
Ionkina et al. Breast Cancer Res           (2021) 23:93  
https://doi.org/10.1186/s13058-021-01468-x

RESEARCH ARTICLE

Transcriptome analysis of heterogeneity 
in mouse model of metastatic breast cancer
Anastasia A. Ionkina1, Gabriela Balderrama‑Gutierrez2, Krystian J. Ibanez2, Steve Huy D. Phan1, 
Angelique N. Cortez2, Ali Mortazavi2,3* and Jennifer A. Prescher1,4,5*  

Abstract 

Background: Cancer metastasis is a complex process involving the spread of malignant cells from a primary tumor 
to distal organs. Understanding this cascade at a mechanistic level could provide critical new insights into the 
disease and potentially reveal new avenues for treatment. Transcriptome profiling of spontaneous cancer models is 
an attractive method to examine the dynamic changes accompanying tumor cell spread. However, such studies are 
complicated by the underlying heterogeneity of the cell types involved. The purpose of this study was to examine the 
transcriptomes of metastatic breast cancer cells using the well‑established MMTV‑PyMT mouse model.

Methods: Organ‑derived metastatic cell lines were harvested from 10 female MMTV‑PyMT mice. Cancer cells were 
isolated and sorted based on the expression of  CD44low/EpCAMhigh or  CD44high/EpCAMhigh surface markers. RNA from 
each cell line was extracted and sequenced using the NextSeq 500 Illumina platform. Tissue‑specific genes were com‑
pared across the different metastatic and primary tumor samples. Reads were mapped to the mouse genome using 
STAR, and gene expression was quantified using RSEM. Single‑cell RNA‑seq (scRNA‑seq) was performed on select 
samples using the ddSeq platform by BioRad and analyzed using Seurat v3.2.3. Monocle2 was used to infer pseudo‑
time progression.

Results: Comparison of RNA sequencing data across all cell populations produced distinct gene clusters. Differen‑
tial gene expression patterns related to CD44 expression, organ tropism, and immunomodulatory signatures were 
observed. scRNA‑seq identified expression profiles based on tissue‑dependent niches and clonal heterogeneity. 
These cohorts of data were narrowed down to identify subsets of genes with high expression and known meta‑
static propensity. Dot plot analyses further revealed clusters expressing cancer stem cell and cancer dormancy 
markers. Changes in relevant genes were investigated across pseudo‑time and tissue origin using Monocle2. These 
data revealed transcriptomes that may contribute to sub‑clonal evolution and treatment evasion during cancer 
progression.

Conclusions: We performed a comprehensive transcriptome analysis of tumor heterogeneity and organ tropism 
during breast cancer metastasis. These data add to our understanding of metastatic progression and highlight tar‑
gets for breast cancer treatment. These markers could also be used to image the impact of tumor heterogeneity on 
metastases.
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Background
Despite recent advances in treatment and diagnosis, met-
astatic breast cancer remains a leading cause of death for 
women worldwide [1]. Cancer metastasis is a complex 
process involving the spread of malignant cells from a 
primary tumor to distal organs [2, 3]. Premalignant cells 
undergo dynamic cellular changes (i.e., epithelial to mes-
enchymal transition, EMT) to escape the primary tumor 
[3, 4]. These same cells undergo the reverse process (i.e., 
mesenchymal to epithelial transition, MET) to colonize 
metastatic sites [5]. Expression and fluctuations of cell 
surface markers (e.g., CD44) have long been associated 
with metastatic progression in breast cancer [4]. How-
ever, exactly which cells within a given primary tumor 
ultimately metastasize—and their final destinations—
remains unclear [4–6].

Transcriptome profiling of the dynamic cellular 
changes during tumorigenesis has the potential to 
improve our understanding of metastatic disease. Such 
analyses can reveal biomarkers associated with malig-
nant progression. In one example, bulk RNA-sequencing 
(RNA-seq) revealed novel molecular pathways and differ-
entially expressed genes (DEGs) associated with distinct 
stages of breast cancer progression [7]. However, tradi-
tional profiling studies are complicated by the underlying 
heterogeneity of cancer progression. The contribution of 
distinct cell populations cannot be discerned using bulk 
RNA-seq alone [8]. Single-cell RNA-seq (scRNA-seq) 
technology captures the complexity of cellular heteroge-
neity by mapping transcripts to individual cells [9]. This 
increase in cellular resolution facilitates the identification 
of additional molecular pathways and cell specific bio-
markers [10, 11].

Examining breast cancer remains challenging owing to 
a lack of models that capture cellular heterogeneity [12]. 
The surrounding microenvironment, cancer stem cells 
(CSCs), and  tumor dormancy all contribute to disease 
progression beyond isolated changes to the malignant 
cells themselves. These features are difficult to replicate 
outside of living organisms. Suitable models must take 
into account the different tissue microenvironments that 
support cancer niches and resident cancer stem cells dur-
ing metastatic progression [13–16]. The MMTV-PyMT 
mouse model, in particular, is a well-established plat-
form to study human breast cancer [17, 18]. However, the 
variability in different metastatic niches and the contri-
bution of different cancer cell types to disease progres-
sion remain unclear. Subclones across breast tumors are 

frequently identified and monitored using the expres-
sion of the cell surface marker CD44 [4–6]. However, 
this marker is associated with both pro- and anti-tumo-
rigenic outcomes, meaning that CD44 expression alone 
cannot be used to predict metastatic propensity or other 
cell behaviors [19–22]. Transcriptome profiling of the 
MMTV-PyMT cancer model could thus provide more 
insight into the mechanisms underlying dynamic changes 
in tumor progression [23].

We aimed to understand the transcriptome changes of 
organ-derived cancer cell isolates from MMTV-PyMT 
mice. Although metastatic progression from primary 
tumors to lung tissue is well studied in the MMTV-PyMT 
model, metastases to other distal organs and the signifi-
cance of intratumor heterogeneity remain unclear [24]. 
To gain insight, we established an array of metastatic cell 
lines harvested from MMTV-PyMT mice. Differential 
expression analyses were performed and used to examine 
the effects of cell heterogeneity on metastases and organ 
tropism. Correlations were found between CD44 expres-
sion and cellular growth markers across all metastatic 
cells. Data from scRNA-seq analyses further revealed 
tissue-specific gene expression patterns that mirror clini-
cal data. Overall, the suite of clonal isolates provided a 
detailed depiction of cancer progression. The cell lines 
also establish a platform for future studies examining 
heterogeneity during metastatic disease and elucidating 
transcriptomic changes relevant to malignancy.

Methods
Mammalian cell culture
Unless otherwise stated, cell lines were cultured in 
DMEM (Corning) supplemented with 10% (vol/vol) fetal 
bovine serum (FBS, Life Technologies), penicillin (100 
U/mL) and streptomycin (100 µg/mL). Cells were main-
tained in a 5%  CO2 water-saturated incubator at 37 °C.

