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Abstract 

Background:  Breast tumor immune infiltration is clearly associated with improved treatment response and out‑
comes in breast cancer. However, modifiable patient factors associated with breast cancer immune infiltrates are 
poorly understood. The Nurses’ Health Study (NHS) offers a unique cohort to study immune gene expression in tumor 
and adjacent normal breast tissue, immune cell-specific immunohistochemistry (IHC), and patient exposures. We 
evaluated the association of body mass index (BMI) change since age 18, physical activity, and the empirical dietary 
inflammatory pattern (EDIP) score, all implicated in systemic inflammation, with immune cell-specific expression 
scores.

Methods:  This population-based, prospective observational study evaluated 882 NHS and NHSII participants diag‑
nosed with invasive breast cancer with detailed exposure and gene expression data. Of these, 262 women (training 
cohort) had breast tumor IHC for four classic immune cell markers (CD8, CD4, CD20, and CD163). Four immune cell-
specific scores were derived via lasso regression using 105 published immune expression signatures’ association with 
IHC. In the remaining 620 patient evaluation cohort, we evaluated association of each immune cell-specific score as 
outcomes, with BMI change since age 18, physical activity, and EDIP score as predictors, using multivariable-adjusted 
linear regression.

Results:  Among women with paired expression/IHC data from breast tumor tissue, we identified robust correlation 
between novel immune cell-specific expression scores and IHC. BMI change since age 18 was positively associated 
with CD4+ (β = 0.16; p = 0.009), and CD163 novel immune scores (β = 0.14; p = 0.04) in multivariable analyses. In other 
words, for each 10 unit (kg/m2) increase in BMI, the percentage of cells positive for CD4 and CD163 increased 1.6% 
and 1.4%, respectively. Neither physical activity nor EDIP was significantly associated with any immune cell-specific 
expression score in multivariable analyses.
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Background
Tumor infiltrating lymphocytes (TILs) have been associ-
ated with improved response to chemotherapy and bet-
ter overall survival in breast cancer [1–4], and conversely, 
there is evidence that suppressive immune cells facili-
tate tumor evasion of the host immune system [5]. More 
specifically, the presence of CD8+ T cells is associated 
with improved long-term survival in both HER2+ and 
triple-negative breast cancers [6], and there is evidence 
that chemotherapeutic agents promote CD8+ T cell-
mediated immunogenic tumor cell killing [7]. Evidence 
suggests that tumor-specific factors, such as hormone 
receptor (HR) status and molecular subtype, are key 
associations with immune infiltration in breast tumors 
[6]. However, these factors do not fully describe the 
observed variation in the tumor immune microenviron-
ment of breast cancers and there is growing evidence that 
patient-level modifiable factors may also play a role.

Recent studies show that body mass index (BMI) is 
significantly correlated with systemic inflammation 
[8] and may influence inflammation within the breast 
microenvironment. BMI has been shown to be positively 
correlated with breast tumor and normal tissue inflam-
mation in patients with ER-negative breast cancer [9]. 
Interestingly, overweight or obese patients may have 
improved responses to immunotherapy in other can-
cers [10], which could indicate a distinct tumor immune 
microenvironment.

There is also evidence that the inflammatory potential 
of an individual’s diet may influence breast cancer risk 
and outcomes, based on analyses of the Women’s Health 
Initiative cohort [11, 12]. These studies utilized a litera-
ture-derived nutrient-based dietary inflammatory index 
to assess the inflammatory potential of the diet. A related 
inflammatory index, the empirical dietary inflammatory 
pattern (EDIP), is a food-based score of dietary inflam-
matory potential [13, 14] that has been shown to be asso-
ciated with the immune microenvironment in colorectal 
cancer. Specifically, pro-inflammatory diet (higher EDIP 
score) was associated with colorectal cancers low or no 
intratumoral periglandular reaction (fewer/no immune 
cells), but not with cancers that had intermediate or high 
peritumoral lymphocytic reaction [15].

Based on these data, we hypothesized that patient fac-
tors including adiposity (BMI change from age 18), physi-
cal activity, and dietary inflammatory potential (EDIP 

score) may play an important role in the breast cancer 
tumor immune microenvironment. In the current study, 
we aimed to develop immune cell-specific expression sig-
natures based on immunohistochemistry (IHC) data, and 
then, we evaluated associations of BMI change since age 
18, physical activity, and EDIP score with the expression 
signatures.

Methods
Study population
The Nurses’ Health Study (NHS) was established in 
1976 with the enrollment of 121,700 US female regis-
tered nurses aged 30–55 years, while the Nurses’ Health 
Study II (NHSII) consists of 116,429 US female registered 
nurses aged 25–42  years who were enrolled starting in 
1989. Detailed descriptions of cohort procedures have 
been reported elsewhere [16]. Briefly, cohort members 
completed baseline questionnaires that provided medical 
histories and extensive information about demographic, 
lifestyle, reproductive, and dietary risk factors for breast 
cancer. Both cohorts have been followed biennially by 
mailed questionnaire to update information on exposure 
status and ascertain newly diagnosed diseases, includ-
ing cancers. All women reporting incident diagnoses of 
breast cancer were asked for permission to review their 
medical records; 99% of reported cases were confirmed 
with pathology reports and medical record review. 
Tumor characteristics were extracted from pathology 
reports. Immunohistochemical evaluation of estrogen 
receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2) expression 
was obtained from central review of breast tissue micro-
arrays [16]. We analyzed 882 participants enrolled in 
the NHS and NHSII and diagnosed with invasive breast 
cancer, who had detailed exposure and follow-up data 
and gene expression data [9, 17]. The study protocol 
was approved by the institutional review boards of the 
Brigham and Women’s Hospital and Harvard T.H. Chan 
School of Public Health, and those of participating regis-
tries as required.

Empirical dietary inflammatory pattern (EDIP) score
The empirical dietary inflammatory pattern (EDIP) score 
is a food-based dietary index for assessing dietary inflam-
matory potential, and it is based on circulating concen-
trations of C-reactive protein, interleukin-6, and tumor 

Conclusions:  BMI change since age 18 was positively associated with novel CD4+ and CD163+ cell scores 
in breast cancer, supporting further study of the effect of modifiable factors like weight gain on the immune 
microenvironment.
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necrosis factor alpha receptor 2. EDIP is a weighted sum 
of 18 food groups from food frequency questionnaires 
(FFQs) derived in the NHS [14] and validated in NHSII 
and Health Professionals Follow-Up Study [13, 14]. The 
component food groups comprising the EDIP score that 
are positively associated with concentrations of inflam-
matory markers are: processed meat, red meat, organ 
meat, non-dark fish, vegetables other than green leafy 
vegetables/dark yellow vegetables, refined grains, high 
energy beverages (carbonated beverages with sugar, fruit 
drinks), low-energy beverages (low-energy cola/other 
carbonated beverages), and tomatoes. The component 
food groups that are inversely associated with concentra-
tions of inflammatory markers are: beer, wine, tea, coffee, 
dark yellow vegetables (carrots, yellow squash, and sweet 
potatoes), green leafy vegetables, snacks, fruit juice, and 
pizza [14]. As previously described, the EDIP score in 
NHS/NSII ranges from − 3.34 to 2.81, with higher scores 
associated with higher concentrations of inflammatory 
markers [14]. Cumulative average EDIP uses all prior 
available FFQs (median 8, range 5–8 FFQs).

