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Cellular mechanisms underlying 
response and resistance to CDK4/6 inhibitors 
in the treatment of hormone receptor‑positive 
breast cancer
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Abstract 

Pharmacological inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are now an established standard of care 
for patients with advanced hormone receptor-positive breast cancer. The canonical mechanism underlying CDK4/6 
inhibitor activity is the suppression of phosphorylation of the retinoblastoma tumor suppressor protein, which serves 
to prevent cancer cell proliferation. Recent data suggest that these agents induce other diverse effects within both 
tumor and stromal compartments, which serve to explain aspects of their clinical activity. Here, we review these phe-
nomena and discuss how they might be leveraged in the development of novel CDK4/6 inhibitor-containing combi-
nation treatments. We also briefly review the various known mechanisms of acquired resistance in the clinical setting.
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Background
Cell cycle dysregulation leading to sustained cellular 
proliferation is a hallmark of cancer [1]. In cancers aris-
ing from the luminal mammary epithelium, certain cell 
cycle regulators—the D-type cyclins and cyclin-depend-
ent kinases 4 and 6 (CDK4/6)—are of particular impor-
tance [2–5]. Targeted and specific inhibitors of CDK4/6 
have been developed, and these agents are most effec-
tive against cells from the luminal and HER2-amplified 
subtypes [5, 6]. In recent years, these inhibitors have 
revolutionized the treatment landscape for advanced 
hormone receptor (HR)-positive, HER2-negative breast 
cancer. While the traditional mainstay of treatment for 
this disease has been endocrine therapy (ET), acquired 
resistance to ET is a near inevitability, and the addition 

of CDK4/6 inhibitors markedly improves patient out-
comes. Preclinically, it has been shown that CDK4/6 
inhibitors act synergistically with ET and can overcome 
ET resistance [5]. These findings formed the basis of 
many preclinical and clinical studies of CDK4/6 inhibi-
tors as treatment for ER-positive breast cancer and have 
ultimately led to their approval for clinical use [7]. Cur-
rently, three CDK4/6 inhibitors are approved and avail-
able to treat breast cancer: palbociclib, ribociclib, and 
abemaciclib. Despite widespread usage of these agents 
in the clinic, we are only just beginning to understand 
their complex effects within breast cancers, as preclini-
cal studies show that these agents induce numerous phe-
notypes beyond cell cycle arrest [7]. Deeper insight into 
the mechanisms by which CDK4/6 inhibition (CDK4/6i) 
modifies tumor biology will be crucial if the full clinical 
potential of CDK4/6 inhibitors is to be realized.
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Cyclin D‑CDK4/6‑retinoblastoma pathway 
in HR‑positive breast cancer
Progression through the four phases of the cell cycle is 
tightly regulated by a network of cyclin proteins and their 
partner CDKs. CDK4/6 and their partner D-type cyclins 
(cyclins D1, D2, and D3) specifically regulate transition 
from the G1 phase to the S phase. The G1/S transi-
tion is driven by E2F transcription factors that promote 
expression of genes required to support DNA replication 
in S phase. Importantly, E2F transcriptional activity is 
repressed by the retinoblastoma (RB) tumor suppressor 
protein, which (1) directly binds to and blocks the E2F 

transactivation domain and (2) recruits epigenetic modi-
fiers that install repressive chromatin marks at E2F target 
gene promoters [8–12].

The RB protein is unphosphorylated in early G1. Expo-
sure to mitogenic growth factors at this point in the cell 
cycle results in a rapid rise in the level of D-type cyclins, 
which then bind to CDKs 4 and/or 6 (Fig. 1). The cyclin 
D-CDK4/6 complex then binds a third protein (either 
p21 or p27), and the resultant holoenzyme phosphoryl-
ates RB [13–15]. Under the classical model, CDK4/6 
phosphorylates RB, inducing partial de-repression of E2F 
transcription factors and expression of cyclin E genes [16, 
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Fig. 1  The role of cyclin D and CDK4/6 in cell cycle progression in breast cancer
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17]. Cyclin E then partners with CDK2 to hyperphospho-
rylate RB and establish commitment to S phase [8].

