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Abstract

Background: While mammographic density is one of the strongest risk factors for breast cancer, little is known
about its determinants, especially in young women. We applied targeted metabolomics to identify circulating
metabolites specifically associated with mammographic density in premenopausal women. Then, we aimed to
identify potential correlates of these biomarkers to guide future research on potential modifiable determinants of
mammographic density.

Methods: A total of 132 metabolites (acylcarnitines, amino acids, biogenic amines, glycerophospholipids,
sphingolipids, hexose) were measured by tandem liquid chromatography/mass spectrometry in plasma samples
from 573 premenopausal participants in the Mexican Teachers’ Cohort. Associations between metabolites and
percent mammographic density were assessed using linear regression models, adjusting for breast cancer risk
factors and accounting for multiple tests. Mean concentrations of metabolites associated with percent
mammographic density were estimated across levels of several lifestyle and metabolic factors.

Results: Sphingomyelin (SM) C16:1 and phosphatidylcholine (PC) ae C30:2 were inversely associated with percent
mammographic density after correction for multiple tests. Linear trends with percent mammographic density were
observed for SM C16:1 only in women with body mass index (BMI) below the median (27.4) and for PC ae C30:2 in
women with a BMI over the median. SM C16:1 and PC ae C30:2 concentrations were positively associated with
cholesterol (total and HDL) and inversely associated with number of metabolic syndrome components.

Conclusions: We identified new biomarkers associated with mammographic density in young women. The
association of these biomarkers with mammographic density and metabolic parameters may provide new
perspectives to support future preventive actions for breast cancer.
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Background

Mammographic density reflects the amount of stromal
and epithelial tissue in the breast, i.e., radiopaque
components, in contrast with fat tissue [1]. Mammo-
graphic density is approximately 60% heritable [2],
but is also associated with non-heritable factors such
as age and menopausal status [3], parity and number
of children [4], use of hormone replacement therapy
[5], obesity [6, 7], and alcohol intake [8, 9]. Improving
knowledge on factors that influence mammographic
density is crucial, since mammographic density is
among the most important risk factors for breast can-
cer. Women with a high mammographic density have
an increased risk for breast cancer, that is estimated
to be 4.6 times higher for mammographic density =
75% compared with <5% [10]. The direct association
between high mammographic density and risk of
breast cancer has been observed both in post- and
premenopausal women [11]. However, since premeno-
pausal women are not targeted in existing mammog-
raphy screening programs, it is not possible to
identify premenopausal women with a high mammo-
graphic density, at increased risk for breast cancer.
The identification of specific biomarkers for high
mammographic density may represent a valuable al-
ternative to mammography to identify women at
higher breast cancer risk.

While several potential biomarkers of mammographic
density have been investigated in premenopausal
women, such as growth factors [12-14], leptin [15], or
sex steroids [12, 16], results remain mostly inconsistent.
Metabolomics is a technique able to detect subtle
changes in metabolism, which has been useful in identi-
fying new biomarkers associated with breast cancer risk,
pointing to new etiological hypotheses [17-21]. Applying
this technique to mammographic density may provide
new insights into the understanding of the determinants
of mammographic density and its association with breast
cancer risk.

In this work, we used a targeted metabolomics ap-
proach to identify potential metabolites specifically asso-
ciated with mammographic density. To do so, 132
metabolites were measured in 573 plasma samples from
a cross-sectional study of premenopausal women en-
rolled in the Mexican Teacher’s Cohort with available
mammographic density measures. In addition, to provide
a better understanding of the metabolites associated with
mammographic density, we investigated potential corre-
lates of their plasma concentrations.

Methods

The Mexican Teachers’ Cohort (MTC)

The MTC has been described in detail elsewhere [22]. In
brief, this cohort study started with enrollment of 27,979
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female teachers from the Mexican states of Jalisco and
Veracruz in 2006, before the recruitment was extended to
other states of Mexico in 2008 to reach a total of 115,314
female participants. With the aim to characterize risk
factors related to cancer and other chronic diseases,
women were administered lifestyle and dietary question-
naires. In 2007, a subsample of 2,045 women from the
regions of Jalisco and Veracruz participated in a clinical
examination that included an interview, anthropometric
measurements by trained personnel, a mammogram, and
biological samples collection. All participants gave
informed consent for future use of biological specimens
and questionnaire data. The International Agency for
Research on Cancer (IARC) Ethics Committee as well as
the Research Ethics Committee at the National Institute
of Public Health in Cuernavaca, Mexico, approved the
current project.

