al. [7] was a Korean study with 398 breast 
cancer cases and 737 controls, and FFDMs acquired on 
either Hologic or GE machines. They used the CC view 
of processed images only and compared results for Hol-
ogic and GE machines. In contrast to Busana et al. [11] 
and to our findings, they found associations were slightly 
stronger for LIBRA than for Cumulus. For GE, the 
adjusted (age, BMI, menopausal status) ORs per SD of 
DA was 1.50 (1.28–1.76) for LIBRA and 1.36 (1.16–1.59) 

Fig. 2  Correlation of dense area, non-dense area, and percent density measurements using LIBRA versus cumulus on full-field digital 
mammography images acquired from Hologic (A) or GE (B) machines. LIBRA values were averaged for the right and left cranio-caudal views

Table 2  Hazard ratiosa per SD of breast density assessments and 
breast cancer risk, by view and machine type

LIBRA and Cumulus DA and PD were log-transformed, and LIBRA and Cumulus 
NDA were untransformed
a Hazard ratios adjusted for age at FFDM (spline), mammogram year 
(categorical), BMI (spline), parity, first-degree family history, and HRT use within 
5 years prior to mammogram date. Cumulus analyses were also adjusted for 
image batch. HRs are per standard deviation of density based on distribution in 
full cohort
b Average of measures on right and left breasts
c Meta-analysis was used to combine Hologic and GE results

LIBRA (MLOb 
only)

LIBRA (CCb 
only)

Cumulus

Hologic DA 1.44 (1.33–1.56) 1.28 (1.19–1.38) 1.47 (1.36–1.58)

GE DA 1.24 (1.06–1.46) 1.22 (1.04–1.43) 1.33 (1.11–1.58)

Combinedc DA 1.36 (1.18–1.57) 1.27 (1.18–1.36) 1.44 (1.33–1.55)

Hologic NDA 0.85 (0.76–0.94) 0.87 (0.78–0.96) 0.80 (0.72–0.89)

GE NDA 0.85 (0.68–1.07) 0.92 (0.74–1.14) 0.87 (0.70–1.09)

Combinedc NDA 0.85 (0.77–0.93) 0.88 (0.80–0.96) 0.81 (0.74–0.89)

Hologic PD 1.52 (1.39–1.67) 1.35 (1.23–1.48) 1.61 (1.47–1.77)

GE PD 1.31 (1.08–1.58) 1.25 (1.04–1.50) 1.39 (1.13–1.70)

Combinedc PD 1.44 (1.26–1.66) 1.33 (1.22–1.44) 1.54 (1.34–1.77)
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for Cumulus. For Hologic, the adjusted ORs were 1.72 
(1.38–2.15) for LIBRA and 1.58 (1.27–1.97) for Cumu-
lus. The third by Gastounioti et al. [9] was a US study of 
437 breast cancer cases and 1225 controls, and all FFDMs 
were acquired on Hologic machines. Density measures 
for each woman were an average of all four breast views. 
Similar to Busana et al. [11], they found that associations 
were slightly stronger for processed than raw images and 
like Busana et al. [11] and our study, results were slightly 
stronger for Cumulus than LIBRA measures. On pro-
cessed Hologic images, the adjusted (age, BMI) ORs per 
SD of DA were 1.2 (95% CI 1.1–1.4) for LIBRA and 1.3 
(95% CI 1.2–1.5) for Cumulus. The present study is the 
first to provide results for the CC versus MLO views. 
Our finding that LIBRA measures on the MLO view 
provide slightly stronger associations with breast can-
cer risk than the CC view suggests that the MLO views 
may be preferred, especially if resources limit the num-
ber of views available for study. The stronger associations 
for the MLO view may be related to the initial training 
of LIBRA, which was done only on MLO views [21]. In 
addition, our study and the study by Nguyen et  al. [7] 
suggest that associations with LIBRA measures may be 
slightly stronger on processed images from Hologic vs. 
GE FFDM machines, although the numbers of GE images 
in the two studies were relatively small and these findings 
need to be confirmed by others.