Body mass index and other covariates
Weight and height were reported on study question-
naires, and self-reported weight and height were previ-
ously validated in the NHSII [18]. Height was obtained 
at enrollment, while weight (and other covariates) was 
updated every 2  years, starting in 1976 (NHS) or 1991 
(NHSII). BMI (kg/m2) was calculated using weight from 
the participant’s last available questionnaire before breast 
cancer diagnosis (i.e., within 2–4 years of diagnosis). BMI 
change since age 18 was calculated as the last available 
pre-diagnosis BMI minus BMI at age 18. BMI change 
since age 18 provides a potential surrogate for adiposity 
relative to BMI alone, as significant rise in BMI from age 
18 typically reflects increase in non-lean body mass [19]. 
Prior studies suggest adult weight gain captures dynamic 
pattern of weight trajectory throughout adult life reflect-
ing a time-integrated metric, adults gain weight mostly 
through accumulating fat mass and detrimental fat dis-
tribution, and adult weight gain is a simpler and more 
intuitive concept to the general public than BMI [19]. As 
a sensitivity analysis, the last available pre-diagnosis BMI 
was converted to a categorical variable with three levels 
(underweight/normal weight, overweight, and obese) as 
determined by the standard BMI thresholds for women 
(< 25, 25–29.9, > 30). Very few participants had a BMI cat-
egory of “underweight” (N = 11/882, 1.2%) so the “under-
weight” and “normal weight” categories were combined 
for this analysis. Further sensitivity analyses assessed 
pre-diagnosis BMI as a continuous predictor and BMI 
at age 18 as a continuous predictor. For physical activ-
ity, we used cumulative average metabolic equivalent 

task (MET) hours per week to capture long-term activity. 
Other covariates such as race, age at first birth, parity, age 
at diagnosis, year of diagnosis, menopausal status, recent 
postmenopausal hormone therapy (HT), and smoking 
[20] were retrieved from baseline, subsequent, or most 
recent NHS/NHSII questionnaires. When available, the 
most recent pre-diagnosis questionnaire was prioritized.

Tissue microarray and immunohistochemistry
Tumor microarrays (TMA) were constructed from 
archived formalin-fixed paraffin-embedded (FFPE) breast 
tumor blocks at the Specialized Histopathology Core 
of the Dana Farber/Harvard Cancer Center with three 
0.6  mm core biopsies taken from the tissue blocks for 
each tumor [16]. IHC was conducted on 5  μm paraffin 
sections of the TMA blocks for CD8 (Dako 7103, clone 
C8/144B), CD4 (Dako 7310, clone 4B12), CD20 (Dako 
0755, clone L26), and CD163 (Vector Labs VP-C374, 
clone 10D6) [21]. Staining positivity was determined 
using an automated computational image analysis system 
(Definiens Tissue Studio software, Munich, Germany). 
The percent of positive cells for each antibody was deter-
mined as the number of cells positive over the total num-
ber of cells (nuclei) for each of the three cores from each 
patient. The final mean percent positivity was the average 
of the three cores.

Gene expression microarray, RNA sequencing, and quality 
control analysis
For NHS, RNA was extracted from three cores of 1 mm 
or 1.5  mm diameter taken from FFPE blocks of tumor 
tissue as described previously [22]. RNA expression 
was determined using Affymetrix Glue Grant Human 
Transcriptome Array [23]. Gene expression data were 
normalized and summarized using robust multiarray 
average (Affymetrix Power Tools v1.18.0), correcting for 
batch effects using a surrogate variable analysis R pack-
age, ComBat, and excluding low expressing genes (< 25th 
percentile) [9, 17]. The final dataset consisted of 15,369 
annotated probesets of coding and non-coding RNAs. 
All microarray and annotation data are available at the 
National Center for Biotechnology Information Gene 
Expression Omnibus (accession number: GSE115577). 
For The Cancer Genome Atlas (TCGA) [24], gene expres-
sion data were obtained from XENAbrowser (version 
2015-02-24) for breast cancer samples with paired tumor 
and normal expression data.

Published immune gene expression signature scores
Published immune signature scores were derived as the 
median value of the genes in each gene set from gene 
expression data for each patient’s tumor, a validated 
approach for analyses of disparately derived signatures 
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[25]. This included 9 gene expression signatures dem-
onstrated to correlate with infiltrating immune cells 
[26–30], including the GeparSixto (GSAct) 6-gene signa-
ture (CXCL9, CCL5, CD8A, CD80, CXCL13, CR2), which 
was derived based on association with tumor infiltrating 
lymphocytes in the neoadjuvant chemotherapy breast 
cancer clinical trial GeparSixto [26]. In addition, we cal-
culated the immune score for each of the 96 gene sets in 
the Immune Response In Silico (IRIS) signatures [31], a 
compendium of immune cell-specific gene sets derived 
to reflect immune cell activation/exhaustion states, avail-
able in ImmuneSigDB [32].

CD4+, CD8+, CD20+, and CD163+ immune gene 
expression score generation
For each of the four immune IHC markers of interest 
(CD4, CD8, CD20, and CD163), we calculated total mean 
percent positivity as described above. As none of the 
published immune signature scores individually demon-
strated robust association with IHC, we evaluated linear 
models (four models, one for each immune cell subset) 
composed of all 105 published immune signatures avail-
able as predictors and the mean percent IHC positivity 
for each subset as the outcome. We then performed lasso 
reduction on these models, resulting in linear models of 
signatures that are significantly associated with the mean 
percent of IHC positive immune cells for each subset. 
We used the models to calculate an immune cell-specific 
score for each patient’s tumor, derived as a weighted 
arithmetic sum of the linear model for each patient’s gene 
expression data. The predicted scores represent the pre-
dicted amount of that particular IHC marker, with higher 
score corresponding to higher IHC. These scores were 
the main outcomes of interest for the present analyses 
(analyses schema in Fig. 1).

Statistical analysis
We evaluated four immune scores based on the lasso 
reduction of IRIS gene expression signatures that were 
associated with IHC for four immune cell-specific mark-
ers: CD4+, CD8+, CD20+, and CD163+. We assessed 
the correlation of each of the immune scores with the 
other three scores. As an established comparison, we also 
assessed the GSAct. Correlations were measured using 
Spearman rho correlation coefficients and correspond-
ing p values. Bivariable and multivariable linear models 
were used to compare the CD4+, CD8+, CD20+, and 
CD163+ immune scores (outcomes) with BMI change 
since age 18, physical activity, and EDIP score (predic-
tors). Covariates included in the multivariable analyses 
are detailed above. All analyses and figure generation 
were performed using R version 3.5.1.

Results
Cohort characteristics
A total of 882 subjects enrolled in NHS or NHSII with 
available gene expression data derived from tumor sam-
ples were included in the study (Table 1; Fig. 2A). Overall, 
most patients in the cohort were white (95.5%; 842/882), 
stage I–II at diagnosis (90.6%; 799/882), and the major-
ity of patients had ER+/HER2−negative breast cancer, 
followed by ER±/HER2+ and TNBC (60.2%, 27.4%, and 
12.4%, respectively) (Additional file  1: Table  S1). Of the 
gene expression cohort, 623 also had gene expression 
data derived from adjacent normal breast tissue and 262 
subjects had IHC data for at least one immune marker 
(Figs.  1, 2A). Participants who had tumor gene expres-
sion data plus IHC data (the “IHC training cohort”), 
when compared to those with expression data alone (the 
“expression only evaluation cohort”), were exclusively 
from NHSII. Thus, based on cohort differences, the IHC 
training cohort participants were more likely to be diag-
nosed after 2000 (58.0% vs. 45.2%) and less than age 60 
at diagnosis (100% vs. 31.0%) (Table 1). Compared to the 
expression only cohort, the IHC cohort had a greater pro-
portion of ER+/HER2− breast cancers (68.3% vs. 50.5%) 
and more patients with normal BMI (57.6% vs. 46.6%). 
There was no significant difference in stage at diagnosis, 
cumulative average physical activity, or cumulative aver-
age EDIP score by cohort (Table 1).

Characterization of established immune expression 
signatures in the NHS cohort
To understand the landscape of immune gene expression, 
in the full cohort (n = 882 participants) we first evaluated 
105 previously published, well-established immune gene 
expression signatures representing general immune infil-
tration as well as specific immune subsets (Additional 
file 2: Table S2). Among these, we visualized nine general 
immune signatures shown to be associated with TILs 
[26–30] (Fig.  2B). These signatures indicated that most 
tumors had relatively low expression of immune-related 
genes, while a small subset (~ 10–15%) showed high 
immune gene expression.