MMTV‑PyMT metastatic cell lines as models of breast 
cancer
Mouse experiments were approved by the UC Irvine 
Animal Care and Use Committee. Tumor bearing 
organs were harvested from 10–12-week females FVB/
NJ MMTV-PyMT mice (courtesy of the Kessenbrock 
laboratory, UCI). Samples were processed mechani-
cally and chemically to dissociate tissues into single cell 
suspensions as previously published [25]. Primary sin-
gle cell suspensions were enriched for cancer cells over 
the course of 1-month in  vitro by exploiting differences 
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in cellular nutrient requirements and growth. During 
this time course, primary single cell suspensions were 
enriched for cancer cells by culturing cell lines in 5% 
FBS. Cultures were selected for immortalized cancer cells 
in  vitro by passaging the flasks 3 times a week. Differ-
ences in cellular adhesion properties between fibroblasts 
and epithelial cancer cells were also exploited in  vitro 
through 3-min versus 7-min incubations with trypsin 
(Schor et al., 1979). The month-long process resulted in 
the enrichment of cancer cell lines prior to FACS sorting.

Primary cell lines were processed for FACS sorting 
(Institute for Immunology Flow Cytometry Core, UCI) 
as previously reported [26]. Cancer cells were isolated 
by EpCAM (BioLegend 118213) and CD44 (BioLegend 
103027) cell surface expression levels [27]; isolated cancer 
cells expressed either  CD44low/EpCAMhigh or  CD44high/
EpCAMhigh cell surface markers. Antibody labeling was 
performed using manufacturer protocols (BioLegend, 
USA). Previously sorted MMTV-PyMT MFP-eGFP cell 
lines (VO) (courtesy of the Kessenbrock laboratory and 
Lawson laboratory, UCI) were used as positive controls. 
Fibroblast cell lines (3T3 and MMTV-PyMT-derived 
fibroblasts, isolated during culturing process above) were 
used as negative controls during sorting.

Primary cell line metastatic propensity validation in vivo
MFP-derived cells (100,000 cells/injection) were injected 
bilaterally under the fourth gland of disease free, 4-week-
old FVB/NJ female mice. Control VO-eGFP luciferase-
expressing cells were injected as a control to monitor the 
estimated tumor growth. Palpable primary tumors were 
detected in all mice within 3–4 weeks post-injection. All 
animals developed primary tumors. Metastatic cell popu-
lations were identified by harvesting and processing the 
organs as described above via FACS analysis. Cancer cells 
were isolated using cell surface expression of CD44 and 
EpCAM. The experiment was performed in 4 different 
biological replicates.

PCR analysis
gDNA was isolated from all MMTV-PyMT cell lines and 
control samples using a  Zymo (California, USA) quick-
DNA miniprep kit (Cat #: 11-317AC). Ear clippings 
from PyMT-positive male and female mice (courtesy 
of the Kessenbrock laboratory, UCI) were used as posi-
tive controls. gDNA samples isolated from 4T1 (ATCC 
CRL-2539) cell lines were used as negative controls. PCR 
amplification conditions and PyMT antigen detection 
were completed using the standard Jackson Labs geno-
typing protocol [28].

Crystal violet proliferation assay
MMTV-PyMT cell lines were plated (5,000 
cells/100 μL) in 96-well plates and incubated for 24 h. 
Cells were fixed in ice-cold methanol for 30 min. Cells 
were stained with a solution of 0.05% crystal violet in 
PBS for 30  min. The samples were then washed three 
times with PBS to remove excess dye and allowed to 
dry for 16–24 h. Crystal violet was recovered from cells 
via treatment with methanol, and the absorbance of the 
solutions at 595 nm was measured using a Gen5 micro-
plate reader.

Immunoblotting
Cells were lysed in RIPA buffer containing protease 
(Thermo Fisher Scientific, Cat #88,265) and phosphatase 
inhibitors (Sigma, Cat #4,906,845,001). Protein con-
centrations were measured using a BCA protein assay 
(Thermo Scientific, Cat #23,223). Samples were prepared 
in 2X SDS-PAGE loading buffer (containing 4% βME) and 
heated at 95 °C for 10 min. Samples were then separated 
on 4–20% polyacrylamide gels (BioRad) and transferred 
to nitrocellulose membrane (0.2  µm, BioRad). Mem-
branes were incubated with blocking buffer (5% BSA in 
TBS containing 0.1% Tween-20®, TBST) for 1 h at room 
temperature. Blots were incubated in primary antibodies 
(Cell Signaling; 1:1000 dilution in blocking buffer) over-
night at 4 °C. Blots were washed three times with TBST 
and then incubated with IRDye-conjugated secondary 
antibodies (LI-COR Biosciences; 1:10,000 dilution in 
blocking buffer) for 1 h at room temperature. Membranes 
were washed three times with TBST and imaged using a 
LI-COR Odyssey CLx imaging system.

Bulk‑RNA‑seq
For each tissue-derived cell line, total RNA was extracted 
using the QIAGEN RNeasy kit with 2 replicates per 
sample. Sample replicates were distinct clonal isolates 
harvested from different MMTV-PyMT tumor-bearing 
mice. A modified SMART-seq2 protocol was used to 
generate cDNA and Nextera XT DNA Sample Prep Kit 
to build Illumina libraries. Samples were sequenced on a 
NextSeq500 with a min depth of 10 M reads. Raw reads 
were aligned to the mm10 genome with STAR [29], and 
quantification was performed using the GENCODE 
v21 annotation of the mouse genome using RSEM [30]. 
Count matrices for differential expression analysis were 
used as input for EdgeR [31]. An exact test was used for 
calling differential expressed genes with logFC > 2 and a p 
value < 0.05. EnrichR and metascape were used for gene 
ontology analysis.
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Single‑cell RNA‑seq methods
As with bulk RNA-seq analysis, scRNA-seq was per-
formed on select tissue-derived cell lines with two repli-
cates per sample. Replicates were distinct clonal isolates 
harvested from different MMTV-PyMT tumor-bearing 
mice. Cell lines that originated from lung with  CD44high/

low signatures were identified as the samples with most 
transcriptional changes and were selected for single-cell 
analysis, along with a lymph node high sample. Single-
cell suspensions from these tissues were used as input for 
the ddSeq platform and cDNA synthesis and library prep 
was done following the SureCell™ Whole Transcriptome 
Analysis 3’ Library Prep Kit. The bioinformatic pipeline 
included Ddseeker [31], a custom demultiplexing script 
to generate individual fastq, while kallisto [32] was used 
to quantify the transcripts in our sample using the mm10 
and annotation GENCODE v21. Single-cell analysis was 
done using Seurat v3.2.3 [32]. Cells with more than 250 
genes and less than 10% mitochondrial reads were used 
for the analysis. Monocle2 [32] was used to infer pseudo-
time progression. Min. read depth 34 M.

Data availability
Fastq files for bulk and single-cell datasets as well as their 
corresponding processed matrices are available in GEO 
(Accession Number: GSE165393).