Cyclin D1 and CDK4 play particularly important roles 
in mammary gland biology and breast cancer. For exam-
ple, cyclin D1 is required for mammary epithelial pro-
liferation in pregnancy [18, 19], and knockout of either 
cyclin D1 or CDK4 prevents the development of mam-
mary carcinomas from luminal epithelial cells driven by 
particular oncogenes, such as Neu or Ras, in mice [2, 3]. 
Cyclin D1 is also required for the maintained growth of 
these carcinomas [4]. Furthermore, numerous molecu-
lar features suggest that the cyclin D-CDK4/6 pathway 
can be hyperactivated in human HR-positive breast 
cancers: (1) At the genomic level, approximately 20 per-
cent of tumors demonstrate CCND1 gene amplification, 
and a smaller fraction exhibit either CDK4 amplifica-
tion (2%) or loss of CDKN2A (2%), which encodes for 
the endogenous inhibitor of CDK4/6 p16INK4A [20–23]; 
(2) CCND1 is also a direct transcriptional target gene of 
the estrogen receptor (ER), a principal driver of prolif-
eration in HR-positive tumors [24]; and (3) activation of 
certain growth factor signaling pathways (most notably 
the PI3K-AKT-mTOR pathway) is common—whether 
by mutation, amplification, or increases in kinase signal-
ing—and can either increase cyclin D levels or enhance 
its activity through post-translational mechanisms [25–
27]. Importantly, HR-positive breast cancers also usually 
retain expression and function of RB, unlike triple-neg-
ative breast cancers in which RB is commonly absent or 
dysfunctional [5, 20, 21, 28]. Collectively, these features 
render CDKs 4 and 6 as attractive therapeutic targets in 
HR-positive breast cancer.

It is important to note that although the classical view 
of G1-to-S phase progression is widely accepted, the pre-
cise roles of specific CDKs in this process can be more 
complex. For example, certain cell types can enter S 
phase even in the absence of CDKs 4 and 6, including 
the mammary epithelial cells, and this may be due to 
the phosphorylation of RB by atypical cyclin D-CDK2 
complexes [29, 30]. Indeed, the non-classical model of S 
phase entry is based upon the idea that the net phospho-
rylation of RB by CDK4/6 and/or CDK2 ultimately gov-
erns the G1/S transition, a concept which supports the 
hypothesis that CDK2 may facilitate cell cycle progres-
sion in the presence of CDK4/6 inhibitors [30, 31].

Mechanisms of action of CDK4/6 inhibition 
in breast cancer: recent insights
Cytostasis and the senescence‑like state
The CDK4/6 inhibitors that are currently approved for 
treating breast cancer target the ATP-binding domains 
of CDKs 4 and 6 and are highly selective against these 
kinases [32, 33]. As one might expect given their 

mechanism of action, CDK4/6 inhibitors induce cytosta-
sis (G1 cell cycle arrest) in RB-proficient luminal breast 
cancer cells in  vitro (Fig.  2A) [4, 5, 33–36]. Given that 
RB is a key mediator of the senescence program, it is 
also not surprising that pharmacologic CDK4/6 inhibi-
tion induces a phenotype resembling senescence in lumi-
nal breast cancer cells. Multiple preclinical studies have 
reported a CDK4/6 inhibitor-induced “senescence-like 
state,” characterized by cellular enlargement and flatten-
ing, and increased β-galactosidase activity [4, 32, 33, 37, 
38]. This senescent-like state is largely RB-dependent [39, 
40] but might also be linked to reduced phosphorylation 
of the FOXM1 transcription factor and DNA methyl-
transferase 1 (DNMT1), both direct CDK4/6 substrates 
[41, 42]. It is still unclear whether CDK4/6i triggers a 
senescence-associated secretory phenotype (SASP) in 
breast cancer, or what the makeup of the SASP might be, 
and further study is needed to elucidate this.