Among tumors with paired IHC and gene expres-
sion (IHC training cohort), we evaluated the associa-
tion of each of the 105 published immune signatures 
with IHC staining for CD8 (n = 250), CD4 (n = 258), 
CD20 (n = 252), and CD163 (n = 253) (Additional 
file  3: Table  S3). Correlations were modest, with most 
Spearman correlation coefficients < 0.30 and none 
greater than 0.40. Among all signatures, the GeparSixto 
“immune activation signature” (GSAct), which was 
derived based on association with TILs in the Gepar-
Sixto clinical trial [26] and was recently confirmed to 
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have a robust association with response to neoadjuvant 
chemotherapy in early-stage breast cancer [33], was 
among the strongest associations across all immune 
IHC markers (Additional file  3: Table  S3). This sug-
gested that, as designed, GSAct was a representative 
signature of TILs in breast tumors; thus, moving for-
ward in analyses, we focused on GSAct. As anticipated, 
GSAct was highest in TNBC relative to other breast 
cancer receptor subtypes as well as higher in basal-
like and HER2-enriched molecular intrinsic subtypes 
(Additional file 4: Figure S1A, B).

As an initial validation, we evaluated the associa-
tion of GSAct with CD8+ IHC among 250 patients 

with paired CD8+ T cell immunohistochemistry and 
gene expression data. Overall, CD8+ quantification 
corresponded to visualized CD8+ cell amount (exam-
ple images in Fig. 2C); this supports recent work from 
our group showing overall good agreement between 
computational evaluation of IHC with expert pathol-
ogy review (Roberts, Tamimi, et  al.; manuscript under 
review).

When stratified into quartiles by reported total CD8 
IHC quantification, there was a strong association with 
GSAct (ANOVA p = 1.9e−7; Fig.  2D; CD8 IHC con-
tinuous; Additional file  4: Figure S1C-D). The overall 
correlation with CD8 IHC and GSAct as continuous 
variables remained for epithelial, stromal, and total 

Fig. 1  Analysis schema. Study analysis schema visualized. Datasets (purple text) indicated at top. Data preparation (blue text) included gene 
expression extraction, expression signature calculation, immune immunohistochemistry (IHC) quantification, as well as immune subset linear 
model, lasso reduction, and score calculation. Analyses (black text) included tumor/normal comparison of GSAct and CD8A single gene as well 
as bivariable and multivariable analyses of immune scores with patient features of interest: empiric dietary inflammatory potential (EDIP) score as 
continuous variable, body mass index (BMI) as normal/overweight/obese, and physical activity
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Table 1  Cohort characteristics

*P value from chi-square tests for categorical variables and t tests for continuous variables

IHC training cohort
N (%)

Expression only evaluation 
cohort
N (%)

P value*

Total 262 620

NHS cohort  < 0.0001

 NHS 0 (0.0) 537 (86.6)

 NHSII 262 (100.0) 83 (13.4)

Diagnosis year 0.001

 Prior to 1990 1 (0.4) 13 (2.1)

 1990–1999 109 (41.6) 327 (52.7)

 2000–2011 152 (58.0) 280 (45.2)

Age at diagnosis (years)  < 0.0001

   < 50 156 (59.5) 29 (4.7)

  50–59 106 (40.5) 163 (26.3)

  60–69 0 (0.0) 230 (37.1)

   ≥ 70 0 (0.0) 198 (31.9)

IHC subtype  < 0.0001

 ER−/HER2− 36 (13.7) 65 (10.5)

 ER+/HER2− 179 (68.3) 313 (50.5)

 ER± /HER2 +  46 (17.6) 178 (28.7)

Race 0.20

 White 246 (93.9) 596 (96.1)

 Non-White 16 (6.1) 24 (3.9)

Menopausal status  < 0.0001

 Premenopausal 200 (76.3) 37 (6.0)

 Postmenopausal 45 (17.2) 562 (90.6)

 Unknown 17 (6.5) 21 (3.4)

Stage at diagnosis 0.83

 Stage I 152 (58.0) 376 (60.6)

 Stage II 86 (32.8) 185 (29.8)

 Stage III 21 (8.0) 54 (8.7)

 Stage IV 2 (0.8) 4(0.6)

Body mass index (BMI) 0.01

 Underweight/Normal weight (< 25) 151 (57.6) 289 (46.6)

 Overweight (25- < 30) 67 (25.6) 195 (31.5)

 Obese (≥ 30) 43 (16.4) 134 (21.6)

BMI change since age 18 0.09

 Mean 4.8 5.4

 Standard deviation 4.5 4.7

 Range (− 4.7,22.1) (− 11.7,24.9)

Cumulative average physical activity (MET hours/week) 0.83

 Mean 18.2 18.5

 Standard deviation 18.8 16.5

 Range (0.7,191.3) (0.4,117.7)

Cumulative average empirical dietary inflammatory pattern (EDIP) 
score

0.15

 Mean − 0.1 − 0.04

 Standard deviation 0.8 0.8

 Range (− 2.5,2.2) (− 4.3,4.5)
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Fig. 2  Breast cancer tumor/immune microenvironment in Nurses’ Health Study cohort. A Visualization of number and overlap of available data 
types among 882 patients in NHS/NHSII with tumor gene expression. B Nine published immune gene expression signatures shown to correlate 
with infiltrating immune cells were calculated as per primary reference; number indicated for each signature references PubMed ID. Each score was 
converted to Z-score across all patients in NHS gene expression cohort, with higher Z-score indicating higher immune expression score. Samples 
underwent unsupervised hierarchical clustering by sample. C Example immunohistochemistry (IHC) images from five representative tumor cores, 
with 10X (top) and 40X (bottom) magnification, scale bars indicated. Computational determination of CD8 positive percentages indicated below 
IHC images. D GeparSixto activation (GSAct) immune signature score (y-axis) versus CD8 quantification by quartile (x-axis), with percentage CD8 
cells indicated
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CD8 positivity (range Pearson’s r = 0.45–0.47; Addi-
tional file 4: Figure S1E).

Immune expression signatures in breast cancer 
and adjacent normal breast tissue
The NHS cohort offers a unique opportunity to interrogate 
gene expression data from tumor and adjacent normal tis-
sue. We focused our comparisons on GSAct and CD8A as a 
representative single gene for general CD8+ T cell infiltra-
tion. Among the 623 patients with paired tumor–normal 
samples, we observed a positive correlation between tumor 
and adjacent normal tissue for GSAct (Pearson’s r = 0.31, 

p < 0.001) and CD8A single gene (Pearson’s r = 0.46, 
p < 0.0001) (Fig.  3A). These results were validated in the 
independent TCGA breast cancer cohort, with 113 pairs 
of tumor and adjacent normal breast transcriptome data 
(Pearson’s r = 0.45, p < 0.0001; Pearson’s r = 0.34, p = 0.0002 
for GSAct and CD8A, respectively; Fig.  3B). Of the adja-
cent normal tissue samples in NHS, 297 were classified 
as a PAM50 subtype other than “normal-like” [17]. As a 
sensitivity analysis, we removed these 297 samples, which 
could be a result of contamination of normal samples, 
and repeated all analyses (Additional file 4: Figure S2A-B), 
with no meaningful change in results. As an exploratory 

Fig. 3  T cell immune gene expression in breast tumor and adjacent normal. GeparSixto activation (GSAct) signature was calculated as the median 
of 6-genes (CXCL9, CCL5, CD8A, CD80, CXCL13, CR2) as described previously [26, 33] for gene expression data available from tumor and adjacent 
normal breast in Nurses’ Health Study (A; top panel) and The Cancer Genome Atlas (TCGA; B; top panel). CD8A gene expression data was extracted 
from tumor and adjacent normal breast in Nurses’ Health Study (A; bottom panel) and The Cancer Genome Atlas (TCGA; B; bottom panel). For 
all panels, each dot represents a single tumor/adjacent normal pain and black line indicates line of best fit, with Pearson correlation coefficient 
indicated. Dot color represents receptor-based estrogen receptor positive/HER2 negative (ER, blue dots), HER2 positive (HER2, pink dots), or 
estrogen receptor negative/progesterone receptor negative/HER2 negative (TNBC, red dots)
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analysis, we assessed differences in paired tumor–nor-
mal samples among the NHS and TCGA cohorts using a 
paired Wilcoxon test. Overall, in the NHS cohort we found 
that GSAct and CD8A each differed significantly between 
tumor and normal samples (p < 0.0001 and 0.002, respec-
tively). However, there did not appear to be a consistent 
trend when comparing tumor/normal by receptor subtype 
or PAM50 subtype for either GSAct or CD8A (Additional 
file 4: Figure S2C-F).