Blood collection and storage

Trained nurses collected fasting blood samples (25 mL).
Plasma, serum, erythrocytes, and buffy coat were sepa-
rated by centrifugation at 2500 rpm for 10 min in a re-
frigerated centrifuge (4°C) and aliquoted into several
cryotubes at field work site, within 30 min after blood
collection. Samples were frozen and kept in liquid nitro-
gen at the National Institute of Public Health in Cuerna-
vaca, Mexico, until shipment to IARC, where they were
stored at — 80 °C until metabolomics analyses were run.

Selection of the population

Out of the 2045 women who underwent clinical examin-
ation, 230 with missing information on metabolic syn-
drome components were excluded (based on inclusion
criteria for a previous study [23]), 67 because of
unknown menopausal status, and 624 who were post-
menopausal at the time of their mammogram.

Menopausal status was defined as follows: premeno-
pausal if women menstruated at least once over the 12
months prior to recruitment, postmenopausal if women
had (1) no menstruation over the last 12 months prior to
the clinical examination or (2) surgical menopause
(reported bilateral oophorectomy or reported unknown
surgery) and were over 48 years old (mean age at meno-
pause in Mexico [24]).

Further selection was based on commonly used [25]
breast density categories (< 10%, 10 to <25%, 25 to <
50%, = 50%): women from each group of breast density
were randomly selected proportionally to the size of the
group, among non-users of oral contraceptive at blood
donation. A total of 35 women were selected for the first
group, 158 for the second, 247 for the third, and 160 for
the last group. Among the 600 women whose samples
were analyzed for targeted metabolomics, 1 woman was
excluded because she had no biological sample, 7
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women were excluded because they were older than 55
but declared to be premenopausal, and 19 women for
whom measured BMI was not available at the time of
clinical evaluation. Our final population included 573
women.

Mammographic density measurement

A radiology technician performed mammography in
both Jalisco and Veracruz. Cranio-caudal views were
taken on each breast. Analog films were digitized using
an Astra 2400S (Umax, Fremont, CA). Mammograms of
both states were combined, and mammographic density
was measured by a single observer on the cranio-caudal
view of the left breast using Mamgr, a computer-assisted
program developed at the Department of Epidemiology
and Population Health, London School of Hygiene and
Tropical Medicine, and based on previously reported
mammographic density assessment methods [26]. In a
validation study, intraclass correlation coefficient
between = mammographic  density = measurements
performed with the Mamgr software versus with the
Cumulus program was 0.87 (n = 100 mammograms),
while the intra-observer intraclass correlation coefficient
was 0.84 (n = 108 duplicates mammograms) [27]. Per-
cent mammographic density was automatically calcu-
lated as the percent of dense pixels within the breast
area. Non-dense area was calculated by subtracting the
dense area from the total breast area. We converted ab-
solute dense and non-dense area values to cm” accord-
ing to pixel size used in digitalization.

Metabolites measurements

All plasma samples were assayed in the laboratory of
the Biomarkers Group at IARC by liquid chromatog-
raphy mass spectrometry using the Absolute/DQ p180
kit (Biocrates Life Sciences AG, Innsbruck, Austria)
and following the procedure recommended by the
vendor. A QTRAP5500 mass spectrometer (AB Sciex,
Framingham, MA, USA) was used to measure 143
metabolites (17 acylcarnitines, 21 amino acids, 12 bio-
genic amines, 78 glycerophospholipids, 14 sphingoli-
pids and hexoses). Samples from Jalisco and Veracruz
centers were analyzed in separate batches.

Selection of metabolites

Metabolites were analyzed in samples from 599 partici-
pants. Values lower than the lower limit of quantifica-
tion (LLOQ), as well as lower than batch-specific limit
of detection (LOD) (for compounds measured with a
semi-quantitative method: acylcarnitines, glyceropho-
spholipids, sphingolipids), or higher than the upper limit
of quantification (ULOQ), were considered out of the
measurable range. Metabolites were excluded from the
statistical analyses if more than 20% of observations
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were outside the measurable range (n = 11; 9 lower than
LOD or LLOQ; 2 greater than ULOQ). A total of 132
metabolites (12 acylcarnitines, 21 amino acids, 7 bio-
genic amines, 77 glycerophospholipids, 14 sphingolipids
and hexoses) were finally retained for statistical analyses.
Of these 132 metabolites, 2 had values above the ULOQ
(arginine (1.8%) and taurine (17.3%)) and were imputed
with the ULOQ, and 9 had lower than LLOQ or LOD (<
9.0%) and were imputed with half the LLOQ or half the
batch-specific LOD, respectively. The remaining 121
metabolites had all values included in the measurable
range.

Percent of samples out of the measurable range and
coefficients of variation for metabolites included in the
analysis (median = 6.0%, interquartile range = 2.1%) are
shown in Supplementary Table 1.