Other phenotypic responses have also been reported 
in tumor cells, and it has been speculated that the drug 
effect might differ depending on the inhibitor used. 
Hafner et  al. [43] reported that while palbociclib and 
ribociclib treatment induced G1 cell cycle arrest, abe-
maciclib arrested cells in both G1 and G2 phases, par-
ticularly at higher in  vitro concentrations. They and 
Torres-Guzman et al. also observed that higher concen-
trations (greater than 0.3  µM) of abemaciclib induced 
apoptosis in RB-proficient breast cancer cells [35, 43]. 
Some of these differences might be explained by differ-
ences in the secondary targets of abemaciclib, the best 
validated of which are PIM kinases [38]. Some reports 
also describe CDK9, CDK2, and GSK3B as abemaciclib-
specific targets, but unique targets of these kinases have 
not been conclusively shown to be hypo-phosphoryl-
ated when treating breast cancer cells at physiologically 
relevant concentrations [33, 38, 43–46]. On the other 
hand, abemaciclib and palbociclib showed similar activ-
ity (albeit with different potency) in a large panel of can-
cer cell lines [6], and all three CDK4/6 inhibitors exhibit 
greatest effect in the presence of functional RB [5, 6, 
47–49]. Further study is needed to determine the extent 
to which the unique kinase inhibitory spectra of these 
agents underlie any differences in their in vitro or in vivo 
activity.

Finally, it is important to note that the precise phar-
macologic mechanisms by which CDK4/6 inhibitors 
act have been the subject of recent scrutiny (Fig.  2B). 
Specifically, a report from Guiley et  al. suggested that 
CDK4/6-induced cell cycle arrest is primarily a result 
of indirect inhibition of CDK2. Rather than binding to 
and inhibiting active CDK4/6-cyclin D-p21/27 trim-
ers, CDK4/6 inhibitors were predominantly bound to 
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inactive monomeric CDK4 or 6. As such, the inhibi-
tors did not directly block endogenous CDK4 activ-
ity but rather prevented the formation of stable cyclin 
D-CDK4/6-p21/p27 complexes, leaving p21 to inhibit 
CDK2 activity and thus induce cell cycle arrest [50]. 
Pack et  al. recently reported that CDK4/6 inhibitor 
treatment mediates two effects that work together to 
prevent cell cycle progression: (1) the direct inhibition 
of CDK4/6-mediated phosphorylation of RB, as the 
addition of drug leads to a decrease in RB phosphoryla-
tion within minutes, and (2) destabilization of CDK4-
cyclin D-p21 trimers, allowing non-catalytic inhibition 
of CDK2 by p21 [51]. The latter effect was reportedly 
specific to CDK4 and p21 and not CDK6 and p27. Clar-
ification of the exact mechanisms of action of CDK4/6 
inhibitors will be critical, and further work is needed to 
elucidate the precise molecular mechanisms by which 
these drugs induce cell cycle arrest.

Epigenetic remodeling
In primary fibroblasts, replicative and oncogene-induced 
senescence is characterized by changes in chromatin 
organization, including both the formation of senes-
cence-associated heterochromatin foci (SAHF) as well 
as regions of enhancer activation, leading to alterations 
in gene transcription [52–55]. We recently reported that 
CDK4/6 inhibitors can induce similar changes in luminal 
breast cancer cells, both in  vitro and in  vivo (including 
in clinical specimens). Specifically, CDK4/6i reprograms 
the active enhancer landscape in an RB-dependent man-
ner [56]. While chromatin at cell cycle gene promoters 
showed repressive changes upon CDK4/6i, several inter-
genic and intronic regions showed increased accessibility 
and gains in H3K27ac. These newly activated enhanc-
ers regulate processes including luminal differentiation, 
resistance to apoptosis, and tumor cell immunogenicity. 
Mechanistically, these CDK4/6i-activated enhancers are 
regulated by members of the activator protein-1 (AP-1) 
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transcription factor family, as CDK4/6i increases their 
expression and phosphorylation [56, 57]. Consistent with 
this, recent studies have demonstrated that AP-1 drives 
chromatin accessibility and enhancer activation in benign 
senescent cells [58, 59]. Importantly, the extent to which 
ER is involved in the CDK4/6i-induced enhancer activa-
tion is yet to be determined. Further investigation is also 
needed to elucidate how concomitant administration 
of CDK4/6 inhibitors and ET modifies these epigenetic 
phenomena.

