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Abstract

Background: Early prediction of tumor response to neoadjuvant chemotherapy (NACT) is crucial for optimal
treatment and improved outcome in breast cancer patients. The purpose of this study is to investigate the role of
shear wave elastography (SWE) for early assessment of response to NACT in patients with invasive breast cancer.

Methods: In a prospective study, 62 patients with biopsy-proven invasive breast cancer were enrolled. Three SWE
studies were conducted on each patient: before, at mid-course, and after NACT but before surgery. A new
parameter, mass characteristic frequency (fmass), along with SWE measurements and mass size was obtained from
each SWE study visit. The clinical biomarkers were acquired from the pre-NACT core-needle biopsy. The efficacy of
different models, generated with the leave-one-out cross-validation, in predicting response to NACT was shown by
the area under the receiver operating characteristic curve and the corresponding sensitivity and specificity.

Results: A significant difference was found for SWE parameters measured before, at mid-course, and after NACT
between the responders and non-responders. The combination of Emean2 and mass size (s2) gave an AUC of 0.75
(0.95 CI 0.62–0.88). For the ER+ tumors, the combination of Emean_ratio1, s1, and Ki-67 index gave an improved AUC
of 0.84 (0.95 CI 0.65–0.96). For responders, fmass was significantly higher during the third visit.

Conclusions: Our study findings highlight the value of SWE estimation in the mid-course of NACT for the early
prediction of treatment response. For ER+ tumors, the addition of Ki-67improves the predictive power of SWE.
Moreover, fmass is presented as a new marker in predicting the endpoint of NACT in responders.
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Introduction
Neoadjuvant chemotherapy (NACT) is an established
therapeutic strategy for operable breast cancers and lo-
cally advanced breast cancers and allows more patients
to undergo breast-preserving surgery [1, 2]. A patho-
logical complete response (pCR) to NACT is associated
with increased disease-free interval. However, responses
to NACT are quite variable. With the increased use of
NACT, it is crucial to have an accurate prediction of
tumor response to NACT.
Current techniques available for monitoring response

to NACT are positron emission tomography (PET) [3],
sonography, mammography, magnetic resonance im-
aging (MRI) [4–7], and shear wave elastography (SWE)
[8, 9]. Conventional sonography and mammography
have poor reliability in evaluating the size of residual
tumor after chemotherapy [10]. SWE is a recently devel-
oped low-cost imaging technique for measuring tissue
stiffness in a noninvasive and quantitative manner with
high reproducibility [11–15].
Tissue stiffness has been demonstrated to be signifi-

cantly correlated with tumor growth as cancer develop-
ment and progression require extensive reorganization
of the extracellular matrix (ECM) [16]. Increased depos-
ition of collagen and other ECM molecules enhances the
stiffness of tumoral stroma [17–19]. Changes in tumor
stiffness were significantly greater in patients who had a
good response to NACT compared to those resistant to
NACT [20]. Breast cancer pre- and post-treatment stiff-
ness obtained from SWE was significantly correlated
with the presence of residual cancer [8, 9]. A study in
[21] showed that the SWE stiffness measured after 3 cy-
cles of NACT and changes in stiffness from baseline
were strongly associated with pCR after 6 cycles. The
combination of the post-treatment SWE and greyscale
ultrasound has also been shown to be promising for
end-of-treatment identification of residual disease and
thus response to NACT, with similar accuracies found
in assessment by MRI [22].
In the current study, a new SWE parameter mass char-

acteristic frequency (fmass) was used. fmass is defined as
the ratio of the averaged minimum shear wave speed
(SWS) within the regions of interest (ROIs) to the largest
mass dimension. The physical meaning of the new par-
ameter can be explained as the inverse of the maximum
shear wave propagation time in a breast mass. The mo-
tivation for using fmass is that in SWE, the SWS of small
masses is often underestimated due to their small size
compared to the wavelength. This error may lead to the
false-negative diagnosis of such masses. fmass represents
the SWS weighted by the inverse of mass diameter;
therefore, fmass assumes a larger value for masses that
are too small. Thus, one may expect fmass to be a more
robust parameter in SWE than SWS itself. However, we

want to emphasize that fmass is not meant to compensate
for the underestimation error of SWS in a mathematical
sense. Our intention is to introduce fmass as a new metric
that improves the characterization of breast masses in a
statistical sense. The purpose of this study was to inves-
tigate the role of SWE parameters, including mass char-
acteristic frequency, in evaluating the breast tumor
response to the NACT treatment. For ER-positive
tumors, the combination of the SWE parameters with
Ki-67 was further studied to improve the sensitivity and
specificity of the response prediction.