Covariate data

Data on dietary habits were collected through a 139-
item food frequency questionnaire (details previously
published [28]). Information on frequency of consump-
tion and portion size were used to calculate nutrients
and energy intakes using the United States Department
of Agriculture food-composition database and the Mexi-
can National Health and Nutrition Survey database.
Three dietary patterns were identified by principal com-
ponent analysis (“Fruits and Vegetables,” “Western,”
“Modern Mexican”) [28]. Intakes and frequency were
also used to estimate the Healthy Eating Index (HEI)
2015 total score [29].

Insulin-like growth factor 1 (IGF-1), IGF binding pro-
tein 3 (IGFBP-3), C-peptide, C reactive protein (CRP),
leptin, and adiponectin analyses were performed in the
laboratory of the Biomarkers Group at IARC [30]. Serum
IGF-1, IGFBP3, and C-peptide concentrations were mea-
sured by immunoradiometric assays by Beckmann
Coulter (Marseille, France) [13]. Leptin was measured by
a radioimmunoassay from Linco (Millipore, Billerica,
MA, USA), while adiponectin and CRP were measured
using an enzyme-linked immunoassay by R&D (R&D
Systems, Europe, Lille, France) [15].

Triglycerides, total and HDL cholesterol, and glucose
were measured on fasting plasma blood samples at the
Endocrinology and Metabolism Laboratory at the Na-
tional Institute of Nutrition and Medical Sciences using
standard assays. Glucose was measured via the automa-
tized glucose oxidase method; triglycerides and HDLs
were measured using enzymatic hydrolysis in an auto-
matic analyzer with a tungsten lamp (Prestige 24i, Tokyo
Boeki Medical System LTD). Number of metabolic syn-
drome components was defined according to the harmo-
nized definition [31] (waist circumference > 88 cm,
triglyceride levels > 150 mg/dL, HDL cholesterol levels
<50mg/dL, systolic blood pressure > 130 mmHg or
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diastolic blood pressure > 85 mmHg, and glucose levels
> 100 mg/dL) (details previously published [23]).

Statistical analyses

Descriptive analyses were performed for selected char-
acteristics of the population using mean and standard
deviation (continuous variables) or frequency (categor-
ical variables). Partial Pearson’s correlation coeffi-
cients, adjusted for age (where appropriate), state, and
batch were computed for metabolites, measures of
mammographic density, age, and BMI. Percent mam-
mographic density was the primary outcome of this
analysis, while dense area and non-dense area were ex-
amined as secondary outcomes after log-
transformation to better approximate normality and
homoscedasticity of the residuals. To account for ana-
lytical batch, residuals of log-transformed and stan-
dardized metabolites concentrations were obtained
from linear models with random effect for analytical
batches. These residuals were used as dependent vari-
ables in multiple linear regression testing associations
with the different outcomes.

All models were adjusted for a priori selected breast
cancer risk factors that included: age (continuous), BMI
(continuous), age at menarche (<12, 12, 13, > 14 years,
missing), family history of cancer (yes, no), history of be-
nign breast disease (yes, no), use of oral contraceptive
(ever, never), number of full-term pregnancies (0, 1, 2, 3,
> 4, missing), age at first full-term pregnancy (nullipar-
ous, <20, 20-25, 25-30, = 30, missing), breastfeeding
(nulliparous, no breastfeeding, < 6 months, 6—12 months,
12-24 months, > 24 months, missing), alcohol intake (0,
0.1 drinks/day, 0.1-0.2 drinks/day, > 0.2 drinks/day,
missing), smoking status (never, past, current, missing),
socioeconomic status (low, medium, high, missing), and
physical activity (continuous). A missing category was
created for all variables, except for physical activity
where the only missing value was imputed to the me-
dian. Multiple tests were addressed using permutation
minP-adjustment of P values to account for the depend-
encies between tests [32].

For metabolites associated with percent mammo-
graphic density after correction for multiple testing,
adjusted means of percent mammographic density were
estimated by quartile of metabolite. For test of linear
trend, participants were assigned the median value of ex-
posure in each quartile and we modeled the correspond-
ing variable as a continuous term. Analyses were further
stratified by BMI (</>27.4kg/m” (median)) and inter-
action with the dichotomized variable was tested for
each metabolite by including an interaction term in the
model. Adjusted means were examined by quartiles of
metabolite in each group, and BMI (continuous) was
included as an adjustment variable in each model.
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To examine the robustness of the observed associa-
tions, additional exploratory analyses were conducted
using a bootstrapped least absolute shrinkage and selec-
tion operator (LASSO) regression approach [33, 34]:
metabolic signatures of the percent mammographic
density were obtained via simple cross-validated LASSO,
which efficiently selects the most predictive variables in
high-dimensional sets of potential predictors. This
approach was then applied to 200 bootstrap samples to
determine which metabolites were most frequently
included in the signature.