Apoptotic evasion
While CDK4/6 inhibitors can induce a senescent-like 
state, it is not clear that these agents can directly kill 
luminal breast cancer cells. In fact, several preclinical and 
clinical studies suggest that CDK4/6i suppresses apopto-
sis, which is consistent with the notion that senescence is 
an anti-apoptotic state [60, 61]. We have recently demon-
strated that in breast cancer, this “apoptosis-resistance” 
is underpinned in part by activation of a super-enhancer 
spanning the BCL2L1 locus, which increases intracellular 
levels of the anti-apoptotic Bcl-2 family protein Bcl-xL. 
Consistent with this, Bcl-xL inhibitors restore apoptotic 
sensitivity in CDK4/6i-pretreated cells [56]. Similarly, 
Bcl-2 inhibitors can induce apoptosis in CDK4/6i-
treated cells, and triplet combinations comprising ET, 
CDK4/6i, and venetoclax (a Bcl-2 inhibitor) are in clini-
cal development (NCT03900884) [62]. Notwithstand-
ing these insights, some studies report that CDK4/6i 
directly induces apoptosis in ER-positive breast cancer 
cells [35, 43]. Further work to reconcile these observa-
tions is needed to (1) better understand mechanisms 
of CDK4/6i-induced tumor regression and (2) design 
rational combinations comprising CDK4/6 inhibitors and 
BH3 mimetics.

Autophagy
Autophagy and senescence are closely related, often reg-
ulated by overlapping signaling pathways. In mammary 
epithelial cells, kinase-active cyclin D is essential for 
restraining autophagy [63]. Consistent with this obser-
vation, CDK4/6i reportedly elevates various autophagic 
markers in ER-positive breast cancer cell lines and xeno-
graft models. Interestingly, the addition of various inhibi-
tors of autophagy (e.g., hydroxychloroquine) does not kill 
CDK4/6 inhibitor-treated breast cancer cells, but rather 
further enhances the senescent phenotype [64].

Interaction with oncogenic kinase signaling circuits
Most studies searching for effective combination ther-
apies that enhance CDK4/6i efficacy in ER-positive 
breast cancer have focused on concomitant inhibi-
tion of growth factor signaling pathways. Combined 

inhibition of CDK4/6 and growth factor receptors, 
such as HER2 and FGFR, or the downstream pathway 
members, such as PI3K, PDK1, and mTOR, has demon-
strated synergy or at least heightened effects [36, 65–
69]. In some cases, the effect of combined inhibition 
of CDK4/6 and a growth factor pathway is enhanced 
cytostasis or senescence [36, 65, 69], and in others, 
the effect is apoptosis [30, 66–68]. The combination of 
ET, CDK4/6, and PI3K inhibition results in maximal 
growth inhibition in ER-positive breast cancer models 
[30].

Despite the range of effective combination regimens 
that has been explored preclinically, the molecular mech-
anisms underlying their additive or synergistic effects 
have not been clearly delineated. One common theme 
is a rebound increase in activity of upstream pathways 
(such as the PI3K pathway) in luminal breast cancer 
cells treated with CDK4/6i [30, 47, 66–68]. We have also 
reported that CDK4/6i increases the phosphorylation of 
HER family receptor tyrosine kinases and AKT in lumi-
nal HER2-positive cell lines [36]. This might in part be 
attributed to the fact that cyclin D-CDK4/6 can phos-
phorylate the canonical mTOR negative regulator TSC2 
[36, 70–72]. Inhibition of CDK4/6 reduces the phospho-
rylation of TSC2, leading to a partial reduction in mTOR 
activity and a rebound in upstream tyrosine kinase recep-
tor activity [73]. While such observations might sug-
gest heightened dependence on upstream growth factor 
signaling pathways in CDK4/6 inhibitor-treated cells, the 
downstream effects of this are not yet clear. One conse-
quence of increased growth factor signaling is sustained 
stimulation of mTORC1 activity, which if uninhibited, 
could drive S phase progression through numerous 
mechanisms [74]. Another possibility is an increase in 
cyclin D protein levels, resulting in the formation of atyp-
ical cyclin D/CDK2 complexes that can phosphorylate 
RB [30].

Given these observations, combination regimens com-
prising inhibitors of CDK4/6 and certain growth factor 
pathways has moved into the clinical arena, and for two 
combinatorial strategies (CDK4/6-PI3K and CDK4/6-
HER2), randomized phase 3 trials have already been initi-
ated. Although initial attempts to combine CDK4/6 and 
PI3K inhibitors led to prohibitive toxicity [75], certain 
combinations have shown promise in PIK3CA mutant 
breast cancer [76], ultimately leading to the initiation of 
an ongoing randomized phase 3 trial exploring the ben-
efit of adding inavolisib to the palbociclib/fulvestrant 
doublet (NCT04191499). In the case of HER2, numer-
ous randomized trials are exploring the benefits of tri-
ple blockade of CDK4/6, HER2, and ER in HR-positive, 
HER2-positive tumors. The first of these to be reported 
has shown improved progression-free survival when 
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comparing this approach to a chemotherapy-based regi-
men in pretreated tumors [36, 77].