Derivation of IHC‑based CD4+, CD8+, CD20+, 
and CD163+ immune expression scores
We initially attempted to derive novel immune signatures 
based on individual genes’ contributions; however, we 
found no significant discrimination relative to published 
immune expression signatures (Additional file 3: Table S3). 
Instead, we pursued an approach using all 105 published 
immune gene expression signatures and lasso reduc-
tion using the IHC training cohort. Eighteen signatures 
remained in the CD4+ lasso regression model, 24 remained 
in the CD8+ model, 24 remained in the CD20+ model, 
and 12 remained in the CD163+ model (Additional file 1: 
Tables S4–7).

We used the final models to calculate a patient-specific 
score for each immune subset, derived as a weighted 
arithmetic sum of the linear model for each patient’s 
gene expression data, and plotted the score against that 
patient’s mean IHC percent positivity for each marker to 
assess the fit of our model (Fig.  4A–D). The Spearman’s 
rho correlation statistic ranged from 0.42 to 0.54 with p 
values all < 0.0001. We compared the performance of our 
four immune cell-specific lasso model scores with the 105 
individual immune expression scores (9 immune signa-
tures plus 96 IRIS gene sets; Additional file  3: Table  S3). 
As anticipated, for each IHC marker our novel immune 
scores demonstrated the strongest correlation with IHC 
quantification. To gain a descriptive understanding, we 
visualized all 882 tumors using our four novel IHC-based 
immune expression scores along with receptor and PAM50 
subtype (Fig.  4E) and assessed the correlation between 
each immune score with each other (Additional file 4: Fig-
ure S3A). All immune scores were significantly, positively 
correlated with each other (Spearman’s rho ranging from 
0.57 to 0.81). CD8+ with CD20+ scores had the high-
est correlation (Pearson’s r = 0.81, p < 0.0001). We further 
assessed these correlations by IHC subtype and found simi-
lar correlations (Additional file 4: Figure S3B-D). Similarly, 

CD8+ and CD20+ scores were most highly correlated with 
each other among all IHC subtypes (Spearman’s rho: 0.79 
to 0.84, all p < 0.0001).

Associations of modifiable lifestyle factors with immune 
cell scores
Using these novel IHC-validated immune expression 
scores, we evaluated the association with the immune 
microenvironment and patient features – BMI change 
since age 18, physical activity, and EDIP score in the 
expression-only evaluation cohort (n = 620 participants), 
omitting the IHC-only cohort as the dataset on which 
the signatures were derived. In bivariable and multivari-
able analyses, there was no significant association between 
cumulative average physical activity (MET hours/week) 
and GSAct, CD8+ score, CD4+ score, CD20+ score, or 
CD163+ score (Tables  2, 3). Among the IHC training 
cohort, there was no association between BMI change 
since age 18 and any immune score. Among the expression 
only evaluation cohort, CD4+ score, and CD163+ score 
were positively associated with BMI change since age 18 in 
bivariable (p = 0.003, and p = 0.04, respectively) and multi-
variable (p = 0.009, and p = 0.04, respectively) analyses. In 
other words, for each 10 unit (kg/m2) increase in BMI, the 
percentage of cells positive for CD4 and CD163 increased 
1.6% and 1.4%, respectively. In the multivariable analysis 
only, BMI change since age 18 was positively associated 
with CD8+ score (p = 0.05). Cumulative average EDIP 
score was not significantly associated with CD8+, CD4+, 
CD20+, or CD163+ scores in either bivariable or multivar-
iable analyses among either cohort.

We performed sensitivity analyses of pre-diagnosis 
BMI (one two-year follow-up cycle prior to diagno-
sis) as a categorical predictor, pre-diagnosis BMI as a 
continuous predictor, and BMI at age 18 as a continu-
ous predictor (Additional file  1: Tables S8–10). In mul-
tivariable models, categorical BMI was not associated 
with CD8+ or CD163+ score in either cohort, but obe-
sity, compared to normal BMI, was positively associated 
with CD4+ score (p = 0.02) among the expression only 
cohort. Among the IHC cohort, continuous pre-diagno-
sis BMI and BMI at age 18 were not associated with any 
immune score. Among the expression only cohort, con-
tinuous pre-diagnosis BMI was positively associated with 
GSAct (p = 0.05), CD8+ (p = 0.02), CD4+ (p = 0.003), and 
CD163+ (p = 0.03); however, BMI at age 18 was not associ-
ated with any immune score.

(See figure on next page.)
Fig. 4  Immune cell-specific gene expression score: Association with immunohistochemistry and breast cancer subtypes. A–D Scatter plots of 
immunohistochemistry (IHC; y-axis) and lasso model immune cell-specific score (x-axis), with immune cell marker as indicated: CD8 (A); CD4 (B); 
CD20 (C); CD163 (D). Black line indicates line of best fit; Pearson’s correlation coefficient indicated. E Each immune cell-specific lasso model score 
was converted to Z-score across all patients in NHS gene expression cohort, with higher Z-score indicating higher score. Samples underwent 
unsupervised hierarchical clustering by sample. PAM50 intrinsic subtype and receptor subtype are indicated in color bars above
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Fig. 4  (See legend on previous page.)
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Discussion
There is a growing understanding of the critical role of 
the breast tumor immune microenvironment in treat-
ment response and outcomes in breast cancer, yet modi-
fiable patient factors that impact immune infiltration in 
breast cancer remain poorly understood. The Nurses’ 
Health Study offers a large-scale, unique cohort to evalu-
ate interactions between patient lifestyle exposures and 
the immune microenvironment. Specifically, this study is 
unique in its integration of multiple immune cell-specific 
immunohistochemistry (CD8, CD4, CD20, and CD163) 
with published immune gene expression signatures, 
including the IRIS gene sets, which we recently dem-
onstrated can effectively interrogate the breast cancer 
tumor immune microenvironment in a large clinical trial 
[33]. Using paired IHC and gene expression data from 
over 250 unique patient tumors for each marker, we suc-
cessfully derived improved expression-based predictors 
of immune cell subset infiltration and then evaluated the 
association with patient factors: BMI change from age 18, 
physical activity, and EDIP.

Higher BMI change since age 18 demonstrated the 
strongest association between immune cell-specific 
expression scores and patient factors, specifically GSAct, 
CD4 T cell score, and CD163 macrophage score. BMI 

change in adulthood has been associated with breast can-
cer risk [34]. The role of obesity in the tumor immune 
microenvironment is of great interest, driven initially 
through evidence in melanoma that obesity was associ-
ated with longer survival in patients receiving immu-
notherapy [10]. Mechanistic work suggested that, 
paradoxically, obesity results in increased immune aging, 
tumor progression and PD-1-mediated T cell dysfunction 
yet increased efficacy of PD-1/PD-L1 blockade in murine 
models and patients with cancer [35]. Several recent 
papers investigated the association of TILs and BMI. In 
one, high stromal TILs were associated with increased 
event-free survival in lean (hazard ratio [HR] = 0.22, 95% 
CI = 0.08–0.62; P = 0.004) but not in heavier patients 
[36]. A second showed that TIL density was significantly 
lower in obese than in normal weight and overweight 
patients [37]. Importantly, neither of these studies evalu-
ated specific immune cell subsets as TILs encompass 
diverse pro- and anti-tumor immune cells.