Results
Generation of breast cancer cell lines to examine tumor 
heterogeneity and metastatic disease
To gain insight into breast cancer heterogeneity, we 
derived a suite of tissue-specific metastatic cell lines from 
MMTV-PyMT mouse tumors (Fig.  1A). Tumors were 
harvested from the mammary fat pad (MFP) and tissues 
harboring distal metastases, including lymph nodes (LN), 
bone marrow (BM), and lungs (L). Samples were pro-
cessed into single cell suspensions and further expanded. 
The organ-derived cultures were subjected to conditions 
that favored cancer cell outgrowth in  vitro. Cells were 
ultimately sorted based on CD44 and EpCAM expres-
sion [27] to remove fibroblasts from the samples. CD44 is 
routinely used as a marker of aggressive metastatic breast 
cancer [33]. FACS sorting provided two populations: 

Fig. 1 Clonal isolates from MMTV‑PyMT breast cancer model exhibit distinct gene expression patterns. A Overview of cell isolation procedures 
and gene expression analyses. Tumors were harvested from mice and single cell suspensions were prepared. Cells were sorted based on CD44 
and EpCAM expression. RNA was extracted for transcriptome profiling. Select samples were further analyzed via single‑cell RNA‑seq. B Heat map 
of DEGs from tissue‑specific metastatic cell lines and primary tumor sample. Expression levels for 5509 unique genes are shown. Values were 
normalized by row, and hierarchical clustering was used to sort the transcripts. Columns were clustered based on the tissue origin and CD44 
expression level for each sample. Eight distinct gene clusters were observed, with clusters of interest annotated A–E. C GO‑term enrichment 
analysis of clusters A–E from (B). GO terms were used to identify ontologies and biological processes relevant to cancer metastasis. Terms 
were also analyzed for signatures specific to the tissue of origin. The heat maps indicate the relative enrichment of the pathways across each 
cluster (columns). D Bulk RNA analysis revealed distinct gene expression patterns relevant to organ tropism. A panel of markers associated with 
tissue‑tropic breast cancer metastases was examined across all samples. Clusters were assigned based on the tissue origin and CD44 expression 
level for each sample
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 CD44low/EpCAMhigh and  CD44high/EpCAMhigh (Addi-
tional file  1: Fig.  1A-B). PCR was also used to confirm 
the presence of the PyMT viral antigen in the cell iso-
lates (Additional file  1: Fig.  1C). For the sorting and 
PCR assays, an established MMTV-PyMT cancer cell 
line (VO) and a common fibroblast cell line (3T3) were 
used as positive and negative controls, respectively. The 
tumorigenicity and metastatic propensity of the sorted 
MFP cell line was validated in vivo by injecting cultured 
cells into wild-type female FVB mice (Additional file  1: 
Fig.  1B). The presence of metastatic tumors was con-
firmed by harvesting LN, BM, and lung tissue from the 
re-injected mice. Single cell suspensions were formed 
and flow cytometry analysis confirmed the presence of 
 CD44low/EpCAMhigh and  CD44high/EpCAMhigh cells in 
the harvested tissues.

Cancer cell lines exhibit distinct gene expression changes 
relative to metastatic progression
We used the tissue-derived cell lines to investigate tran-
scriptional changes that occur during breast cancer 
metastasis. RNA was extracted from all cell samples, and 
transcripts for established breast cancer genes were iden-
tified (Additional file 1: Fig. 2) [34–36]. Hierarchical clus-
tering was performed on 5,509 DEGs. Eight distinct gene 
clusters (A-E; i-iii) were observed, as shown in Fig.  1B. 
The transcripts were organized based on CD44 expres-
sion  (CD44high/EpCAMhigh or  CD44low/EpCAMhigh) 
and tissue origin (primary tumor, lymph node, lung, or 
bone marrow). We focused on the five most prominent 
gene clusters (A-E) relevant to cancer progression for 
further analysis. Compared to the primary MFP tumor, 
the tissue-derived samples exhibited distinct upregulated 
and downregulated genes. Highly upregulated genes in 
MFP cells localized to cluster B. Lung-derived samples 
 (CD44low and  CD44high) shared some similar transcrip-
tomic changes (clusters D, E), but they also showed DEGs 
unique to their CD44 identity (clusters A, C). LN and BM 
samples trended similarly with MFP tumor cells, showing 
moderate expression of genes in cluster C.

To understand the biological relevance of the DEGs rel-
evant to each cluster, we performed pathway enrichment 
analysis. Heat maps of the top 100 significant pathways 
revealed a multitude of cellular and molecular processes 
associated with cancer (Additional file  1: Fig.  3, Addi-
tional file  2). Pathways specifically relevant to cancer 
metastasis are shown in Fig.  1C, along with the corre-
sponding enrichment score for each cluster. The upregu-
lated genes for  CD44low/EpCAMhigh lung-derived cells 
in cluster C correlated with embryonic morphogenesis 
and hypoxia response pathways. Both of these pathways 
are critical to cancer cell growth in hostile environ-
ments [37, 38]. Some of the specific transcripts observed 

included those from the well-established cancer sur-
vival genes ALDH1A1, SURVIVIN, XIAP, HSPG2, BCL9, 
and SOX4 [39, 40]. Interestingly, these same genes were 
downregulated in  CD44high/EpCAMhigh lung-derived 
cells (Additional file 2). Cluster A was enriched in regu-
latory pathways associated with cell adhesion, corre-
lating with the expression of DDR1, HOXA7, MMP2, 
THBS1, TNFRSF14, and TGFB2 [41, 42]. Cluster A was 
also enriched in pathways associated with cellular loco-
motion, corroborated by the expression of SERPINE1, 
PDGFA, ITGAV, and ITGB1BP1 [43, 44]. Both sets of 
upregulated genes were observed in  CD44high/EpCAM-
high lung-derived cells, but not MFP-derived or  CD44low/
EpCAMhigh lung-derived cells.  CD44high/EpCAMhigh 
lung-derived cells also exhibited upregulated carbohy-
drate metabolism genes, pathways enriched in clusters A 
and E. Cluster E also correlated with other upregulated 
metabolic genes (PFKFB3, SDC3, and GPC3) in both 
lung-derived cell lines. These same genes were downreg-
ulated in the MFP cells [45, 46].

Metastatic breast cancer cells are known to prefer-
entially colonize specific organs, a process known as 
organotropism [47]. The cross-talk between metastatic 
cells and the distal microenvironment leads to the forma-
tion of the pre-metastatic niche, which can influence can-
cer cell homing [48, 49]. We examined whether the clonal 
isolates recapitulated features of organotropic metasta-
ses to lymph nodes, lung, and bone (Fig.  1D). Gratify-
ingly, we identified gene expression patterns that differed 
among the metastatic cell types based on their tissue of 
origin. LN-derived cells lines expressed genes relevant to 
metastatic lymphatic niches (e.g., IRF5, YWHAH, PTGS2, 
Fig.  1D) [50–55]. MFP-associated genes (CDH1 and 
IGFBP3 [50–55]) were also observed in the LN-derived 
lines, albeit to a lesser extent. In the case of the lung-
derived cells, lung-tropic genes (e.g., SPARC, MMP2, 
LTBP1, ID1, and CD151) associated with high metastatic 
propensities [50–55] were upregulated. EREG, a marker 
expressed by cells in the mammary gland [50–55], was 
downregulated in the lung-derived cells. BM-derived 
cells expressed genes associated with BM metastases, 
including CEACAM1 and LCN2 [50–55]. Expression of 
CCL2, ADAMST1, and CXCR4 was also observed in BM-
derived cells albeit to a lesser extent. The expression of a 
select set of markers was further confirmed by Western 
blot analysis (Additional file 1: Fig. 4). Collectively, these 
transcriptome changes could contribute to sub-clonal 
evolution during cancer progression across the different 
metastatic niches.