Immunogenicity
Numerous preclinical studies have reported that 
CDK4/6i can boost anti-tumor immune responses in 
models of breast and other cancers. Several distinct 
mechanisms underlie this phenomenon, which has been 
observed with all approved CDK4/6 inhibitors.

In tumor cells, CDK4/6i enhances antigen presentation 
on major histocompatibility complex (MHC) class I mol-
ecules in an RB-dependent manner [37, 78]. Inhibition 
of CDK4/6 reduces the expression of DNMT1 (encoding 
DNA methyltransferase 1), an E2F target gene, resulting 
in hypomethylation and thus transcription of endoge-
nous retroviral (ERV) elements [37, 79, 80]. The resultant 
intracellular double-stranded RNA triggers a “viral mim-
icry” response, characterized by interferon production 
and expression of interferon-stimulated genes (ISG) [37, 
78]. Furthermore, we recently proposed that CDK4/6i-
induced chromatin remodeling stimulates activity of 
enhancers overlying ERV sequences that might also drive 
ISG expression [56]. Recently, it has been reported that 
CDK4/6i can also induce metabolic stress in tumor cells, 
leading to expression of chemokines such as CCL5 and 
CXCL10 that can further enhance anti-tumor immune 
responses [57].

Treatment with CDK4/6 inhibitors also has a direct 
effect on T lymphocytes. Numerous CDK4/6 inhibitors 
potently suppress the proliferation of Foxp3 + regulatory 
T cells (TReg) in the tumor microenvironment (TME), 
which is likely an RB-dependent phenomenon [37, 62, 
81, 82]. Effector T cell function, on the other hand, can 
be enhanced by CDK4/6i, evidenced by enhanced effec-
tor cytokine production and reduced expression of T 
cell exhaustion markers [37, 78, 81]. This is attributable, 
at least in part, to inhibition of CDK6-mediated phos-
phorylation of nuclear factor of activated T cells (NFAT) 
transcription factors [78, 81]. Most recently, CDK4/6i 
has also been demonstrated to promote differentiation of 
CD8 T cells toward a memory cell fate, which might con-
tribute to enhanced anti-tumor efficacy [83, 84]. Data on 
whether this memory differentiation effect in CD8 T cells 
is RB-dependent are mixed.

All told, these phenomena result in an inflamed TME 
and an increase in effector T cell activity, which inde-
pendently contributes to the anti-tumor effects of these 
agents [37, 79, 81]. In an attempt to leverage this, pre-
clinical investigators have combined several CDK4/6 
inhibitors with a variety of immunotherapeutics, dem-
onstrating superior control of tumor growth [37, 57, 78, 
79, 85, 86], and the generation of T cell memory which 
engenders resistance to tumor re-challenge [37]. While 

these preclinical studies were not carried out in ER-pos-
itive breast cancer models, their results are relevant and 
encouraging.

Gene expression analyses of biopsies from the Neo-
PalAna and NeoMonarch neoadjuvant trials in luminal 
breast cancer suggest that this immune effect occurs in 
patients [37, 87], but the extent to which it can be lev-
eraged to improve patient outcomes is still unknown. 
Reasons for this include that: (1) ER-positive meta-
static breast cancer has thus far proven unresponsive to 
immune-based approaches [88, 89], and (2) early efforts 
to combine CDK4/6i and immuno-oncology therapy 
have been complicated by prohibitive toxicity [90, 91].

Acquired resistance: mechanisms and questions
Despite the clinical success of CDK4/6i in treating ER-
positive breast cancer, acquired resistance is a major clin-
ical problem. Multiple preclinical studies have described 
causes for acquired resistance, and these encompass 
diverse mechanisms, including alterations in components 
of the cell cycle machinery, increased activity through 
oncogenic growth factor signaling pathways, metabolic 
changes within cancer cells, and drug-induced changes 
in stromal function (recently reviewed in [92]). Many of 
these mechanisms remain unsupported by clinical evi-
dence, and for the sake of brevity, here we only discuss 
resistance mechanisms currently supported by both 
clinical data from breast cancer patients and preclinical 
evidence.