While most FDA-approved immunotherapies target 
CD8+ cytotoxic T cells, the role of CD4+ helper T cells 
[38, 39] and CD163+ macrophages [40–42] is less well 
defined but increasingly seen as key players in the breast 
cancer microenvironment. It is established that T‐lym-
phocyte populations change with obesity (reviewed in 

Table 2  Bivariable associations of lifestyle factors and immune cell signatures

Bold indicates significant values for expression only cohort
a Cumulative average empirical dietary inflammatory pattern (EDIP) score

Predictor IHC cohort (N = 262) Expression only cohort (N = 620)

Beta coefficient Standard error P value Beta coefficient Standard error P value

GeparSixto

BMI change since age 18 0.01 0.01 0.29 0.01 0.01 0.05

Cumulative average physical activity (MET h/week) 0.0001 0.002 0.98 0.0003 0.001 0.86

EDIP scorea 0.08 0.05 0.10 0.04 0.03 0.15

CD8 + score

BMI change since age 18 0.04 0.09 0.69 0.10 0.06 0.08

Cumulative average physical activity (MET h/week) 0.01 0.02 0.50 0.01 0.02 0.71

EDIP scorea 0.79 0.50 0.12 0.08 0.31 0.79

CD4 + score

BMI change since age 18 0.16 0.09 0.07 0.17 0.06 0.003
Cumulative average physical activity (MET h/week) 0.01 0.02 0.51 0.003 0.02 0.85

EDIP scorea 0.47 0.52 0.37 0.06 0.32 0.85

CD20 + score

BMI change since age 18 − 0.01 0.07 0.85 0.03 0.04 0.54

Cumulative average physical activity (MET hours/week) 0.01 0.02 0.39 − 0.002 0.01 0.85

EDIP scorea 0.66 0.37 0.08 − 0.03 0.24 0.91

CD163 + score

BMI change since age 18 0.12 0.11 0.27 0.13 0.06 0.04
Cumulative average physical activity (MET hours/week) − 0.001 0.02 0.98 0.01 0.02 0.71

EDIP scorea 0.62 0.61 0.31 0.18 0.35 0.61
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[43]). In our model, for each 10 unit (kg/m2) increase in 
BMI—roughly equivalent to an individual going from 
BMI 20 (normal weight) to BMI 30 (obese), the percent-
age of cells positive for CD4 and CD163 increased 1.6% 
and 1.4%, respectively. It remains unclear whether this 
percent change could explain differences in response 
to therapy. In obesity, there is evidence that interferon 
gamma-producing pro-inflammatory CD4‐positive Th1 
cells are increased, whereas anti‐inflammatory CD4‐posi-
tive Th2 and Treg cells are reduced [43]. Intriguingly, we 
have previously shown in the Nurses’ Health Study that 
higher BMI was associated with increased expression of 
genes associated with IFN alpha and gamma response in 
ER- tumor and ER- tumor-adjacent tissues [9]. In addi-
tion, in multivariable models of CD8, CD4, CD163, and 
GeparSixto scores, both HER2 and TNBC status signifi-
cantly contributed to each model reinforcing the impor-
tance of investigating TME metrics within specific breast 
cancer subtypes.

Inflammatory diet was positively associated with 
GSAct in bivariable analyses with a trend in multivari-
able analyses, suggesting that a more pro-inflammatory 
diet is associated with higher immunity. This differs from 
our hypothesis, which was based on data in colorectal 
cancer, where inflammatory diet was associated with a 
higher risk of developing colorectal cancer only among 
tumors that had low tumor infiltrating lymphocytes [15]. 
It is likely that the distinct settings, for example, direct 
exposure of colonic mucosa to dietary elements versus no 
exposure in breast tissue, may influence these effects. To 
our knowledge, this is the first study to examine the rela-
tionship between inflammatory diet and quantity of TILs 
and immune subsets in breast tumors.

We also did not find a correlation between physi-
cal activity and immune cell-specific expression scores, 
specifically not GSAct, CD8, or CD4, which had either 
bivariable or multivariable association with other patient 
factors. Physical activity has been hypothesized to be 
associated with biomarkers of inflammation in breast 
cancer survivors [44]. In animal breast cancer models, 
effect of physical activity on the amount of TILs is con-
flicting [45, 46]. In humans, exercise was not found to 
affect levels of circulating T cells in patients receiving 
chemotherapy for breast cancer [47]. To our knowledge, 
this is the first study exploring the effect of physical activ-
ity on multiple immune cell subset infiltration in breast 
tumor tissue and further delineating activity versus inac-
tivity and more granular evaluation of types of physical 
activity may provide additional insights. While physical 
activity was not associated with immune cell infiltration 
in this study, overall, patients with breast cancer have 
been shown to benefit from exercise during and after 
cancer-directed therapy, and this study should not be 

used to justify a sedentary lifestyle for these patients [48, 
49].

In this cohort of over 600 tumor–normal pairs and an 
independent validation cohort (TCGA), both GSAct and 
CD8A expression metrics show modest—but consist-
ent—correlation between breast cancer and tumor-adja-
cent normal breast tissue. This suggests that the adjacent 
normal breast may reflect an altered immune microen-
vironment in the context of breast cancer. In a smaller 
cohort, inflammation expression was elevated in adjacent 
normal tissue relative to reduction mammoplasty tis-
sues [50]. In the NHS, elevated inflammatory expression 
in adjacent normal breast tissues was associated with 
higher BMI and alcohol consumption specifically in ER- 
tumors [9, 22]. It is possible that tumor-adjacent normal 
inflammatory gene expression is a “bystander” effect in 
response to the tumor. Additional work on the immune 
microenvironment of tumor-adjacent breast is warranted 
to understand if adjacent normal immune infiltration is 
associated with breast carcinogenesis, immune infiltra-
tion of established tumors, or therapy response.

This study does have limitations. Only a subset of all 
the subjects enrolled in NHS/NHSII were included in 
the TMA due to limited tumor tissue availability. How-
ever, the characteristics of participants included in the 
TMA were very similar to those of all the eligible cases, 
including BMI, physical activity, EDIP score, and other 
breast cancer risk factors (e.g., first-degree family his-
tory and parity). Adiposity has differential associations 
with breast cancer risk based on menopausal status, and 
the models were derived primarily in NHSII subjects and 
applied primarily in NHS subjects; importantly, meno-
pausal status and NHS cohort were covariates included 
in multivariable models. We acknowledge that TILs in 
breast cancer are typically characterized using a stand-
ard approach based on the International TILs Working 
Group [51]; however, given the computer-based quan-
tification approach and diversity around stromal versus 
epithelial correlation across immune markers, we used 
total positive cells. In addition, the correlation between 
novel expression signatures and infiltrating immune cell 
number was modest, though significantly outperformed 
multiple established immune cell-specific signatures. We 
hypothesize that this reflects the fact that bulk transcrip-
tome signatures may not be an optimal way to represent 
discrete infiltrating immune cells numbers and supports 
further work on single cell-based technologies such 
as single cell RNA sequencing and highly multiplexed 
immunofluorescence profiling.