Methods
Study population
This prospective study was Health Insurance Portability
and Accountability Act (HIPAA) compliant and was ap-
proved by the Institutional Review Board (IRB) (IRB ap-
plication #12-003329). From January 2014 to September
2020, 62 female patients (age range 27–78 years) with 62
biopsy-proven invasive breast cancers were recruited in
this study. During the recruitment, patients with prior
mastectomy or breast implant were excluded. One pa-
tient with a previous lumpectomy in the contralateral
breast was included in this study. A signed written in-
formed consent with permission for publication was ob-
tained from each enrolled patient prior to the study.

Imaging
SWE studies were conducted for each patient at three
time points: before initiation of NACT, at the mid-
course of NACT, and after completion of NACT but
prior to surgery. A flow diagram of the study population
is summarized in Fig. 1.
The 2D SWE scanning was performed by one of our

two experienced sonographers, using the GE LOGIQ-E9
ultrasound clinical scanner equipped with a 2–8MHz
linear array probe (9L-D, GE Healthcare, Wauwatosa,
WI) for both the conventional B-mode and SWE data
acquisition. To reduce motion artifacts, patients were
instructed to suspend respiration for approximately 3 s
during the data acquisition. The SWE measurement was
acquired within a rectangle-shaped field of view, which
covered the whole lesion and the adjacent normal tissue.
For each lesion, along the same orientation, at least four
SWE images were obtained. One of the consistent stiff-
ness maps was chosen to draw ROIs. Three non-
overlapping ROIs, 3 mm in diameter, were placed at the
stiffest position of the lesion, with peritumoral stroma
included. One ROI was placed at the surrounding nor-
mal tissue. The mean SWS, maximum SWS, minimum
SWS, and standard deviation of the SWS inside each
ROI were calculated by the ultrasound machine. The
SWS for the tumor was represented by the average
values of the three ROIs placed at the stiffest position. A
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new shear wave parameter, mass characteristic fre-
quency, represented by fmass, is used in this paper: fmass =
1000Vmin/d, where fmass is with unit Hz, Vmin is the
minimum SWS with unit m/s, and d is the mass size in
mm and recorded as the maximum dimension of the
tumor shown on the B-mode image. Figure 2 illustrates
the measurements for calculating fmass.

Clinical pathologic data
The parameters for residual cancer burden (RCB) meas-
urement for each patient were obtained from the

surgical pathology report, and the RCB score was
calculated with an empirical equation: RCB = 1.4(finvd-

prim)
0.17 + [4(1–0.75LN)dmet]

0.17 [23]. RCB was on a con-
tinuous scale and was further categorized as 0 (RCB = 0),
I (0 < RCB < =1.36), II (1.36 < RCB < =3.28), or III (RCB >
3.28). Categories 0 and I were regarded as responders
while categories II and III were regarded as non-
responders [23, 24]. Of the 62 patients included in this
study, 60 underwent lumpectomy or mastectomy, and
the corresponding RCB scores were calculated from the
surgical reports. Two patients did not undergo surgery,
one progressed on neoadjuvant chemotherapy and died
before undergoing surgery, and one developed metastatic
disease, and therefore, surgery was not indicated and ul-
timately died 3.5 years after diagnosis. The two deceased
patients were categorized as non-responders. The MRI
dimensions (AP, trans, and SI) were read from the clin-
ical MRI image that was acquired close to the date of
the SWE scanning. The MRI volume was calculated as
the product of the three dimensions (volume = AP ×
trans × SI). The clinical MRI was based on the dynamic
enhanced protocol using intravenous (IV) contrast ad-
ministration. Obtained T1- and T2-weighted images
were analyzed with computer-aided detection (CAD)
image analysis. With the help from a radiologist, the
maximum lesion size was read from the B-mode
imaging.
Estrogen receptor (ER), progesterone receptor (PR),

human epidermal growth factor receptor 2 (HER2), and
Ki-67 proliferative index status of the pre-NACT tumor
needle core biopsies were obtained from the clinical rec-
ord. ER and PR were considered negative if less than 1%
of invasive tumor cells were immunoreactive, and were
considered positive if greater than or equal to 1% of in-
vasive tumor cells were immunoreactive. As per the