To provide a better understanding of the metabo-
lites associated with percent mammographic density,
a variety of lifestyle, dietary, anthropometric, and
metabolic factors already available in the study
population were investigated in separate models in
relation to plasma concentration of retained metabo-
lites. Adjusted mean concentrations of metabolites of
interest (residuals on analytical batch) were
estimated across categories of each variable after ex-
cluding participants with missing values, adjusting
for age and state. All variables previously listed as
covariates in the main analyses were examined using
similar categories or tertiles for variables initially in-
cluded as continuous. In addition to these variables,
we investigated waist circumference (tertiles), hip
circumference (tertiles), high blood pressure (yes,
no), circulating leptin, adiponectin, leptin/adiponec-
tin ratio, IGF-1, IGFBP-3, C-peptide, CRP (tertiles of
log-transformed concentration regressed on respect-
ive analytical batches), total cholesterol (tertiles),
HDL cholesterol (tertiles), total cholesterol/HDL
cholesterol ratio (tertiles), triglycerides (tertiles), glu-
cose (tertiles), and number of criteria for determin-
ation of metabolic syndrome. The following
nutritional factors were also examined (tertiles): total
daily energy intake, protein, carbohydrate, starch,
sugar, fibers, lipid, fatty acids (total, trans, saturated,
monounsaturated, polyunsaturated) intakes (as resid-
uals on total energy intake), glycemic index (GI) and
glycemic load (GL), dietary patterns (“Fruits and
Vegetables,” “Western,” “Modern Mexican”), and the
HEI score. Heterogeneity of means across categories
was assessed by F test from analyses of variance for
all 46 variables, and P values were corrected for
multiple tests with a Bonferroni correction (P <
0.001(0.05/46)). When significant heterogeneity was
detected, linear trend across ordinal categories was
further tested by assigning the median value of each
category to participants and including the variable as
a continuous term in a linear regression model.

All statistical tests were two-sided. Analyses were per-
formed using SAS 9.4 (SAS Institute, Cary, NC) and R
Studio (packages NPC [35] and glmnet [36]).
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Results

As shown in Table 1, mean percent mammographic
density was 36.5 (SD = 17.0) % and mean age at mam-
mography was 43.1 (SD = 3.7) years. Fifty-two percent of
women had already used an oral contraceptive, and
women had on average 2.1 (SD = 1.2) children, with a
mean age at first full-term pregnancy of 24.8 (SD = 4.4)
years. Only 10.4% of parous participants had never
breastfed. Mean BMI was 28.4 (SD = 5.4) kg/m* and
70.7% of participants were overweight or obese (BMI >
25 kg/m?). Mean concentration of metabolites are shown
in Supplementary Table 2.

Pearson’s correlation coefficients between percent
mammographic density and dense area, non-dense area,
age and BMI were respectively 0.75, - 0.54, - 0.13, and
- 0.16 (all P values< 0.002, not shown). Moderate posi-
tive correlations were observed among amino acids, acyl-
carnitines, and phosphatidylcholines (with respective
average correlations of 0.40, 0.31, and 0.37, not tabu-
lated) and were stronger among lysophosphatidylcho-
lines and sphingomyelins (with respective average
correlations of 0.57 and 0.67, not tabulated) (Supple-
mentary Figure 1).

Metabolites associated with mammographic density
Associations of metabolites and percent mammographic
density before correction for multiple tests are shown in
Figure 1A. After correction of P values for multiple tests,
only two inverse associations remained borderline
statistically significant, SM C16:1 (minP P value = 0.05)
and PC ae C30:2 (minP P value = 0.05) (Figure 1B). P
values for tests of linear trends across quartiles of me-
tabolites were < 0.01 for both SM C16:1 and PC ae C30:
2 (Table 2). For SM C16:1, mean percent mammo-
graphic density was 38.1 (95% confidence interval
(CI) 32.2-44.0) in first quartile and 32.0 (26.3-37.8) in
last quartile. For PC ae C30:2, mean percent mammo-
graphic density was 40.7 (34.9-46.5) in the first quartile
and 35.0 (29.2-40.8) in last quartile.

None of the metabolites were associated with dense
area after correction for multiple tests (data not shown,
all minP P values > 0.69).

For non-dense area, after correction for multiple tests,
16 metabolites remained associated with non-dense area:
12 PCs (ae C30:2, ae C40:2, ae C40:5, ae C32:2, aa C36:0,
aa C28:1, ae C42:2, ae C42:5, ae C38:3, ae C40:4, aa C40:
3, aa C42:4) and 4 SMs (C18:1, C16:1, C20:2, OH-C14:1)
(Supplementary Figure 2), with P values for tests of lin-
ear trends across quartiles all <0.02 (data not shown).