We also compared the gene expression changes 
among the metastatic cells and to those from the pri-
mary tumor. Overall, we observed that samples derived 
from organs further away from the primary tumors had 
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greater numbers of DEGs, regardless of the CD44 des-
ignation (Additional files 3–8). Lung-derived samples 
exhibited the most DEGs (4,411 genes in total) com-
pared to cells derived from the lymph node (1753 genes 
in total) or bone marrow (2,985 genes in total, Additional 
file  1: Fig.  5). Volcano plots of DEGs from each tissue-
derived metastatic cell line  (CD44high/low/EpCAMhigh) 
compared to the primary tumor sample revealed genes 
involved in metastatic progression (Additional file  1: 
Fig.  6 and Additional files 3–8). Interestingly, some of 
the greatest differential expressions observed involved 
organotropism-associated genes (MMP2 and EREG) 
identified in Fig. 1D.

We aimed to further characterize the metastatic cell 
lines via GO-term enrichment analysis. To this end, we 
examined gene expression changes relevant to meta-
static progression, epithelial-to-mesenchymal tran-
sition (EMT), cellular proliferation, and cell cycle 
control (Fig.  2). In the case of metastatic progression, 
we observed that MFP samples expressed high levels of 
classical markers associated with pre-metastatic lesions 
(e.g., EREG, KRT14, CLDN7, KRT8, EMP1, and CLDN3, 
Fig. 2A) [48, 49]. These markers were decreased in cells 

from distal metastatic sites (e.g., LN- and lung-derived 
cells). LN- and lung-derived cells, by contrast, exhib-
ited upregulated levels of mesenchymal markers (e.g., 
CCN5, ZEB1, VIM, SPARC , and TGFB3) [13, 56–59]. 
Expression levels were highest in  CD44high/EpCAMhigh 
lung-derived cells. Lung-derived cell lines also showed 
increased expression of well-established EMT markers 
(SNAI1/2 and CD63) [56] and markers associated with 
poor prognosis in patients (FOXC1, AEBP1, SDC4, and 
IDH1, Fig. 2B) [52, 60]. Interestingly, SNAI1/2 and CD63 
expression were highest in  CD44low/EpCAMhigh lung-
derived cells, while the poor prognosis indicators listed 
were higher in  CD44high/EpCAMhigh lung-derived cells. 
The upregulation of mesenchymal markers and down-
regulation of epithelial markers in lung-derived cells are 
indicative of cellular de-differentiation [52, 60–62], sug-
gesting that the lung-derived cells recapitulate EMT.

EMT typically correlates with changes in cell prolifera-
tion and dysregulation of cell cycle control during can-
cer progression. These trends were apparent in the gene 
expression profiles for both  CD44high and  CD44low cells 
(Fig.  2C, D). As expected, the highly proliferative lung-
derived  CD44high cells expressed low levels of growth 

Fig. 2 Cancer cell lines exhibit distinct gene expression patterns relative to metastatic disease progression. Bulk RNA analysis revealed differential 
gene expression patterns relevant to A metastatic progression, B epithelial–mesenchymal transition (EMT), C cellular proliferation, and D cell cycle 
control among the tissue‑derived isolates and primary tumor. Columns were clustered based on CD44 expression and tissue origin as indicated. 
Select genes relevant to metastatic progression are displayed in the heat map
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arrest genes CDKN1A and CDKN2A (Fig.  2D) [37, 38]. 
Interestingly, we observed a stark difference in gene 
expression for lung-derived  CD44low cells. Although 
these cells expressed genes relevant to cellular prolifera-
tion and angiogenesis, they exhibited upregulated levels 
of the growth arrest genes (Fig.  2D). Growth arrest sig-
nals could dampen the expression of other genes that are 
master regulators of downstream cell function. One such 
gene, mTOR, was expressed in the lung-derived  CD44low 
cells. The levels of mTOR were comparable to expression 
in  CD44high cells. From these results we postulate that 
lung  CD44low cells, albeit capable of cell division, are not 
dividing as rapidly as their  CD44high counterpart.

Analyses of common biological pathways reveal 
intratumor heterogeneity
MMTV-PyMT has recently been used as a model to 
study the impacts of CD44 on metastases [55]. Ex  vivo 
analysis of tumors from a single micro-metastatic site 
revealed two subgroups of cells with differential CD44 
expression. CD44 expression correlated with altered 
gene expression relevant to EMT and MET and differ-
ential growth rates [52, 60]. Post-metastatic coloniza-
tion, CD44 expression levels did not remain constant and 
were frequently switched between the subgroups. The 
fluid transition from EMT to MET phenotypes demon-
strates how complex and context-dependent breast can-
cer can be. The morphological changes induced by CD44 
expression also affected the tumor-initiating capabilities 
of the tumor cells. However, the critical regenerative CSC 
populations were found in both CD44-expressing groups, 
warranting further characterization. Similar spectrums 

of behavior have been documented in other studies [23, 
55, 59].

To more closely examine the impacts of CD44 expres-
sion in our organ-derived cells, we analyzed DEGs based 
on CD44 levels (Additional files 9–11). We identified 
upregulated genes for  CD44low/EpCAMhigh (374 genes) 
and  CD44high/EpCAMhigh (276 genes) signatures across 
the suite of cells (Additional files 12–13). Some genes 
were shared across the tissue types. We also examined the 
GO terms and pathways associated with the DEGs from 
 CD44low/EpCAMhigh and  CD44high/EpCAMhigh samples. 
Clear differences were observed between the two CD44 
signatures across the tissue-derived samples (Fig.  3A 
and Additional files 12–13). Cells with  CD44high signa-
tures exhibited an increase in GO terms and associated 
genes related to cellular proliferation, tumor aggression, 
and EMT. Indeed,  CD44high cells from lung and lymph 
node samples were experimentally observed to exhibit 
increased proliferation rates compared to  CD44low cells 
(Additional file 1: Fig. 7). DEG analysis further revealed 
that  CD44low cells exhibited higher gene expression lev-
els relevant to tumor microenvironment remodeling and 
stem cell markers. Interestingly,  CD44low signatures also 
correlated with signaling pathways known to be impor-
tant for stem cell maintenance and Wnt-activated recep-
tor activity.  CD44low signatures were further negatively 
correlated with cell differentiation pathways, supporting 
the idea of retained cellular dedifferentiation. The throm-
bospondin complex pathway, key in the maintenance of 
cancer stem cell dormancy in breast cancer, was also pre-
sent in the  CD44low signature [16, 61, 63].