Loss of RB function
One anticipated mechanism of resistance to CDK4/6i is 
loss of functional RB. The first examples were reported 
by Condorelli et  al. [93], where acquired RB1 muta-
tions were detected in ER-positive breast cancer patients 
treated with palbociclib and fulvestrant or ribociclib and 
letrozole. In the PALOMA-3 study with a larger cohort of 
patients, whole-exome sequencing of paired circulating 
tumor (ct)DNA samples definitively confirmed CDK4/6 
specificity of acquired RB1 mutations, but the mutations 
were detected in only 5% of patients who progressed on 
the palbociclib and fulvestrant combination [94]. Loss 
of functional RB was subsequently also identified in 
other studies as both a feature of acquired and de novo 
resistance to CDK4/6i [95–97]. These findings are sup-
ported by a wealth of preclinical data showing that many 
CDK4/6i-mediated effects are RB-dependent.

Other cell cycle machinery proteins
Intriguingly, several preclinical studies suggest that 
increased levels of CDK6 can drive resistance to CDK4/6i 
[98, 99]. Whether this relates to incomplete inhibition of 
CDK6 by the drugs [99, 100] or other kinase-independent 
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effects of CDK6 is unclear. In ER-positive breast cancer 
patients, FAT1 mutations are associated with CDK4/6i 
resistance, likely by increasing CDK6 expression [95].

The cyclin E/CDK2 axis has also been implicated in 
CDK4/6i resistance. CCNE2 amplification has been 
observed in treatment-resistant tumor specimens, and 
overexpression of CCNE1 mRNA is associated with 
poorer response to palbociclib in the metastatic setting 
[97, 101]. It is possible that elevations in cyclin E result in 
CDK2-mediated phosphorylation of RB that overcomes 
CDK4/6i-mediated G1 arrest [30].

Growth factor signaling
The clinical data supporting growth factor signaling as 
a mechanism of CDK4/6i-resistance remains somewhat 
limited and is restricted to analysis of genomic altera-
tions within tumors. It has been difficult to interpret the 
relevance of these data to the CDK4/6 pathway specifi-
cally, as they are almost invariably derived from patients 
treated with combined CDK4/6i and ET, and many of 
the same alterations have been implicated in ET resist-
ance previously. One rigorous analysis comes from the 
PALOMA-3 trial, in which patients were randomized 
to receive fulvestrant with or without palbociclib. Here, 
ctDNA was assessed (through either whole-exome 
sequencing or targeted sequencing of hotspot muta-
tion sites) in patients prior to commencing therapy and 
again at the time of progressive disease. In this analysis, 
a small number of patients’ tumors acquired mutations 
in PIK3CA or FGFR2 at the time of progressive disease, 
but these were seen in both the control and experimental 
arms of the trial, making it difficult to discern the extent 
to which they might specifically confer CDK4/6i resist-
ance [94].

Other data sets exploring acquired resistance are 
derived from cohorts of tumor biopsies studied at the 
time of progression on CDK4/6i, sometimes with an 
accompanying analysis of pre-treatment tissue. Collec-
tively, these have shown enrichment of functional hyper-
activating alterations in FGFR genes, RAS genes, ERBB2, 
PTEN, and AKT1 in CDK4/6i resistant tumors [65, 96, 
97]. However, these analyses have been limited by (1) 
small numbers of patients and (2) the lack of comparison 
to an ET-only treated cohort, and in some cases, (3) con-
founding by the administration of several other lines of 
therapy after CDK4/6i prior to acquisition of tumor tis-
sue for analysis. Taken together, these findings suggest 
that genomic mutations in key growth factor receptors 
and signal transduction pathway members might medi-
ate resistance to CDK4/6i in the clinic. Exactly how they 
drive resistance remains an open question and may be 
related to the ability of these pathways to drive cyclin D, 
RB phosphorylation, mTOR, or CDK2 [30, 65, 68, 102].

Future directions and unanswered questions
The development of selective, potent CDK4/6 inhibitors 
has been a major success story for modern breast oncol-
ogy, and thousands of patients have now benefited from 
these agents. Moving forward, key unanswered ques-
tions must be addressed with the goals of (1) enhancing 
the efficacy of CDK4/6 inhibitors in HR-positive breast 
cancer through identification of novel therapeutic com-
binations; (2) interrogating the plasticity of the cell cycle 
machinery in breast cancer as a means to understanding 
acquired resistance; and (3) extending the use of these 
agents to other breast cancer subtypes. In many cases, 
this will require the reassessment of assumptions that 
have formed the basis of much of the research in this 
field.