When assessing the associations of percent mam-
mographic density with SM Cl16:1 and PC ae C30:2
across BMI strata (Table 2), no statistically significant
interaction was detected for any of the metabolites (P
interaction>0.31). Of note, a linear inverse association
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Table 1 Selected characteristics of the population (N = 573)
Characteristics Mean (SD) or N

Missing values

(N) (%)
State of recruitment 0
Jalisco 318 (55.5)
Veracruz 255 (44.5)
Breast density (%) 0 365 (17.0)
Dense tissue area (cm?) 0 484 (33.3)
Non-dense area (cm?) 0 823 (38.5)
Age at mammography (years) 0 43.1 37)
Age at menarche (years) 4 126 (1.5)
Family history of breast cancer 0 27 (4.7)
(yes)
History of benign breast 0 79 (13.8)
disease (yes)
Oral contraceptive use (ever) 19 288 (52.0)
Number cff full-term 30 21(1.2)
pregnancies
Age at first birth® (years) 43 248 (4.4)
Duration of breastfeeding® 41
No breastfeeding 49 (104)
< 6 months 96 (20.4)
6 to 12 months 100 (21.3)
12 to 24 months 133 (28.3)
> 24 months 92 (19.6)
Physical activity (MET hours/ 1 265 (21.1)
week)
Alcohol intake (drinks/day) 45
0 160 (30.3)
<01 259 (49.1)
0.1-0.2 76 (14.4)
202 33 (63)
Smoking status 62
Never 366 (71.6)
Past 87 (17.0)
Current 58 (11.4)
BMI (kg/m?) 0 284 (5.4)
<25 168 (29.3)
25-30 214 (37.4)
230 191 (33.3)
Socioeconomic status 79
Low 84 (17.0)
Medium 216 (43.7)
High 194 (39.3)

2Among parous women (n = 511)
Abbreviations: BMI body mass index; SD standard deviation
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A. Percent density, raw P-values
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

sphingomyelin; SD, standard deviation

Fig. 1 Associations between metabolites and percent mammographic density (PMD). A Raw P values. B Adjusted P values. Estimates per standard
deviation increase in residuals of metabolites on batch were obtained from linear regression adjusted for age, BMI, age at menarche, family
history of cancer, history of benign breast disease, use of oral contraceptive, number of full-term pregnancies, age at first full-term pregnancy,
breastfeeding, alcohol intake, smoking status, socioeconomic status, and physical activity. Dotted lines represent statistical significance thresholds
for raw P values (A) and for P values adjusted by permutation-based stepdown minP (B). ae, acyl-alkyl; aa, acyl-acyl; PC, phosphatidylcholine; SM,

with percent mammographic density was observed
among quartiles of SM Cl16:1 (P trend<0.01) in
women with a BMI lower than 27.4 kg/m2 (n = 286),
but not in women with a BMI > 27.4 kg/m* (n = 287,
P trend = 0.07). For PC ae C30:2, no statistically sig-
nificant linear trend across quartiles was observed
among women with a BMI <27.4kg/m* (P trend =
0.09), while a significant inverse association was ob-
served among women with a BMI > 27.4kg/m* (P
trend = <0.01). There was no evidence of a statistical
interaction between any of the other metabolites and
BMI (dichotomized by median) (all P interaction
20.07) for percent mammographic density, and none
of the other metabolites was associated with percent
mammographic density in any of the BMI strata after
adjustment for multiple tests (data not shown).

Exploratory analyses

In exploratory analyses using cross-validated boot-
strapped LASSO, SM C16:1 was the most frequently (in
84% of bootstrap samples) identified metabolite. In

contrast, PC ae C30:2 was selected in the signature in
only 18% of bootstrap samples.

Correlates of metabolites associated with percent
mammographic density PMD

Of all potential correlates investigated, only those for
which a statistically significant association was detected
after correction of P values (from F-tests) for multiple
tests are shown in Figures 2 and 3.

Figure 2 shows adjusted mean concentrations of SM
C16:1 (residuals) across categories of variables for which
a statistically significant association was detected after
correction of P values (from F-tests) for multiple tests
and shows P for linear trend (all <0.01) for these vari-
ables: leptin, adiponectin, total cholesterol, HDL choles-
terol (direct associations), total/HDL cholesterol ratio,
triglycerides, glucose, and number of components for
metabolic syndrome (inverse associations).