Fig. 3 CD44 expression correlates with different transcriptome patterns in organ‑derived cell lines. Differentially expressed genes for A  CD44high 
(red) and  CD44low (blue)  EpCAMhigh cells (across all samples) were used to generate GO terms.  CD44low cells exhibited high levels of expression for 
genes relevant to tumor microenvironment remodeling and tumor dormancy markers.  CD44high cells exhibited higher levels of gene expression 
associated with GO terms related to cellular proliferation, tumor aggression, and EMT. Differentially expressed genes and associated GO terms for 
 CD44high/low  EpCAMhigh cells from B lymph nodes and C lungs are also shown. For A–C, the − log(P value) scale applies to both the  CD44high (red) 
and  CD44low (blue) samples
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We further examined the heterogeneity of  CD44high 
versus  CD44low expression within single tumors. Vol-
cano plots revealed DEGs in  CD44high/EpCAMhigh ver-
sus  CD44low/EpCAMhigh from lymph node-derived, 
lung-derived, and bone marrow-derived metastatic 
clonal isolates (Additional file  1: Fig.  8A-C). The DEGs 
for these samples were also subjected to pathway enrich-
ment analysis (Fig. 3B, C, Additional files 14–17). DEGs 
upregulated in lymph node-derived  CD44high/EpCAMhigh 
cells correlated with cellular metabolism and pH regula-
tion (Fig. 3B) observed in aggressive cancer phenotypes. 
Similar pathways were not observed in the correspond-
ing  CD44low/EpCAMhigh lymph node-derived cells. 
The DEGs for these cells, by contrast, were enriched in 
pathways regulating stem cell differentiation, cellular 
migration, and cell–matrix adhesion (Fig.  3B). For the 
lung-derived samples, the  CD44high/EpCAMhigh cells 
exhibited upregulated DEGs relevant to cancer metabo-
lism, cellular proliferation, and angiogenesis (Fig.  3C). 
The DEGs for the corresponding  CD44low/  EpCAMhigh 
lung-derived cells were also enriched for pathways 

relevant to cancer progression and cellular metabolism, 
in addition to the thrombospondin complex and extracel-
lular communication (Fig. 3C). Similar analyses were per-
formed with bone marrow-derived cells to reveal unique 
GO terms and transcriptomic changes (Additional file 1: 
Fig. 8D-E). Upregulated DEGs for BM-derived  CD44low/ 
 EpCAMhigh cells were mainly associated with immune 
and cytokine activity.

Based on our DEG analyses, we examined additional 
known markers of breast cancer metabolism and extra-
cellular remodeling across the entire set of organ-derived 
cell lines [64, 65]. We observed increased levels of cellu-
lar metabolism markers (e.g., PLCB4, IGFBP7, IGFBP4, 
SHC2, PGRAMC1, MTHFD2) specific to lung-derived 
 CD44low cells (Fig.  4A). Lung-derived  CD44high cells 
exhibited higher levels of MPC1, MPC2, POGLUT1, and 
LARGE1 expression. Interestingly, we did not observe 
upregulation of other cancer-related drivers of energy 
consumption in either of the lung-derived cell lines com-
pared to MFP-derived samples [66]. Extracellular remod-
eling has been shown to improve cancer colonization 

Fig. 4 Intratumoral heterogeneity observed across organ‑derived cell lines. Bulk RNA analysis of the organ‑derived cell lines revealed distinct 
expression patterns relevant to A cellular metabolism, B extracellular remodeling of the microenvironment, C stem cell signatures, and D cellular 
dormancy among the cell lines. Clusters were assigned based on CD44 expression and the metastatic origin of each cell line as shown in the lower 
right
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and perpetuate dedifferentiated stem-like cellular states 
[61, 62]. We identified markers relevant to extracellular 
remodeling known to promote the survival of metastatic 
lesions (CD36, CD274, FOXC1) in the lung-derived met-
astatic cells (Fig. 4B). The expression levels were notice-
ably enhanced in these samples compared to the MFP 
tumor. Lung-derived  CD44low cells also exhibited upreg-
ulated levels of genes associated with mesenchymal cells 
and more dedifferentiated phenotypes in advanced can-
cers (e.g., FN1 and POFUT2) [13].

CD44low cell lines exhibit classic signatures of stem cells
As noted earlier, the lung-derived  CD44low cells exhib-
ited reduced levels of some markers of cellular prolifera-
tion and division (Fig. 2C, D). These cells also expressed 
genes known to be important for CSC survival and func-
tion (Fig.  4B) [67]. Changes in gene expression relevant 
to matrix remodeling have been known to sustain CSCs 
in a functional, but dormant, non-dividing state. To fur-
ther examine whether the lung-derived  CD44low cells 
harbored CSC properties, we evaluated a panel of known 
breast cancer stem cell markers across our suite of meta-
static isolates. Comparisons were made to the known 
cellular differentiation marker CD24 [68, 69]. As shown 
in Fig. 4C, lung-derived  CD44low/EpCAMhigh cells exhib-
ited an increase in the stem cell-associated markers and 
a decrease in CD24 expression. Furthermore, expression 
of ALDH1A1, a breast cancer-specific stem cell marker 
associated with resistance to some chemotherapies, was 
elevated [68, 69]. CSCs can endure some drug treatments 
and survive in metastatic environments due, in part, to 
their ability to modulate their metabolism and com-
pensate for oxidative stress [67, 68]. The lung-derived 
 CD44low cells exhibited gene expression profiles consist-
ent with these phenotypes, including the upregulation 
of retinoic acid (RA) pathway (RARA/B/G, RXRA/B, 
RARRES1/2) essential for cell survival. Opposite trends 
were observed for lung-derived  CD44high cells. These 
cells expressed higher levels of genes associated with cell 
growth and aggressive metastases.

We further examined the entire suite of cells lines, for 
markers of breast cancer dormancy (Fig. 4D). The lung-
derived  CD44low cells expressed higher levels of genes 
associated with the thrombospondin complex, a well-
known dormancy marker in breast cancer [16, 70]. Addi-
tional markers, including MAPK14, DDR1/2, and MYLK, 
were also observed among this cell population. Collec-
tively, these data suggest that lung-derived  CD44low cells 
express CSC-relevant genes that can maintain cells in a 
dormant or low proliferative state. CSC identification 
remains challenging, though, owing to difficulties in iso-
lation [19–21].

Single cell RNA‑seq reveals distinct clusters relevant 
to metastatic progression and intratumor heterogeneity
To further validate that our isolated cell lines capture the 
intratumoral heterogeneity observed during de novo dis-
ease progression, we performed scRNA-seq on a subset 
of metastatic samples. Based on the amount of differen-
tial gene expression observed in bulk RNA-seq, we chose 
lung-derived  CD44low (lungL), lung-derived  CD44high 
(lungH), and LN-derived  CD44high (lymphH) cells for 
the analyses. In all, 4124 cells were used in the cluster-
ing analyses: lungL (334 cells), lungH (1085 cells), lym-
phH (1694 cells). Clusters were visualized using UMAP 
(Fig.  5A). Clusters for each of the three cell types—
lungL (green), lungH (pink), and lymphH (blue)—were 
identified.