Our study has several strengths and limitations. It 
is the first large cohort study of automated area-based 
measures of mammographic density and breast cancer 

risk and information was available on important risk 
factors. Given the cohort design and duration of fol-
low-up, we were able to examine associations between 
density and breast cancer risk in both the near-term 
(< 2  years) and long-term (5–10  years) periods after 
the baseline screening mammogram. The associations 
of LIBRA measures and breast cancer risk were exam-
ined by breast view (MLO and CC) and by machine 
type (Hologic and GE). Cumulus measures were per-
formed by a single radiological technologist and were 
shown to be strongly associated with breast cancer 
risk [8]. However, we only had Cumulus measures on 
the CC view for comparison, although the CC view is 
the most commonly selected view for Cumulus stud-
ies. Given resource constraints, it was infeasible to 
visually review all images for this study. Instead, we 
applied a set of quality control criteria that could be 
automatically implemented to filter out images likely 
to be incorrectly segmented. Manual review of some of 
these flagged images, indicated that a small number of 
correctly segmented images likely were excluded, while 
some incorrectly segmented images were missed. This 
quality control process resulted in a slightly higher 
exclusion percent (5%) than in our Cumulus study (3%) 
for which all images were visually assessed. Another 
limitation is that the cohort includes only non-Hispanic 
white women because it is ancillary to a genome-wide 
association study [19]. In addition, we did not have 
raw FFDM images, which are not routinely archived, 
and could not compare results for raw vs processed 

Table 3  Hazard ratios per SD of breast density assessments and breast cancer risk, by time since mammogram

Number of breast cancers for ≤ 2 years, > 2 to 5 years and > 5 to 10 years were 322, 290 and 315, respectively. LIBRA and Cumulus DA and PD were log-transformed, 
and LIBRA and Cumulus NDA were untransformed
a Hazard ratios adjusted for age at FFDM (spline), mammogram year (categorical), BMI (spline), parity, first-degree family history, and HRT use within 5 years prior to 
mammogram date. Cumulus analyses were also adjusted for image batch. HRs are per standard deviation of density based on distribution in full cohort. Meta-analysis 
was used to combine Hologic and GE results
b Average of measures on right and left breasts

Density measure ≤ 2 years > 2 to 5 years > 5 to 10 years

HRa 95% CI HRa 95% CI HRa 95% CI

LIBRA (MLOb only)

 Dense area (DA) 1.34 1.12–1.61 1.42 1.25–1.61 1.40 1.19–1.65

 Non-dense area (NDA) 0.92 0.78–1.08 0.87 0.73–1.03 0.79 0.66–0.93

 Percent density (PD) 1.37 1.08–1.75 1.45 1.25–1.69 1.54 1.33–1.79

LIBRA (CCb only)

 Dense area (DA) 1.27 1.12–1.43 1.32 1.16–1.50 1.26 1.11–1.42

 Non-dense area (NDA) 0.97 0.82–1.13 0.87 0.74–1.04 0.79 0.67–0.93

 Percent density (PD) 1.30 1.12–1.52 1.35 1.16–1.57 1.38 1.19–1.60

Cumulus

 Dense area (DA) 1.44 1.26–1.63 1.43 1.25–1.62 1.48 1.31–1.68

 Non-dense area (NDA) 0.86 0.73–1.01 0.88 0.74–1.05 0.72 0.61–0.86

 Percent density (PD) 1.55 1.25–1.91 1.46 1.25–1.71 1.67 1.43–1.96
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images. However, processed FFDM images are more 
widely available in the clinical setting for use in large-
scale studies, and results from studies by Busana et al. 
[11] and Gastounioti et al. [9] suggest that associations 
of LIBRA measures with breast cancer risk are stronger 
on processed than raw images. LIBRA measures on 
standard two-dimensional FFDM images have been 
found to be highly correlated with LIBRA measures on 
synthetic mammograms from digital breast tomosyn-
thesis (DBT) [22], which is increasingly being used in 
breast cancer screening. However, DBT images were 
not available for the present study, and future studies 
will be needed to determine whether density measures 
on synthetic mammograms are associated with breast 
cancer risk.

Conclusions
Our findings, together with the results from other stud-
ies, provide substantial support for the use of the fully 
automated and publicly available density measurement 
tool, LIBRA, for large-scale studies of mammographic 
density using processed FFDM images from either Hol-
ogic or GE machines. Moreover, LIBRA and Cumulus 
density measurements were significantly associated 
with both near- and long-term breast cancer risk and 
the magnitude of the associations did not attenuate 
over the 10-year follow-up period. LIBRA allowed us 
to generate density measures in a fraction of the time 
and cost needed for a trained reader to measure den-
sity using Cumulus. By providing reliable and robust 
density measures, LIBRA will enable future large lon-
gitudinal studies to address multiple questions related 
to the determinants of mammographic density and its 
relationship to breast cancer risk, and how these rela-
tionships may vary over time.
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