For PC ae C30:2 (Figure 3), significant heterogeneity
after correction for multiple tests of P values from F-
tests was observed across categories of C-peptide,

Table 2 Adjusted means of PMD across quartiles of PCaeC30:2 and SMC16:1, overall and by BMI

Quartiles of metabolites plasma concentrations

Q1 Q2 Q3 Q4
Metabolite Adjusted mean PMD"' (95 Adjusted mean PMD' Adjusted mean PMD' Adjusted mean PMD’ P
% ClI) (95% CI) (95% Cl) (95% Cl) trend®
SM C16:1 Overall 38.1 (32.2-44.0) 39.8 (34.1-45.5) 36.6 (30.9-42.2) 32.0 (26.3-37.8) <001
BMI (kg/
m?)
n =286 <274 437 (35.7-51.8) 417 (33.7-49.7) 396 (31.8-47.3) 35.1 (27.1-43.1) <001
n =287 > 274 296 (19.1-40.1) 354 (25.3-45.6) 29.7 (19.8-39.5) 259 (15.7-36.1) 0.07
P interaction® 051
PC ae C30: Overall 40.7 (34.9-46.5) 37.6 (31.8-43.5) 34.5 (28.8-40.1) 35.0 (29.2-40.8) <001
2
BMI (kg/
mz)
n =286 <274 424 (34.4-50.4) 422 (34.1-50.2) 36.8 (29.0-44.6) 38.5 (30.4-46.7) 0.09
n =287 =274 36.8 (26.2-47.3) 31.6 (21.4-41.9) 29.8 (20.0-39.6) 286 (183-38.8) <001
P interaction® 031

Abbreviations: ae acyl-alkyl; BMI body mass index; CI confidence interval; PC phosphatidylcholine; PMD percent mammographic density; Q quartile;

SM sphingomyelin

'Means were adjusted for age, BMI, age at menarche, family history of cancer, history of benign breast disease, use of oral contraceptive, number of full-term
pregnancies, age at first full-term pregnancy, breastfeeding, alcohol intake, smoking status, socioeconomic status, and physical activity
2P value for test of linear trend across quartiles of metabolite, performed by assigning participants the median value in each quartile and modeling the

corresponding variable as a continuous term

3p value for interaction term between residuals of log-transformed metabolites concentrations regressed on batch and dichotomized BMI (< 27.44/> 27.44)
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-
|
Variable N Adjusted mean (residuals) 95% CI P-trend :
|
Leptin (tertiles)* :
Tertile 1 191 -0.24 -0.38--0.10 e
Tertile 2 190 0.04 -0.10-0.18 -.—
Tertile 3 191 0.20 0.06-0.34  <0.01 -
Adiponectin (tertiles)* :
Tertile 1 191 -0.30 -0.44--0.16 - .
Tertile 2 191 -0.05 -0.19- 0.09 -.—
Tertile 3 191 0.35 0.21-0.49 <0.01 : -.-
Total cholesterol (tertiles) :
<177 mg/di 182 -0.65 -0.78--0.52 E 3 !
177-210 mg/dI 194 0.12 0.00- 0.25 :'.'
210+ mg/dl 189 0.54 0.41-0.66 <0.01 : -.
HDL cholesterol (tertiles) :
<41 mg/d| 180 -0.64 -0.77--0.52 '
41-51 mg/dl 188 -0.02 -0.14-0.10 -. <-I'
51+ mg/dl 198 0.58 0.46- 0.70 <0.01 ' ‘.‘
Total cholesterol/HDL cholesterol (tertiles) :
<3.77 189 0.21 0.07-0.35 : -.-
3.77-4.49 188 -0.06 -0.20- 0.08 -—
4.49+ 188 -0.17 -0.32--0.02  <0.01 —.—E
Triglycerides (tertiles) [
<99 mg/d| 186 0.22 0.09- 0.36 : -.-
99-153 mg/dl 188 0.15 0.02-0.29 :-.-
153+ mg/dl 191 -0.39 -0.52--0.25 <0.01 -.— :
Glucose (tertiles) :
<81 mg/dl 178 0.08 -0.06- 0.23 -
81-91 mg/dI 192 0.14 0.00-0.28 :-.—
91+ mg/dl 196 -0.22 -0.35--0.08  <0.01 -.- :
N criteria for metabolic syndrome :
0 98 0.57 0.39-0.75 . E =
1 185 0.14 001-0.27 -
2 132 -0.24 -0.39--0.08 E =
3 70 -0.50 -0.71--0.28 -
4 19 -0.93 -1.35--0.52  <0.01 —— '
1
1
'
,
-1 -05 0 05

Fig. 2 Adjusted mean concentrations of SMC16:1 by levels of lifestyle, anthropometric, metabolic, and dietary factors. Adjusted means of SM
C16:1 (residuals of log-transformed concentration regressed on analytical batch) were obtained from models adjusted for age and state. Variables
shown here are the ones for which a significant heterogeneity was detected by F test from analysis of variance, based on Bonferroni-corrected P
values. Linear trend across ordinal categories was tested by assigning the median value of each category to participants and including the
variable as a continuous term in a linear regression model. Asterisk indicates tertiles of residuals of leptin and adiponectin concentrations
regressed on analytical batches. Cl, confidence interval; HDL, high-density lipoprotein; SM, sphingomyelin

triglycerides, number of components for metabolic syn-
drome (inverse associations), total cholesterol, HDL
cholesterol, and daily protein intake (direct associations).