We further examined the heterogeneity of the samples 
using hierarchical clustering (Additional file  1: Fig.  9). 
The UMAP plot depicted 13 distinct cell clusters from 
the three respective cell samples (Fig. 5B). LymphH cells 
had the largest number of subclusters (7), with clusters 
1–5 being very similar in composition (Additional file 1: 
Fig. 9). Clusters 6 and 7 (lymphH6 and lymphH7) exhib-
ited higher levels of pro-survival/cell cycle regulation 
genes (BIRC5, TOP2A, CENPF) associated with meta-
bolically active cancer pathways. We observed the lung 
 CD44high (lungH) cells divided into three different clus-
ters. The majority were localized to cluster lungH1 and 
expressed lower levels of metastatic cancer cell markers 
(ALDH3A1, VIM, TCEAL9). Similar metastatic cancer 
markers were upregulated in cluster lungH2. This sub-
population further displayed upregulated markers asso-
ciated with the microenvironment and EMT (AEBP1, 
ITGB5, FN1).

EMT and proliferation markers show distinct tissue‑specific 
gene expression
We identified transcriptomic changes relevant to can-
cer metastasis that drove the designation of each cluster. 
Guided by the bulk RNA-seq results, we examined the 
expression of EMT and metastatic progression mark-
ers (Fig.  5C). We used dot plots to visualize the aver-
age expression of each gene and the percentage it was 
expressed in the sample set. As expected for progres-
sive disease, we observed genes associated with pri-
mary tumors and low metastatic lesions (CLDN3, KRT8, 
CDH1, CDH2) primarily in the lymphH populations. 
Expression of these genes diminished at more distal sites 
(lung-derived samples). Conversely we observed genes 
associated with aggressive metastatic disease and EMT 
(VIM, SPARC, ZEB1, SNAI2, CTSB) upregulated in 
lung populations compared to lymph nodes. Changes in 
the expression of breast cancer marker CD63 were also 
observed during disease progression. Interestingly we 
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observed similar gene expression changes for EMT in 
clusters lymphH6, lymphH7, and lungH3.

To further examine the changes in gene expression, we 
performed pseudo-time analysis of the single cells using 
Monocle2. The metastatic trajectory of the cells showed 
distinct clusters across the pseudo-time (Fig.  5E). We 
identified the composition of the cells by coloring the 
pseudo-time map with the tissues of origin (Fig.  5F). 
We observed that the majority of cells at the beginning 
of the pseudo-time (0) are lymphH-derived with a few 
lungL cells. Lung-derived cells became prominent fur-
ther on the graph around pseudo-time 8. Interestingly, 
we observed lungL cells present across pseudo-time that 
cluster heavily toward the end of the graph (pseudo-time 
12–16). We probed for changes in VIM and other EMT-
relevant genes across pseudo-time and tissue of origin. 
As we previously observed in Fig.  5A, VIM expression 
increases over lymph node populations (Fig.  5G). VIM 
expression is highest in lung high populations and drops 
down in lung low populations. CTSB, a marker of inva-
sion, showed relatively low expression across lymph 
node populations (Fig. 5H), but higher expression along 
pseudo-time in lungH and lungL populations.

Cellular proliferation markers were also analyzed via 
scRNA-seq (Fig.  5D). Increases in proliferative markers 
(AURKA, MKI67) were observed for clusters lymphH6 
and lymphH7, with the greatest expression in lungH3. 

We also observed many similarities between clusters 
lymphH7 and lungH3 with regard to EMT- and prolifera-
tion-associated gene expression. These correlations could 
potentially signify the metastatic progression of the dis-
ease from the lymph node (lymphH7) to lung (lungH3). 
LungL clusters, by contrast, expressed lower levels of 
genes involved in proliferation. These clusters expressed 
higher levels of genes involved in cell cycle control and 
growth inhibition (CDKN1A, CDKN1b, CCND3). We 
further probed for changes in a panel of proliferation-
associated genes across pseudo-time and tissue of origin 
using Monocle2 (Additional file 1: Fig. 10).

Cellular metabolism and extracellular remodeling markers 
show distinct tissue‑specific changes
We identified gene expression markers relevant to cellu-
lar metabolism and extracellular remodeling that drove 
the formation of each cluster. For example, lungH3 cells 
expressed upregulated levels of genes associated with 
cell cycle and intracellular metabolism (TOP2A, CENPF, 
HTRA1, STMN1) (Additional file  1: Fig.  9). These data 
suggested that cells within the lungH3 cluster exhibit 
the highest metastatic propensity of the lung subsets. 
We further observed an increase in insulin-like growth 
factors (IGBFP4, IGBFP7) across different lung-derived 
clusters, specifically in the lungL2 cluster (Fig. 6A). Inter-
estingly, the expression of PDHA1, a critical component 

Fig. 5 Single‑cell RNA‑seq revealed tissue‑specific clusters and heterogeneity during metastatic disease progression. A Clustering of 4124 cells 
that passed filtering. Tissue‑specific clustering was observed for lungH, lungL, and lymphH cells. B Thirteen clusters were recovered based on a 
combination of tissue origin and CD44 signature. C, D Gene expression profiles for select cancer‑relevant genes (columns) relevant to C EMT and 
D cell proliferation among the thirteen clusters (rows). The size of each dot represents the percentage a specific gene is expressed compared to all 
other transcripts. The color gradient of the dot indicates the average expression of the gene. E Monocle2 pseudo‑time analysis was performed, and 
the metastatic trajectory of distinct cell clusters is shown. The color gradient indicates pseudo‑time progression. F  Tissues of origin indicated on the 
pseudo‑time map (as in A). Changes in EMT‑relevant genes (from C) were probed across pseudo‑time and tissue of origin. G The expression of VIM, 
an EMT marker, increased over lymph node populations with maximum expression in lung high populations. This analysis was repeated for H CTSB, 
a marker of invasion, where the low expression across lymph node populations increased in expression across lung high and lung low populations
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for pyruvate to acetyl-CoA conversion, was primarily 
upregulated in lungL2, lymphH7, and  lymphH6  clus-
ters. We probed for changes in these metabolism-related 
genes across pseudo-time and tissue of origin using 
Monocle2. As we previously observed in Fig. 6A, IGBFP7 
expression was significantly upregulated in lungL single 
cell populations as pseudo-time progressed (Fig. 6B).

Guided by bulk RNA-seq results, we further exam-
ined extracellular remodeling markers using scRNA-seq 
(Fig.  6C and Additional file  1: Fig.  9). We observed the 
most dynamic expression of extracellular remodeling-
associated genes in the three lungL clusters. The lungL1 
cluster had distinct differences in gene expression rel-
evant to extracellular matrix interactions (MGP, BGN, 
CCN2, FN1, ITGB1). LungL2 cells expressed similar 
genes, along with upregulated genes associated with 
immunosuppressive proteins (SLPI) and embryonic 
glandular hormone (PRL2C3). However, cells in the 
lungL3 cluster lacked significant expression of extracel-
lular remodeling genes that were present in lungL1 and 
lungL2  cells. We investigated changes in extracellular 
remodeling-relevant genes (FN1, ITGB1) across pseudo-
time and tissue of origin using Monocle2 (Fig. 6D). FN1 
had relatively low expression across lymph node popula-
tions, but increased expression was observed in lungH 
and lungL cells populations starting at pseudo-time 10. 