Future studies of the association of patient factors, spe-
cifically BMI and EDIP, and patient outcomes are war-
ranted. It would be interesting to investigate the effect of 
modification of BMI on patient outcomes with different 
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systemic treatments. Associations between BMI, physi-
cal activity, and diet with other immune cell subsets 
should also be investigated in order to understand the 
complex relationships between immune cell infiltration 
and modifiable patient factors. Further, in future studies, 
the association between immune infiltration signatures 
and patient prognosis will be assessed, but this requires 
careful analysis beyond the scope of the present study. In 
addition, to improve gene expression signatures of spe-
cific immune subsets we plan to utilize more complex 
modeling, such as machine learning; however, a strength 
of our linear model-based score approach is the abil-
ity to identify and quantify contribution of individual 
components.

Conclusions
By leveraging a large, unique cohort with classic immune 
cell marker IHC, gene expression, and patient expo-
sure data, we identify an association of CD4+ and 
CD163+ immune scores with BMI change since age 18, 
but not physical activity nor EDIP. With the growing 
interest in dissecting and targeting the immune micro-
environment in breast cancer, these data support further 
work into the impact of patient exposures and the breast 
tumor immune microenvironment.

Abbreviations
NHS: Nurses’ Health Study; NHSII: Nurses’ Health Study II; IHC: Immunohisto‑
chemistry; BMI: Body mass index; EDIP: Empirical dietary inflammatory pattern; 
TILs: Tumor-infiltrating lymphocytes; ER: Estrogen receptor; HR: Hormone 
receptor; PR: Progesterone receptor; HER2: Human epidermal growth factor 
receptor 2; MET: Metabolic equivalent task; HT: Hormone therapy; TMA: Tumor 
microarrays; FFPE: Formalin-fixed paraffin-embedded; TCGA​: The Cancer 
Genome Atlas; GSAct: GeparSixto “immune activation signature”; IRIS: Immune 
response in silico.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13058-​022-​01573-5.

Additional file 1: Supplementary Tables S1, S4–S10. Supplementary 
Table 1. Cohort Characteristics; Supplementary Table 4. CD8 Immune 
Signature Lasso Regression Model; Supplementary Table 5. CD4 
Immune Signature Lasso Regression Model; Supplementary Table 6. 
CD163 Immune Signature Lasso Regression Model; Supplementary 
Table 7. CD20 Immune Signature Lasso Regression Model; Supplemen‑
tary Table 8. Multivariable-adjusted associations of lifestyle factors and 
immune cell signatures with categorical BMI one-cycle prior to diagnosis; 
Supplementary Table 9. Multivariable-adjusted associations of lifestyle 
factors and immune cell signatures with continuous BMI one-cycle prior 
to diagnosis; Supplementary Table 10. Multivariable-adjusted associa‑
tions of lifestyle factors and immune cell signatures with continuous BMI 
at age 18.

Additional file 2: Supplementary Table S2. Immune Gene Expression 
Scores. Gene expression scores for all samples used in analyses.

Additional file 3: Supplementary Table S3. Spearman’s correlation of 
individual signature score with immune marker immunohistochemistry 
(IHC).

Additional file 4: Supplementary Figures S1–S3. Supplementary Fig‑
ure 1. Immune profiling in Nurses’ Health Study. A–B. GeparSixto immune 
gene expression score by receptor subtype (A) and intrinsic subtype (B). C. 
CD8 immunohistochemistry (IHC) in epithelial versus stromal compart‑
ments, line indicates best fit. D. GeparSixto immune gene expression 
score versus CD8 IHC epithelial+stromal. E. Correlation of GeparSixto 
immune gene expression score with CD8A single gene expression. Sup‑
plementary Figure 2. A–B. Evaluation of only tumors defined as PAM50 
normal subtype, evaluating tumor versus normal for GeparSixto immune 
signature (A) and CD8A single gene expression (B). C–F. GeparSixto 
immune activation signature (C–D) and CD8A single gene expression 
(E–F) in tumor and normal blocks by receptor subtype (C, E) and PAM50 
intrinsic subtype (D, F). Supplementary Figure 3. Correlation matrices 
of each lasso reduction model versus all other models overall (A), among 
hormone receptor positive (HR+; B), HER2+ (C), and triplenegative breast 
cancer (TNBC; D).

Acknowledgements
We would like to thank the participants and staff of the NHS/NHSII cohorts 
for their valuable contributions as well as the following state cancer registries 
for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, 
MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The 
authors would like to acknowledge Catherine Carson, Celia Garr, Katherine 
Weber, and Kathy Hauck for clinical support. The authors assume full responsi‑
bility for analyses and interpretation of these data.

Author contributions
SA, AD, KAC, and DGS envisioned the project and designed the work. SA, AD, 
KAC, and DGS wrote the manuscript with input from YJH, KK, EJA, KHK, GMB, 
RW, SS, MG, BR, AHE, SEH, FKT, and RMT. All authors have read, revised, and 
approved the final manuscript. As corresponding author, DGS ensures that 
data and materials comply with transparency and reproducibility standards 
of the field and journal, ensures that original data/materials upon which the 
submission is based are preserved following best practices in the field so that 
they are retrievable for reanalysis, confirms that data/materials presentation 
accurately reflects the original, and minimizes obstacles to the sharing of 
data/materials described in the work. All authors read and approved the final 
manuscript.

Funding
This work was supported by National Institutes of Health (NIH) grant R01 
CA260352 (DGS, YJH, AHE, RMT), UM1 CA186107 (AHE, SHE, RMT), P01 
CA87969 (AHE, SHE, RMT), U01 CA176726 (AHE, SHE, RMT), National Institutes 
of Health Division of Loan Repayment (DGS), Ohio State Department of Medi‑
cal Oncology Pilot Grant (DGS, FKT), Spielman Fund for Cancer Research (DGS), 
Conquer Cancer Foundation (KAC).

Availability of data and materials
All data relevant to the study are included in the article or uploaded as sup‑
plementary information. All gene expression data are available on NCBI Geo, 
Accession # GSE115577.

Declarations

Ethics approval and consent to participate
The study protocol was approved by the institutional review boards of the 
Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, 
and those of participating registries as required. All participants provided 
written consent.

Consent for publication
The manuscript and code were approved by Channing Review.

Competing interests
The authors have no conflicts of interest to report.

https://doi.org/10.1186/s13058-022-01573-5
https://doi.org/10.1186/s13058-022-01573-5


Page 15 of 16Asad et al. Breast Cancer Research           (2022) 24:78 	

Author details
1 Division of Medical Oncology, Stefanie Spielman Comprehensive Breast 
Center, Ohio State University Comprehensive Cancer Center, Biomedical 
Research Tower, Room 984, Columbus, OH 43210, USA. 2 Division of Epidemi‑
ology, College of Public Health, Ohio State University, Columbus, OH 43210, 
USA. 3 Department of Pathology, Beth Israel Deaconess Medical Center, Boston, 
MA 02215, USA. 4 Channing Division of Network Medicine, Department 
of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, 
MA 02115, USA. 5 Department of Medical Oncology, Dana-Farber Cancer 
Institute, Boston, MA 02115, USA. 6 Department of Epidemiology, Harvard T.H. 
Chan School of Public Health, Boston, MA 02115, USA. 7 Ohio State University 
College of Medicine, Columbus, OH 43210, USA. 8 Department of Biostatis‑
tics and Epidemiology, University of Massachusetts School of Public Health 
and Health Sciences, Amherst, MA 01003, USA. 9 Department of Population 
Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA. 10 Depart‑
ment of Biomedical Informatics, Ohio State University, Columbus, OH 43210, 
USA. 11 Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA. 

Received: 26 April 2022   Accepted: 1 November 2022

References
	1.	 Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, Budczies 

J, Darb-Esfahani S, Kronenwett R, Hanusch C, et al. Tumor-associated 
lymphocytes as an independent predictor of response to neoadjuvant 
chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13.

	2.	 Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis 
P, Crown JP, Hitre E, et al. Prognostic and predictive value of tumor-
infiltrating lymphocytes in a phase III randomized adjuvant breast cancer 
trial in node-positive breast cancer comparing the addition of docetaxel 
to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin 
Oncol. 2013;31(7):860–7.