No statistical interaction was observed with state
of residence for the two metabolites. Factors associ-
ated with SM C16:1 in the whole population
remained associated at a statistically significant level
in stratified analyses, except for leptin and total
cholesterol/HDL cholesterol ratio, for which the as-
sociations were no longer significant after Bonferroni
correction in both states, and glucose, which was no
longer significant in Jalisco after Bonferroni correc-
tion. Total cholesterol, HDL cholesterol, and number
of components of metabolic syndrome remained

associated with PC ae C30:2 after Bonferroni correc-
tion in each state, while the association with C-
peptide and triglycerides were significant in Jalisco
only, and protein intake was not associated with PC
ae C30:2 in any of the states.

Discussion

In this population of premenopausal Mexican women,
lower plasma concentrations of sphingomyelin C16:1
and phosphatidylcholine acyl-alkyl C30:2 were associated
with a higher percent mammographic density. Analyses
of a wide range of lifestyle, dietary, anthropometric, and
metabolic factors indicated associations of these two
metabolites with mostly metabolic parameters.



His et al. Breast Cancer Research (2021) 23:75 Page 9 of 12
P
|
Variable N Adjusted mean  95% CI P-trend :
1
|
C-peptide (tertiles)* :
1
Tertile 1 191 0.35 0.22-0.49 : —.—
Tertile 2 191 -0.08 -0.22- 0.06 —.‘:—
1
Tertile 3 191 -0.29 -0.43--0.15 <0.01 —.— :
Total cholesterol (tertiles) :
1
<177 mg/dl 182 -0.37 -0.51--0.22 —.— :
177-210 mg/dI 194 0.02 -0.12-0.16 —.—
210+ mg/dl 189 0.36 0.22-0.50 <0.01 : —.—
HDL cholesterol (tertiles) :
1
<41 mg/dl 180 -042  -0.56--0.28 —- '
41-51 mg/dl 188 -0.03 -0.17-0.11 —.—
51+ mg/dI 198 0.40 0.26-0.53  <0.01 : —.—
1
Triglycerides (tertiles) 1
1
<99 mg/dI 186 0.13 -0.01-0.27 :—.—
1
99-153 mg/dl 188 0.17 0.03-0.31 '—.—
1
153+ mg/di 191 032 -046--017 <0.01 —.— '
1
N criteria for metabolic syndrome !
1
0 8 043 0.24- 0.62 , ——
1
1 185 0.15 0.02-0.29 —-
1
2 132 -0.24 -0.41--0.07 —.—
|
3 70 -0.40 -0.63--0.17 —.— :
4 19 -0.64 -1.07--0.20 <0.01 —.— :
1
Daily protein intake (residuals on energy) :
1
Tertile 1 171 -0.22 -0.36--0.07
i :
Tertile 2 171 -0.04 -0.19-0.10 —.—
1
Tertile 3 170 0.19 0.05-0.34  <0.01
il
1
1
Ll
-1 -05 0 05
Fig. 3 Adjusted mean concentrations of PC ae C30:2 by levels of lifestyle, anthropometric, metabolic, and dietary factors. Adjusted means of PC
ae C30:2 (residuals of log-transformed concentration regressed on analytical batch) were obtained from models adjusted for age and state.
Variables shown here are the ones for which a significant heterogeneity was detected by F test from analysis of variance, based on Bonferroni-
corrected P values. Linear trend across ordinal categories was tested by assigning the median value of each category to participants and
including the variable as a continuous term in a linear regression model.. Asterisk indicates tertiles of residuals of C-peptide concentrations
regressed on analytical batches. Cl, confidence interval; HDL, high-density lipoprotein; PC ae, phosphatidylcholine acyl-alkyl

Indeed, for SM Cl16:1, direct associations were
observed with total and HDL cholesterol, leptin, and adi-
ponectin and inverse associations with total cholesterol/
HDL cholesterol ratio, triglycerides, glucose, and num-
ber of criteria for metabolic syndrome. For PC ae C30:2,
direct associations with total and HDL cholesterol were
observed, as well as with dietary protein intake, and in-
verse associations were observed with C-peptide, triglyc-
erides, and number of criteria for metabolic syndrome.

