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Abstract

genomic drivers of IBC.

Inflammatory breast cancer (IBC) is a rare, aggressive cancer found in all the molecular breast cancer subtypes.
Despite extensive previous efforts to screen for transcriptional differences between IBC and non-IBC patients, a robust
IBC-specific molecular signature has been elusive. We report a novel IBC-specific gene signature (59 genes; G59)

that achieves 100% accuracy in discovery and validation samples (45/45 correct classification) and remarkably only
misclassified one sample (60/61 correct classification) in an independent dataset. G59 is independent of ER/HER2
status, molecular subtypes and is specific to untreated IBC samples, with most of the genes being enriched for plasma
membrane cellular component proteins, interleukin (IL), and chemokine signaling pathways. Our finding suggests
the existence of an IBC-specific molecular signature, paving the way for the identification and validation of targetable
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Introduction

IBC is a rare form of breast cancer associated with poor
prognosis compared to other subtypes, and this is attrib-
uted to its therapy resistance and a high metastatic
potential [1-3]. Moreover, the majority of IBC patients
present with late-stage disease wherein the cancer has
spread beyond the primary site [4]. To better diagnose
and treat IBC patients, the IBC research community is
working on defining an IBC-specific molecular signature.
The largest study was published through the establish-
ment of the World IBC Consortium which identified 79
genes, molecular subtype-independent, IBC signature
[5]. Shortly after, another 132 genes, subtype-independ-
ent, IBC signature was reported [6]. However, both sig-
natures were seen in~16.4% and ~25% of breast cancer
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TCGA samples of primarily non-IBC patients, respec-
tively, signifying low specificity in discriminating IBC
from non-IBC samples [5, 7-9]. Nevertheless, thus far a
robust tumor cell-intrinsic signature that can define IBC
from non-IBC or can stratify IBC patients has remained
elusive [8, 9]. Indeed, a recent comparison of existing
IBC signatures found minimal or no overlap among the
proposed genes and none of the signatures could be vali-
dated in an independent dataset [9].

In this report, we reanalyzed publicly available gene
expression datasets using the nonparametric machine
learning random forest (RF) approach. RF is superior to
classic statistical approaches used previously on these
datasets because (1) It can handle many predictors at
once while assigning each a predictor importance score.
(2) It uses bootstrap-aggregated (bagged) decision trees
to minimize overfitting, allowing for a robust model that
can be validated in independent datasets. By restricting
our analysis to microdissected IBC tumor epithelium and
matching IBC samples with similar receptor-status to
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non-IBC samples, we have identified an IBC signature of
59 genes that only misclassified one patient out of a total
106 patients in pre-treatment datasets.

Methods

Patients’ samples

All analysis was carried out on MATLAB R2018b (Math-
Works). Three microarray datasets were downloaded
under accession number GSE45581 [6], GSE5847 [10],
and GSE111477 [11]. The Cancer Genome Atlas (TCGA)
breast cancer dataset was downloaded from cBioPor-
tal (TCGA Firehose Legacy https://www.cbioportal.org/
study/summary?id=brca_tcga). GSE45581 was used for
discovery and comprised 20 IBC, 20 non-IBC, and 5 nor-
mal microdissected patient epithelium samples. GSE5847
is primarily post-treatment samples dataset, comprised
of 13 IBC and 35 non-IBC microdissected patient sam-
ples. GSE111477 is a dataset of 33 IBC and 28 non-IBC
pre-treatment patient samples comprised primarily of
the epithelial tissue.

Genes signature identification, validation, PAM50
subtyping, and ROR score

IBC-specific signature identification and validation using
ensemble of decision trees based bagging is detailed in
Additional file 1: Supp. Methods and illustrated in Fig. 1a.
For accuracy of 5 previous IBC signatures [Fig. 2c(ii)],
PAM50 molecular subtyping (Luminal A, Luminal B,
HER2-enriched, Basal-like, and Normal-like) and Risk
of recurrence (ROR) computation, see Additional file 1:
Supp. Methods.

Gene ontology and pathway analysis

The IBC signature genes (Additional file 1: Table S1) were
subjected to Gene Ontology and Pathway analysis (see
Additional file 1: Supp. Methods).