	3.	 Mao Y, Qu Q, Zhang Y, Liu J, Chen X, Shen K. The value of tumor infiltrating 
lymphocytes (TILs) for predicting response to neoadjuvant chemother‑
apy in breast cancer: a systematic review and meta-analysis. PLoS ONE. 
2014;9(12): e115103.

	4.	 Salgado R, Denkert C, Campbell C, Savas P, Nucifero P, Aura C, de Azam‑
buja E, Eidtmann H, Ellis CE, Baselga J, et al. Tumor-Infiltrating Lym‑
phocytes and Associations With Pathological Complete Response and 
Event-Free Survival in HER2-Positive Early-Stage Breast Cancer Treated 
With Lapatinib and Trastuzumab: A Secondary Analysis of the NeoALTTO 
Trial. JAMA Oncol. 2015;1(4):448–54.

	5.	 Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, Loi S. Clini‑
cal relevance of host immunity in breast cancer: from TILs to the clinic. 
Nat Rev Clin Oncol. 2016;13(4):228–41.

	6.	 Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, Earl HM, 
Poole CJ, Hiller L, Dunn JA, et al. Association between CD8+ T-cell 
infiltration and breast cancer survival in 12,439 patients. Ann Oncol. 
2014;25(8):1536–43.

	7.	 Shalapour S, Font-Burgada J, Di Caro G, Zhong Z, Sanchez-Lopez E, Dhar 
D, Willimsky G, Ammirante M, Strasner A, Hansel DE, et al. Immunosup‑
pressive plasma cells impede T-cell-dependent immunogenic chemo‑
therapy. Nature. 2015;521(7550):94–8.

	8.	 Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, 
and Cancer. Annu Rev Pathol. 2016;11:421–49.

	9.	 Heng YJ, Wang J, Ahearn TU, Brown SB, Zhang X, Ambrosone CB, de 
Andrade VP, Brufsky AM, Couch FJ, King TA, et al. Molecular mechanisms 
linking high body mass index to breast cancer etiology in post-meno‑
pausal breast tumor and tumor-adjacent tissues. Breast Cancer Res Treat. 
2019;173(3):667–77.

	10.	 McQuade JL, Daniel CR, Hess KR, Mak C, Wang DY, Rai RR, Park JJ, Haydu 
LE, Spencer C, Wongchenko M, et al. Association of body-mass index and 
outcomes in patients with metastatic melanoma treated with targeted 
therapy, immunotherapy, or chemotherapy: a retrospective, multicohort 
analysis. Lancet Oncol. 2018;19(3):310–22.

	11.	 Tabung FK, Steck SE, Liese AD, Zhang J, Ma Y, Johnson KC, Lane DS, Qi 
L, Snetselaar L, Vitolins M, Ockene JK, Hebert JR. Patterns of change 
over time and history of the inflammatory potential of diet and risk of 

breast cancer among postmenopausal women. Breast Cancer Res Treat. 
2016;159(1):139–49.

	12.	 Tabung FK. Steck, Susan E, Liese, Angela D, Zhang, Jiajia, Ma, Yunsheng, 
Caan, Bette, Chlebowski, Rowan T, Freudenheim, Jo L, Hou, Lifang, Mossa‑
var-Rahmani, Yasmin, Shivappa, Nitin, Vitolins, Mara Z, Wactawski-Wende, 
Jean, Ockene, Judith K, Hebert, James R: Association between dietary 
inflammatory potential and breast cancer incidence and death: results 
from the Women’s Health Initiative. Br J Cancer. 2016;114(11):1277–85.

	13.	 Tabung FK, Smith-Warner SA, Chavarro JE, Fung TT, Hu FB, Willett WC, Gio‑
vannucci EL. An Empirical Dietary Inflammatory Pattern Score Enhances 
Prediction of Circulating Inflammatory Biomarkers in Adults. J Nutr. 
2017;147(8):1567–77.

	14.	 Tabung FK, Smith-Warner SA, Chavarro JE, Wu K, Fuchs CS, Hu FB, Chan 
AT, Willett WC, Giovannucci EL. Development and Validation of an Empiri‑
cal Dietary Inflammatory Index. J Nutr. 2016;146(8):1560–70.

	15.	 Liu L, Nishihara R, Qian ZR, Tabung FK, Nevo D, Zhang X, Song M, Cao 
Y, Mima K, Masugi Y et al: Association Between Inflammatory Diet Pat‑
tern and Risk of Colorectal Carcinoma Subtypes Classified by Immune 
Responses to Tumor. Gastroenterology 2017, 153(6):1517–1530 e1514.

	16.	 Tamimi RM, Baer HJ, Marotti J, Galan M, Galaburda L, Fu Y, Deitz AC, 
Connolly JL, Schnitt SJ, Colditz GA, et al. Comparison of molecular 
phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast 
Cancer Res. 2008;10(4):R67.

	17.	 Kensler KH, Sankar VN, Wang J, Zhang X, Rubadue CA, Baker GM, Parker 
JS, Hoadley KA, Stancu AL, Pyle ME, et al. PAM50 Molecular Intrinsic 
Subtypes in the Nurses’ Health Study Cohorts. Cancer Epidemiol Biomark 
Prev. 2019;28(4):798–806.

	18.	 Troy LM, Hunter DJ, Manson JE, Colditz GA, Stampfer MJ, Willett WC. 
The validity of recalled weight among younger women. Int J Obes Relat 
Metab Disord. 1995;19(8):570–2.

	19.	 Keum N, Greenwood DC, Lee DH, Kim R, Aune D, Ju W, Hu FB, Giovan‑
nucci EL: Adult weight gain and adiposity-related cancers: a dose-
response meta-analysis of prospective observational studies. J Natl 
Cancer Inst 2015, 107(2).

	20.	 Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, 
Rosner B, Kriska A, Willett WC. Reproducibility and validity of a self-admin‑
istered physical activity questionnaire. Int J Epidemiol. 1994;23(5):991–9.

	21.	 McGee EE, Kim CH, Wang M, Spiegelman D, Stover DG, Heng YJ, Collins 
LC, Baker GM, Farvid MS, Schedin P, et al. Erythrocyte membrane fatty 
acids and breast cancer risk by tumor tissue expression of immuno-
inflammatory markers and fatty acid synthase: a nested case-control 
study. Breast Cancer Res. 2020;22(1):78.

	22.	 Wang J, Heng YJ, Eliassen AH, Tamimi RM, Hazra A, Carey VJ, Ambrosone 
CB, de Andrade VP, Brufsky A, Couch FJ, et al. Alcohol consumption and 
breast tumor gene expression. Breast Cancer Res. 2017;19(1):108.

	23.	 Xu W, Seok J, Mindrinos MN, Schweitzer AC, Jiang H, Wilhelmy J, Clark 
TA, Kapur K, Xing Y, Faham M, et al. Human transcriptome array for high-
throughput clinical studies. Proc Natl Acad Sci. 2011;108(9):3707–12.

	24.	 Atlas TCG. Comprehensive molecular portraits of human breast tumours. 
Nature. 2012;490(7418):61–70.

	25.	 Stover DG, Coloff JL, Barry WT, Brugge JS, Winer EP, Selfors LM. The Role of 
Proliferation in Determining Response to Neoadjuvant Chemotherapy in 
Breast Cancer: A Gene Expression-Based Meta-Analysis. Clin Cancer Res. 
2016;22(24):6039–50.

	26.	 Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, 
Pfitzner BM, Salat C, Loi S, Schmitt WD, et al. Tumor-infiltrating lympho‑
cytes and response to neoadjuvant chemotherapy with or without 
carboplatin in human epidermal growth factor receptor 2-positive and 
triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–91.

	27.	 Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Piet‑
enpol JA. Identification of human triple-negative breast cancer subtypes 
and preclinical models for selection of targeted therapies. J Clin Investig. 
2011;121(7):2750–67.