We could not identify previous publications reporting
the associations of SM C16:1 and PC ae C30:2 with
mammographic density, nor any studies applying meta-
bolomics to study mammographic density.

Sphingomyelins are abundant in lipoproteins and have
a key role in the transport of cholesterol, especially in
very low-density lipoproteins (VLDL) [37]. HDL also
contributes to plasma concentrations of SM [37, 38].
Some SMs and their precursors, ceramides, have been
associated with cardiovascular disease risk, type II
diabetes, and obesity [37, 39, 40]. SMs have been associ-
ated with ovarian cancer risk [41], and some SMs (but
not SM Cl16:1) were inversely associated with breast
cancer risk before correction of P values for multiple
tests, in a metabolomics study including pre- and post-
menopausal women [17]. A Mendelian randomization
(MR) study of SMs and breast cancer risk reported a
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null association with breast cancer [42], while an MR
study of SMs in breast cancer survival indicated an in-
verse association with risk of breast cancer-specific death
(in women with estrogen-receptor positive tumors) [43].
Sphingolipids are involved in cancer cell death
signaling [44], in particular through regulatory actions
of SMs and their ceramide precursors on apoptosis
[45, 46]. Interestingly, in the latter MR study, a sensi-
tivity analysis, based on detected pleiotropic associa-
tions of genetic instruments for SMs with cholesterol,
highlighted that single nucleotide polymorphisms as-
sociated with cholesterol, in particular LDL choles-
terol, were strongly associated with circulating SMs.
These findings are in line with our analysis on corre-
lates of SM C16:1 showing strong associations with
total and HDL cholesterol, and inverse associations
with the ratio of total and HDL cholesterol. These as-
sociations are consistent with previous work in this
population [15, 23]. Other factors associated with
SM C16:1 were circulating leptin and adiponectin
concentrations (but not their ratio). These two adi-
pokines, not correlated with each other in our popu-
lation [15], are involved in metabolic health and
could influence ceramide levels [47].

Studies have reported lower levels of acyl-alkyl phos-
phatidylcholines in diabetic patients compared to non-
diabetic individuals (although the observed associa-
tions were not specific to PC ae C30:2) [48—50], which
is consistent with the inverse association observed
with C-peptide in our analysis. While hepatic diacyl-
PCs play a role in regulating the efflux of lipoprotein
secretion, in particular VLDL, from the liver [51],
acyl-alkyl PCs may prevent oxidation of lipoproteins
[52]. PCs are synthesized from choline [53], an
essential nutrient whose main sources, as estimated
from the US National Health and Nutrition Examin-
ation Survey [54], are protein-rich foods. This is con-
sistent with the direct association we observed with
dietary protein intake. Acyl-alkyl PCs have been
inversely associated with risk of breast cancer in a pro-
spective study [17]. However, the biological mechan-
ism underpinning the association of this metabolite
with mammographic density remains unclear. In our
analysis, both SM C16:1 and PC ae C30:2 concentra-
tions decreased with the number of criteria for the
metabolic syndrome, which could partly result from
the associations described above with various meta-
bolic parameters, including total and HDL choles-
terol. Of note, none of the anthropometric factors
investigated were associated with these two metabo-
lites after multiple test correction.

In this analysis, we were able to investigate the associa-
tions between several circulating metabolites and mam-
mographic density measured at the same time,
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accounting for BMI and other potential confounders for
which data have been collected in the Mexican Teachers’
Cohort. The study design also allowed us to explore po-
tential lifestyle, dietary, anthropometric, and metabolic
correlates of key metabolites. In addition, women in-
cluded in this study were not using oral contraceptives
at the time of clinical examination, which is a strength
given previous reports of different associations between
metabolites and breast cancer risk according to hormone
use [17], and blood was collected in fasting state for all
women. Nevertheless, an important limitation of this
work is that blood samples were collected only once,
hence raising reproducibility issues regarding metabo-
lites concentrations. However, studies have shown the
metabolite concentrations to be relatively stable over 4
months to 2years for most metabolites in this work
[55-57]. Another limitation regarding metabolites mea-
surements arises from the method used for some class
of compounds. Indeed, the signal observed is not specific
and may correspond to several compounds, which we
are not able to distinguish. Therefore, additional studies
with more specific methods are required.

Conclusions

In conclusion, our work showed that two plasma metabo-
lites, SM C16:1 and PC ae C30:2, were inversely associated
with percent mammographic density among premenopausal
Mexican women. These metabolites are both correlated with
several biomarkers of metabolic health, which may provide
new perspectives to support future preventive actions for
breast cancer. Further work is needed to evaluate whether
these two metabolites can bring useful information for the
identification of women with dense breasts.
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