Results

Random forest identifies an IBC-specific gene signature
We reanalyzed the gene expression dataset of micro-
dissected epithelial tissues, comprised of 20 IBC, 20
non-IBC, and 5 normal patients [6]. To control for any
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variability in signature discovery caused by the molecular
breast cancer subtypes, we matched both ER and HER2
status of 22/24 samples used for training (Fig. 1a, left, see
highlighted ER and HER2 scores). Using the RF approach
(Fig. 1a), we derived a potential IBC-specific signature of
59 unique genes (G59, Additional file 1: Table S1).

G59 can comfortably segregate IBC from non-IBC and
normal samples in unsupervised hierarchical clustering
analysis (Fig. 1b). Calinski-Harabasz criterion on G59
profiles indicated that the samples would best be catego-
rized into two groups: IBC versus non-IBC and normal
samples (Fig. 1c). Consistent with this, the first and sec-
ond principal component scatter plot from the principal
component analysis (PCA) of the G59 profiles also sepa-
rated the IBC samples from the rest (Fig. 1d).

To verify the efficacy of G59, we used RF to model with
the 24 training samples (Fig. 1a, left) and subsequently
classified all the 45 samples using the resultant trained
model. Remarkably, G59 model accurately identified all
IBC samples (IBC probability score>0.5) with no mis-
classification of non-IBC or normal samples (Fig. le).
This accuracy was significantly higher than would be
expected if the signature was just a random set of genes
(Fig. 1f). In addition, G59 prediction was independent of
ER/HER?2 status, molecular subtypes, and ROR (Addi-
tional file 1: Table S2). Thus, G59 is a potential IBC-spe-
cific signature that can predict IBC samples in a machine
learning RF approach.

The gene signature is predictive in pre-treatment samples

Prior to Woodward et al. IBC dataset [6], only one other
microdissected IBC dataset was available [10]. Unlike
the Woodward et al. dataset, whose IBC patient sam-
ples were collected from pre-treatment core biopsies,
this dataset included 13 IBC patients who had primarily
received neoadjuvant chemotherapy prior to sample col-
lection. G59 training model correctly classified 7/13 IBC
training epithelium samples, as expected, but misclassi-
fied the other 6 validation IBC samples [Fig. 2a(i)]. Inline
with this, the signature failed to separate IBC from non-
IBC samples in both PCA scatter plot and unsupervised

(See figure on next page.)

Fig. 1 Identification of an IBC-specific gene signature. a Left: List of IBC and non-IBC samples used for gene signature discovery (GSE45581 dataset).
Row wise matched HER2/ER scores are highlighted and sample accessions numbers (GSM) from gene expression omnibus (GEO) database are
indicated. Middle: Strategy for signature discovery. Right: Strategy for signature validation. b Unsupervised hierarchical clustering heatmap of all
samples (GSE45581 dataset) using the IBC signature genes. ¢ The Optimal number of clusters determined by the Calinski-Harabasz criterion. d
Principal Component Analysis scatter plot using the first and second principal components. e Waterfall plot for all samples’IBC probability score
(see Additional file 1: Supp. Methods) validating the signature. The dotted line demarcates the minimum probability score to classify the sample as
IBC in the model. PAM50 molecular subtyping and ROR scores are indicated. f Distribution of expected accuracy from models trained using random
sets of 59 genes (10,000 iterations) compared with the 100% accuracy observed in IBC signature (dotted distribution line versus solid vertical line,

respectively)
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tested the G59 training model on an independent data-
set comprised of 33 IBC and 28 non-IBC core biopsy
pre-treatment samples [11]. A trained model using half
of the samples from each category only misclassified 1
out of the 61 samples [Fig. 2b(i)], with both PCA scat-
ter plot and unsupervised hierarchical clustering analysis
largely separating IBC from non-IBC samples [Fig. 2b(ii—
iii)]. This suggests that the G59 signature is predictive of
IBC pre-treatment epithelial tumor while chemotherapy
treatment abrogated its predictiveness.

The gene signature is unique to IBC and is enriched

in membrane proteins and interleukin pathways

Next, we compared G59 to 5 previous IBC signatures
(See details in Additional file 1: Supp. Methods). 49%
(29/59) of the genes overlapped with Woodward et al.
[6] 132 gene signature with minimal or no overlap with
the rest of the signatures [Fig. 2¢(i)]. Using RF approach
(detailed in Additional file 1: Supp. Methods), G59 accu-
racy was significantly higher than all the other signatures
[Fig. 2c(ii)]. Given the reported low specificity of these
IBC signatures in non-IBC samples [5, 7-9], we tested
G59 model on TCGA breast cancer dataset, comprised
of primarily non-IBC samples. Only 1.6% of the TCGA
samples were classified as IBC-like, suggesting G59 was
unique to IBC. Indeed, inline with poor overall survival
in IBC patients, Kaplan—Meier analysis revealed a higher
risk of death for these IBC-like patients, with a hazard
ratio of 3.15 (p=10.037) (Fig. 2d).