	28.	 Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, 
Delorenzi M, Piccart M, Sotiriou C. Biological processes associated with 
breast cancer clinical outcome depend on the molecular subtypes. Clin 
Cancer Res. 2008;14(16):5158–65.

	29.	 Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R, Ruckhaeberle E, Solbach 
C, Hanker L, Ahr A, Metzler D, et al. T-cell metagene predicts a favorable 
prognosis in estrogen receptor-negative and HER2-positive breast can‑
cers. Breast Cancer Res. 2009;11(2):R15.



Page 16 of 16Asad et al. Breast Cancer Research           (2022) 24:78 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	30.	 Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, Datto MB, 
Kelley M, Mathey-Prevot B, Potti A, et al. A pathway-based classification of 
human breast cancer. Proc Natl Acad Sci U S A. 2010;107(15):6994–9.

	31.	 Abbas AR, Baldwin D, Ma Y, Ouyang W, Gurney A, Martin F, Fong S, van 
Lookeren CM, Godowski P, Williams PM, et al. Immune response in silico 
(IRIS): immune-specific genes identified from a compendium of microar‑
ray expression data. Genes Immun. 2005;6(4):319–31.

	32.	 Godec J, Tan Y, Liberzon A, Tamayo P, Bhattacharya S, Butte AJ, Mesirov JP, 
Haining WN. Compendium of Immune Signatures Identifies Conserved 
and Species-Specific Biology in Response to Inflammation. Immunity. 
2016;44(1):194–206.

	33.	 Filho OM, Stover DG, Asad S, Ansell PJ, Watson M, Loibl S, Geyer CE, Jr., 
Bae J, Collier K, Cherian M et al: Association of Immunophenotype With 
Pathologic Complete Response to Neoadjuvant Chemotherapy for Triple-
Negative Breast Cancer: A Secondary Analysis of the BrighTNess Phase 3 
Randomized Clinical Trial. JAMA oncology 2021.

	34.	 Gathirua-Mwangi WG, Zollinger TW, Murage MJ, Pradhan KR, Champion 
VL. Adult BMI change and risk of Breast Cancer: National Health and 
Nutrition Examination Survey (NHANES) 2005–2010. Breast Cancer. 
2015;22(6):648–56.

	35.	 Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT, Mirsoian A, Minnar 
CM, Stoffel KM, Sturgill IR, et al. Paradoxical effects of obesity on T cell 
function during tumor progression and PD-1 checkpoint blockade. Nat 
Med. 2019;25(1):141–51.

	36.	 Floris G, Richard F, Hamy AS, Jongen L, Wildiers H, Ardui J, Punie K, Smeets 
A, Berteloot P, Vergote I, et al. Body Mass Index and Tumor-Infiltrating 
Lymphocytes in Triple-Negative Breast Cancer. J Natl Cancer Inst. 
2021;113(2):146–53.

	37.	 Takada K, Kashiwagi S, Asano Y, Goto W, Ishihara S, Morisaki T, Shibutani 
M, Tanaka H, Hirakawa K, Ohira M. Clinical verification of body mass index 
and tumor immune response in patients with breast cancer receiving 
preoperative chemotherapy. BMC Cancer. 2021;21(1):1129.

	38.	 Péguillet I, Milder M, Louis D, Vincent-Salomon A, Dorval T, Piperno-
Neumann S, Scholl SM, Lantz O. High numbers of differentiated effector 
CD4 T cells are found in patients with cancer and correlate with clinical 
response after neoadjuvant therapy of breast cancer. Cancer Res. 
2014;74(8):2204–16.

	39.	 Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4(+) T cells in 
cancer immunotherapy-new insights into old paradigms. Cancer Gene 
Ther. 2021;28(1–2):5–17.

	40.	 Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad 
S, Johnson SF, Carrasco RD, Lazo S, Bronson RT, et al. Class IIa HDAC 
inhibition reduces breast tumours and metastases through anti-tumour 
macrophages. Nature. 2017;543(7645):428–32.

	41.	 Waks AG, Stover DG, Guerriero JL, Dillon D, Barry WT, Gjini E, Hartl C, Lo 
W, Savoie J, Brock J, et al. The Immune Microenvironment in Hormone 
Receptor-Positive Breast Cancer Before and After Preoperative Chemo‑
therapy. Clin Cancer Res. 2019;25(15):4644–55.

	42.	 Li CM, Shapiro H, Tsiobikas C, Selfors LM, Chen H, Rosenbluth J, Moore K, 
Gupta KP, Gray GK, Oren Y, et al. Aging-Associated Alterations in Mam‑
mary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing. Cell 
Rep. 2020;33(13): 108566.

	43.	 Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Sling‑
erland JM. Obesity and adverse breast cancer risk and outcome: 
Mechanistic insights and strategies for intervention. CA Cancer J Clin. 
2017;67(5):378–97.

	44.	 Jones SB, Thomas GA, Hesselsweet SD, Alvarez-Reeves M, Yu H, Irwin 
ML. Effect of exercise on markers of inflammation in breast cancer 
survivors: the Yale exercise and survivorship study. Cancer Prev Res (Phila). 
2013;6(2):109–18.

	45.	 Bianco TM, Abdalla DR, Desiderio CS, Thys S, Simoens C, Bogers JP, 
Murta EFC, Michelin MA. The influence of physical activity in the anti-
tumor immune response in experimental breast tumor. Immunol Lett. 
2017;190:148–58.

	46.	 Hagar A, Wang Z, Koyama S, Serrano JA, Melo L, Vargas S, Carpenter R, 
Foley J. Endurance training slows breast tumor growth in mice by sup‑
pressing Treg cells recruitment to tumors. BMC Cancer. 2019;19(1):536.

	47.	 Kim JJ, Shin YA, Suk MH. Effect of a 12-week walking exercise program 
on body composition and immune cell count in patients with breast 
cancer who are undergoing chemotherapy. J Exerc Nutrition Biochem. 
2015;19(3):255–62.

	48.	 Mijwel S, Jervaeus A, Bolam KA, Norrbom J, Bergh J, Rundqvist H, Weng‑
strom Y. High-intensity exercise during chemotherapy induces beneficial 
effects 12 months into breast cancer survivorship. J Cancer Surviv. 
2019;13(2):244–56.

	49.	 Mugele H, Freitag N, Wilhelmi J, Yang Y, Cheng S, Bloch W, Schumann 
M. High-intensity interval training in the therapy and aftercare of 
cancer patients: a systematic review with meta-analysis. J Cancer Surviv. 
2019;13(2):205–23.

	50.	 Quigley DA, Tahiri A, Luders T, Riis MH, Balmain A, Borresen-Dale AL, 
Bukholm I, Kristensen V. Age, estrogen, and immune response in breast 
adenocarcinoma and adjacent normal tissue. Oncoimmunology. 
2017;6(11): e1356142.

	51.	 Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, 
Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, et al. The 
evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: rec‑
ommendations by an International TILs Working Group 2014. Ann Oncol. 
2015;26(2):259–71.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Association of body mass index and inflammatory dietary pattern with breast cancer pathologic and genomic immunophenotype in the nurses’ health study
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Study population
	Empirical dietary inflammatory pattern (EDIP) score
	Body mass index and other covariates
	Tissue microarray and immunohistochemistry
	Gene expression microarray, RNA sequencing, and quality control analysis
	Published immune gene expression signature scores
	CD4+, CD8+, CD20+, and CD163+ immune gene expression score generation
	Statistical analysis

	Results
	Cohort characteristics
	Characterization of established immune expression signatures in the NHS cohort
	Immune expression signatures in breast cancer and adjacent normal breast tissue
	Derivation of IHC-based CD4+, CD8+, CD20+, and CD163+ immune expression scores
	Associations of modifiable lifestyle factors with immune cell scores

	Discussion
	Conclusions
	Acknowledgements
	References