ITGB1 was prominently expressed across most lungH, 
lungL, and some lymphH cell clusters (Fig. 6C). However, 
pseudo-time analysis of the single cells only attributed 
a significant upregulation of ITGB1 expression in lungL 
cells at the end of the pseudo-time (Fig. 6D).

CD44low lung‑derived cell lines harbor markers related 
to cancer stem cells and tumor dormancy
Although CD44 expression has traditionally been used as 
a marker of metastatic disease, recent publications have 
demonstrated that cellular expression of CD44 fluctu-
ates during cancer progression [55]. This has prompted 
other markers to be used in parallel with CD44 when 
examining the  metastatic potency and  cancer-initiation 
capability of cells. Toward this end, we used scRNA-seq 
to probe for markers of CSC and tumor initiation in the 
breast cancer model (Fig.  6E). We observed an increase 
in stem cell-associated genes (ALDH1A1, ECM1, ME1, 
ABCG2, and SNAI2) with a subsequent decrease in dif-
ferentiation marker, CD24A, in lungL1 and lungL2 clus-
ters. Interestingly, lungL2 had the greatest upregulation 
in HIF1A, a known marker of hypoxia and poor prog-
nosis in breast cancer. We previously observed that cells 
in the  lungL3 cluster separate from the other two lungL 
clusters (Fig.  5B). These cells have unique changes in 
gene expression relevant to embryonic and cancer stem 

Fig. 6 Single cell profiling revealed tissue‑specific changes. A Dot plot analysis of cancer metabolic markers relevant to cancer progression for 
select clusters guided by the bulk RNA seq data. B Heat maps of differentially expressed genes relevant to cancer metabolism were identified across 
the pseudo‑time using Monocle2. The color gradient indicates the average expression across the pseudo‑time, trending from dark blue to red. 
Similar dot plot analyses and pseudo‑time heat maps are shown for markers relevant to C–D tumor microenvironment remodeling, E–F stem cell 
signatures, and G–H cell dormancy
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cells (KDEL1, PRL2C3, EBP1, Additional file  1: Fig.  9). 
Similar to clusters lungL2 and lungL3, stem cell genes 
ALDH1A1, ABCG2, and SNAI2 were upregulated in 
lungL3 cells. However, other stem cell-associated genes 
(ME1, HIF1A) were downregulated. Additionally, lungL3 
cells displayed an increase in CD24A, a marker of cellular 
proliferation and decreased stemness. Similar to the bulk 
RNA sequencing data, we saw an increase in ALDH1A1 
expression and stem cell survival metabolomic markers 
from the RA family in lungL2 and lungL3 clusters that 
were not present in lungL1 cells. In contrast,  CD44high 
clusters lungH3, lungH2, lymphH6, and lymphH7 exhib-
ited an increase in genes regulating growth and invasion 
(ECM1, CD24, FUT8). While these  CD44high clusters 
showed a downregulation in stem cell markers ALDH1A1 
and ABCG2, they did show an increase in ALDH2, a stem 
cell marker less common in breast cancer.

We examined the changes in genes associated with cel-
lular differentiation and stem cell capabilities (CD24A, 
ALDH2) using Monocle2 (Fig.  6F). CD24A expression 
was upregulated in lymph node populations and then 
downregulated as pseudo-time moved into the lung pop-
ulations. Upregulation of stem cell marker ALDH2 was 
observed across a select amount of cells for all cell types 
across pseudo-time (Additional file 1: Fig. 10).

Cancer dormancy is a formidable obstacle in breast 
cancer research and treatment [71]. Previous work has 
shown that some dormant breast cancer cells have simi-
lar genomic profiles as CSCs [33, 72]. We examined 
whether our cell lines expressed markers of cancer dor-
mancy and cancer stem cell-associated markers. Simi-
larly to the bulk RNA-seq analyses, we saw an increase 
in genes regulating cell proliferation and increasing 
tumor dormancy in lungL2 cells  and, to a lesser extent, 
lungL1 cells (Fig.  6G). This pattern was not sustained 
in the lungL3 subcluster. Instead, lungL3 cells  showed 

a decrease in dormancy-associated genes FN1, CD47, 
and THBS1. Interestingly, lungL3, lungL2, and lungH3 
clusters  showed increased expression of breast cancer 
dormancy cell-associated maker SDC1 [73, 74]. Master 
regulator of morphogenesis, SOX9 [75], was upregulated 
in lungL3, lymphH7, and lymphH6 subclusters. We fur-
ther probed the changes in cancer dormancy-relevant 
genes CTSD, THBS1 across pseudo-time, and tissue 
of origin using Monocle2. CTSD expression fluctuated 
across lymph node populations (Fig. 6H). The expression 
of CTSD was upregulated through lungH populations 
and plateaued in the lungL populations across pseudo-
time. THBS1 exponentially upregulated expression at 
pseudo-time 10 in lung high and lung low populations 
(Additional file 1: Fig. 10).

Discussion
Breast cancer comprises cell subpopulations that are 
genetically and biologically different [76]. Although such 
intratumoral heterogeneity is critical to understanding 
the disease, traditional cancer cell line models have dif-
ficulties recapitulating the complexity [22, 23]. In this 
study, we established a novel suite of organ-derived met-
astatic cell lines and subsequently performed a compre-
hensive transcriptome analysis of cancer progression in 
relation to CD44 levels. Key pathways relevant to meta-
static disease were found to be upregulated in the vari-
ous cell types, and the main takeaways are diagrammed 
in Fig. 7.

CD44 expression has been extensively shown to 
impact breast cancer progression, controlling cellular 
biology and correlating with certain clinical outcomes 
[4–6, 17]. However, the exact roles of CD44 remain 
unclear in breast cancer as both high and low levels of 
the marker are correlated with tumor-promoting and 
tumor-suppressing outcomes [19–22]. In this study, we 
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used metastatic organ-derived cell lines to investigate 
the effects of CD44 expression on cancer progression 
across different metastatic niches. As previously shown 
in 4T1 cell lines [77], models of metastatic breast can-
cer are invaluable for the advancement of the field. The 
MMTV-PyMT mouse model of breast cancer is the most 
popular transgenic preclinical system to study mammary 
tumor progression and metastatic disease translatable 
to patients [78, 79]. Here, we successfully isolated pri-
mary cell lines from four different organ-derived tissues. 
The cell lines were isolated based on their expression of 
 CD44low/EpCAMhigh or  CD44high/EpCAMhigh to examine 
the role of CD44 in breast cancer across the various met-
astatic niches (Fig. 7). The cells were expanded to use as 
a reproducible resource for experiments in this study and 
beyond. It is possible, though, that the culturing condi-
tions altered some genomic pathways and/or skewed the 
levels of  CD44low or  CD44high cells in the samples.