Having verified G59 signature in two pre-treatment
datasets and shown higher specificity in the TCGA
dataset, we performed gene ontology and pathway
enrichment analysis of the genes. Protein-coding genes
presented 88% (52/59) of the gene set (Fig. 2e), with 25%
(13/52) being plasma membrane proteins (Fig. 2f left,
Additional file 1: Table S3). While there was no over-
whelming enrichment of any specific pathway, IL-2,
G-alpha, and chemokine pathways gave the highest
gene overlap (8, 4, and 3, respectively) with a significant
enrichment (Fig. 2f right, Additional file 1: Table S4).
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Discussion

We have identified a robust gene signature that can
characterize IBC from non-IBC with an aim to better
understand and potentially develop a tailored treatment
regimen for IBC patients. G59 is the first IBC signature
to be successfully validated in an independent data-
set and shows the highest accuracy (100% (45/45) in
GSE45581 and (60/61) 98.4% in GSE111477) in its pre-
diction [9]. This is a significant improvement in accu-
racy as previous signatures accuracy range between
68 and 88% [5, 8, 9], a range similar to our analysis
[Fig. 2c(ii)]. Importantly, G59 shows higher specificity
in primarily non-IBC TCGA samples compared to pre-
vious signatures [5, 7-9].

The low prediction accuracy in primarily post-treat-
ment tumor samples highlights the fact that chemo-
therapy induces changes in gene expression [12].
Interestingly, SUM149 and SUM190, the two cell lines
used in most of the IBC research [13], were derived
from patients who had already received chemother-
apy treatment [14]. Our analysis suggests the need for
establishing IBC cell lines from untreated patients to
fully capture IBC-specific profile.

G59 is a more curated version of the 132 gene list
selected by Dr. Woodward [6] for IBC assessment with
49% similarities. Most of the genes in G59 code for
membrane proteins, suggesting that IBC cells are highly
communicative with the tumor microenvironment,
likely playing an essential role in directing their dis-
ease progression. The novel implication of IL-2 inflam-
matory as well as chemokine pathways in IBC (Fig. 2f
right) adds to the proposed inflammatory pathways
involvement [8, 15].

Our finding highlights the need to integrate con-
temporary statistical approaches to identify molecular
signatures previously missed by traditional statistical
methods. Most important, the IBC-specific molecu-
lar signature we have identified paves the way for IBC
functional studies, validation, and potentially success-
ful therapeutic interventions.

(See figure on next page.)

Fig. 2 Independent validation of IBC gene signature and its gene ontology/pathway analysis. a, b Validation of post-treatment samples from
GSE5847 dataset and pre-treatment core biopsies samples from GSE111477 dataset, respectively. IBC probability plot, PCA scatter plot and
unsupervised hierarchical clustering heatmaps are represented similar to Fig. 1. ¢ (i) Venn plots for G59 overlap with 5 previous IBC gene signatures
(see Additional file 1: Supp. Methods). (i) Table indicating the accuracy of the signatures in GSE45581 and GSE111477 datasets (See details in
Additional file 1: Supp. Methods). d Kaplan—Meier plot log-rank test for G59-predicted IBC like versus non-IBC like samples in TCGA (see details in
Additional file 1: Supp. Methods). The p-value, hazard ratio (HR) and the 95% confidence interval of ratio are indicated. e Pie chart indicating the
proportion of gene types in the signature. ncRNA: non-coding RNA. f Clustergrams of top 10 cellular component and pathway analysis of the
signature genes, with overlapping genes highlighted (see Additional file 1: Table S3 and S4 for complete list)
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Additional file 1. Supplementary Methods and Tables. Supplementary
Methods details genes signature identification, validation and compari-
son with other IBC signatures, PAM50 subtyping and ROR scores, Gene
ontology and pathway analysis. Table S1 details gene information for the
G59 IBC signature. Table S2 shows distribution of clinical and molecular
features in IBC/non-IBC predicted samples. Table S3 has cellular compo-
nents for the G59 IBC signature. Table S4 has pathways analysis for the
G59 IBC signature.
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