First, at a most fundamental level, research is needed 
to understand the molecular mechanisms of action 
for CDK4/6 inhibitors. It has been assumed that these 
agents directly inhibit CDK4/6 enzymatic activity, but 
this has recently been called into question by work sug-
gesting that by binding to CDK4/6, they in fact operate 
as indirect CDK2 inhibitors [50]. This claim has, in turn, 
been refuted by other studies, and it is critical to resolve 
this issue, the answer to which forms the foundation for 
all research using these compounds [103]. Indeed, the 
CDK2 inhibition hypothesis is built upon the notion that 
CDK4/6 activity requires the formation of trimers which 
also contain cyclin D and p21/p27, a concept which is 
also controversial [103–106].

Second, more studies are needed to better understand 
the cellular senescence phenotype induced by CDK4/6 
inhibitors. To what extent do these agents induce a SASP, 
and if they do, what are its components and impacts? 
How does the loss of p53 function, another key senes-
cence mediator, alter the senescence phenotype? Do 
CDK4/6 inhibitors induce senescence in other prolifera-
tive cells within a breast tumor (e.g., fibroblasts, endothe-
lium) and what is the impact of this? Addressing these 
questions adequately will require multi-omic profiling 
of CDK4/6 inhibitor-treated cells, sophisticated genetic 
modeling in vitro and in vivo, and tumor single cell pro-
filing, and the lessons learned will likely inform novel 
therapeutic combinations and our thinking on drug 
resistance.

Third, and with specific respect to HR-positive dis-
ease, the mechanism(s) underlying synergy between 
CDK4/6 inhibitors and different endocrine therapies 
remains a poorly understood topic. In particular, the 
role of endocrine therapy in either enhancing or modi-
fying the therapy-induced senescence phenotype, versus 
converting it to apoptosis, requires clarification. Simi-
larly, the molecular determinants of this synergy must be 
studied in greater depth. Ultimately, this will shape the 
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development of novel endocrine therapy-CDK4/6 inhibi-
tor combinations and inform our understanding of resist-
ance in the clinic which presumably reflects a breakdown 
of this synergy.

Fourth, the perennial issue of acquired CDK4/6 inhibi-
tor resistance remains a clinical challenge, in large part 
because the mechanisms underlying it, and their relative 
frequencies, are not clear. Although preclinical studies 
have revealed diverse, non-genomic resistance mecha-
nisms including altered kinase signaling, stromal cell 
senescence, and altered chromatin modifier function, 
clinical studies have almost exclusively relied on DNA 
sequencing of resistant cancers [92, 94, 97]. This reflects 
a major gap between preclinical and clinical research on 
this subject, which might be addressed through a more 
comprehensive interrogation of resistant samples includ-
ing transcriptomic and epigenomic profiling at single cell 
resolution.

Finally, more work is needed to determine how we 
might exploit CDK4/6 inhibitor-mediated immunomod-
ulation in tumors. In breast cancer, this phenomenon 
has gained the most traction in triple-negative disease 
and the results of ongoing trials in this space are eagerly 
awaited [107].

Conclusion
Since CDK4/6 inhibitors were approved for use in the 
clinic in 2015, our understanding of their mechanisms 
of action has advanced significantly. We now realize 
that inhibiting CDK4/6 not only restrains cancer cell 
proliferation, but also elicits numerous diverse biologi-
cal effects that can be both beneficial or harmful. This 
understanding should now be leveraged to inform the 
design of combinatorial strategies that will enhance the 
efficacy of CDK4/6i and tailor treatments to individual 
tumors. Acquired resistance remains the most pressing 
issue: Despite the number of studies published, a com-
plete picture detailing common resistance mechanisms 
to dual CDK4/6i-ET therapy with clinical validation 
has yet to be constructed, and prospective, rigorously 
designed biospecimen collection protocols are needed to 
acquire pre- and post-treatment tumor samples for fur-
ther study. Analysis of such samples, together with fur-
ther trials, will also hopefully address the outstanding 
question of whether CDK4/6 inhibitors should be used 
after progression.
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