The suite of MMTV-PyMT-derived cell lines was sub-
jected to comprehensive transcriptome analysis using 
bulk RNA-seq and scRNA-seq. Although there were 
shared GO terms across all cell lines belonging to either 
CD44 signature, we identified numerous changes in 
gene expression that were organ-specific and could pro-
mote metastatic homing [52]. Changes in gene expres-
sion related to EMT and the metastatic cascade were 
also identified. As expected, distal metastatic-derived 
tissues such as the lung and BM had more differentially 
expressed genes than lymph node-derived cell lines com-
pared to the primary tumor.

Using scRNA-seq on select organ-derived metastatic 
cells, we found that the cell lines exhibited a range of 
intratumoral heterogeneity. Although most MMTV-
PyMT publications have focused on metastasis from the 
primary tumor to the lungs, we identified additional dis-
tal metastatic cells in the BM. The BM-derived cell lines 
showed an increase in previously published markers such 
as RANKL, OPN (SPP1), and IL2 [4]. Further studies are 
necessary to better characterize these cells and increase 
the number of validated BM-derived DEGs (Additional 
file 1: Fig. 8C). Specifically, it would be prudent to exam-
ine differential gene expression within this model com-
pared to other well-established bone-marrow metastatic 
models of tumor latency and cancer dormancy [4]. Col-
lectively, these transcriptome changes could contribute 
to sub-clonal evolution during cancer progression across 
the different metastatic niches.

Although CD44 has traditionally been used to monitor 
cancer metastasis, recent studies from Gao and cowork-
ers showed that its expression fluctuates during meta-
static progression [55]. We observed similar changes in 
CD44 expression from initial isolates compared to cells 
used in subsequent transcriptome analysis. Furthermore, 

recent studies with MDA-MB-231 breast cancer models 
showed that  CD44low cells possessed stem cell like prop-
erties that  CD44high cells lacked [13, 59].  CD44low popula-
tions could regenerate both more  CD44low and  CD44high 
cell clusters, whereas  CD44high cells could only replicate 
themselves. We observed a similar increase in stem cell 
markers in  CD44low but not  CD44high cells. These results 
suggest that more research is needed to better under-
stand and characterize CD44 expression in breast cancer.

Although CD44 has been correlated to metastatic pro-
gression and CSCs, the fluctuating expression levels of 
this marker complicate its use as a sole classifier of cel-
lular phenotypes. There are thus many combinations of 
markers currently used to isolate CSCs, with no one set 
being universally accepted [13, 57–59]. We examined 
a handful of CSC markers commonly associated with 
breast cancer (ALDH1A1, ABCG2, PGP, FUT4). CSC-
associated markers were found in both the bulk RNA-seq 
and scRNA-seq data. The expression of the CSC-associ-
ated markers was highest in lung-derived  CD44low cells 
compared to  CD44high cells. Upregulation of other CSC-
associated markers, including the stem cell survival sign-
aling member WNT, was also observed in the CD44low 
cells, corroborating our hypothesis that these cells 
possess stem-like properties [17]. scRNA-seq further 
revealed three distinct clusters for lung-derived  CD44low 
cells on the UMAP. Unlike the lung-derived  CD44high 
groups, lungL1 and lungL2  cells retained properties of 
stem cells but dramatically increased their expression of 
mesenchymal-like signaling pathways involved in cancer 
cell maintenance and dormancy (TSP, TNC, BMP) [6, 14, 
16]. Interestingly, lungL3 was a much smaller, separate 
cluster that lacked the dormancy markers and instead 
expressed high levels of stem cell markers. The diversity 
of  CD44low clusters could be explained by heterogene-
ity within the different stages of metastatic progression 
and along the EMT spectrum. Another possibility is that 
lungL1 and lungL2 clusters comprise cancer-associated 
fibroblasts, while the lungL3 might be a distinct cluster 
of CSCs.

Breast cancer progression relies on CSCs, to initiate 
tumor cell growth during metastatic dissemination and 
colonization of new organs. Previous work from Wein-
berg has shown that tumor-initiating cells (TICs) origi-
nating in the luminal cell layer of the mammary gland 
rely on EMT-initiating transcription factors (TFs) for 
cellular dedifferentiation [56]. These factors activate sign-
aling pathways distinct from TICs originating from the 
basal mammary gland. Bulk RNA-seq data allowed us 
to further characterize the lung-derived cell lines based 
on expression of EMT-TFs known to induce TICs. For 
example, increased expression of the EMT-TF Snail was 
observed in lung  CD44low cells compared to  CD44high 
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cells. Although both CD44 signatures of lung-derived 
cells expressed the EMT-TF binding promoter and TIC 
master regulator ZEB1, lung-derived  CD44low cells also 
showed a greater increase in the basal cell-associated 
EMT-TF Slug as compared to  CD44high cells. Weinberg 
and others have shown that Slug and Snail both bind 
and regulate ZEB1 expression [56]; however, the expres-
sion of SLUG is associated with breast cancers that arise 
from cells containing normal mammary epithelial stem 
cells in the basal compartment. SLUG expression is also 
associated with highly dedifferentiated breast cancer cells 
found in the advanced and final stages of metastatic dis-
ease. Here, we harvested MMTV-PyMT mice well after 
the time period sampled by Weinberg. The most strik-
ing result from the lung-derived cells was that the stem 
cell-associated features of tumor-initiating cells were 
observed most in  CD44low opposed to  CD44high express-
ing cells that have previously been correlated to CSCs.

Further work examining the effects of the microenvi-
ronment as a key regulator of cellular plasticity adds to 
the theory that “dedifferentiated” non-CSCs can undergo 
processes that endow them with CSC-like properties [13, 
37]. These complex studies highlight the need for further 
investigation into the possible origins of CSCs in relation 
to the surrounding microenvironment. Modification of 
cellular metabolism along with remodeling of the tumor 
microenvironment can be achieved through the collec-
tive change of different groups of genes. The modulation 
of certain genes has been shown to subsequently facili-
tate  CSC phenotypes that lead to metastatic coloniza-
tion. Based on the gene expression changes dictating 
cellular metabolism and matrix remodeling, we hypoth-
esized that lung-derived  CD44low cells could harbor some 
CSC properties.

To better understand the origins of the CD44 signa-
tures, we examined the scRNA-seq results as they pro-
jected over pseudo-time using Monocole2. From the 
three different cell lines, we identified that lymph node-
derived  CD44high cells were projected to give rise to lung-
derived cells of both signatures. Based on the metastatic 
cascade of organ tropism, the proximal location of the 
lymph nodes to the primary tumor is well documented to 
be the initial site of metastatic lesions before advancing to 
the more distal lungs. Future studies would benefit from 
expanding the analysis to include lymph node-derived 
 CD44low cell lines to determine how this signature affects 
the projection of the tumor-initiating cell population.

Conclusions
Collectively, we established organ-derived cancer cell 
lines from different metastatic niches. Comprehensive 
transcriptomic analysis was performed and revealed the 

impacts of heterogeneity on cancer progression. Bulk 
sequencing analyses uncovered tissue-specific genes 
across the different metastatic and primary tumor sam-
ples. We further investigated intratumoral heterogene-
ity by performing single-cell RNA-seq. These data will 
improve our understanding of the metastatic cascade 
and tumor heterogeneity in breast cancer, and poten-
tially reveal new therapeutic targets.
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