Fig. 2 An example for calculating the fmass for a 59-year-old female patient with grade II invasive ductal carcinoma. a The mass size d was read as
the greatest dimension shown in the clinical B-mode image, and it is 28 mm in this example. b The minimum shear wave speed was calculated
as the average value of the minimum shear wave speed from the three ROIs shown in the SWE image and is 2.7 m/s. Therefore, the fmass for this
measurement is 96 Hz. ROI, region of interest; SWE, shear wave elastography

Fig. 1 Flow diagram of the study population. For the pre-NACT SWE
study, only 56 patient results were analyzed because the first 6
patients were scanned with a different ultrasound machine. NACT,
neoadjuvant chemotherapy; SWE, shear wave elastography
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American Society of Clinical Oncology (ASCO)/College
of American Pathologists (CAP) guidelines [25], immu-
nohistochemical HER2 scores or of 0 and 1+ were con-
sidered negative and a score of 3+ was scored as
positive. Equivocal HER2 immunostains (HER2 scores of
2+) underwent fluorescence in situ hybridization testing
for HER2 amplification and were classified as per the
ASCO/CAP guidelines. Ki-67 immunostain was reported
as a percentage of positively staining nuclei.
Based on the clinical biomarker data, the tumors were

divided into five molecular subtypes according to the St.
Gallen criteria [26]: Luminal A—ER positive, PR posi-
tive/negative, HER2 negative, and Ki-67 < 14%; Luminal
B (HER2−)—ER positive, PR positive/negative, HER2
negative, and Ki-67 ≥ 14%; Luminal B (HER2+)—ER
positive, PR positive/negative, HER2 positive, and any
Ki-67; HER2 positive—ER negative, PR negative, and
HER2 positive; and triple-negative (TN)—ER negative,
PR negative, and HER2 negative. Among them, Luminal
A, Luminal B (HER2−), and Luminal B (HE2+) types
were ER-positive tumors.

Statistical analysis
The measured SWS was converted to elasticity
expressed in kilopascals [27]. Changes of SWE parame-
ters were also calculated:

Emean1−2 ¼ Emean1−Emean2;

Emean1−3 ¼ Emean1−Emean3;

E max1−2 ¼ Emax1−Emax2;

E max1−3 ¼ Emax1−Emax3;

f mass1−2 ¼ f mass1− f mass2;

f mass1−3 ¼ f mass1− f mass3:

The subscripts 1, 2, and 3 indicate the corresponding
parameters measured at the first, the second, and the
third visits, respectively.
Statistical analysis was conducted with RStudio (RStu-

dio, PBC, Boston, MA). The Kruskal-Wallis test and
Pearson’s chi-squared test were used in the statistical
analysis to calculate the p value for continuous data and
count data, respectively. p < 0.05 was considered indica-
tive of a statistically significant difference. Leave-one-out
cross-validation (LOOCV) [28] was used to assess the ef-
fect of multiple factors on the prediction of the response
to NACT. Receiver operating characteristic (ROC) curve
analysis was used to calculate the area under the curve
(AUC) and determine the cutoff values, as well as the
corresponding sensitivity and specificity. The optimal
cutoff was defined as the point closest to the point (0, 1)
on the ROC curve.

Results
Clinical parameters during the NACT
Patient demographic and tumor characteristics of the 62
patients enrolled in this study are presented in Table 1.
Overall, as expected, compared to other histologic sub-
types, patients with invasive ductal carcinoma had higher
rates of response to NACT (p = 0.03), and higher tumor
grade (grade III) had a higher response rate of 67.7%
compared to 32.3% to lower grade tumors (grade I/II).
Among different ER-positive molecular subtypes, a sig-
nificant difference was found for the response rate (p =
0.03) with the highest response rate seen in Luminal B
(HER2+) type cancers. Table 2 summarizes the MRI vol-
ume (VMRI), mass size (s), and the SWE parameters, in-
cluding the new parameter fmass. The averaged MRI
volume, shear wave elasticity, and mass size decreased
during the NACT treatment for both the responder
group and the non-responder group. Tumor response
was significantly correlated with the values of Emean-ratio1

measured during the first SWE visit; s2, Emean2, and
Emax2 measured during the second SWE visit; and VMRI3,
s3, Emean3, Emax3, Emean-ratio3, Emax-ratio3, and fmass3 mea-
sured during the third SWE visit.
For all three visits, non-responders showed higher av-

eraged elasticity, elasticity ratio, and lower mass charac-
teristic frequency. No significant difference was found in
the change of elasticity, although there was a trend for
the averaged change in stiffness in the responder group
to be higher. A significant difference was found in the
change of the mass characteristic frequency measured
between the first and the third visits (fmass1–3, p < 0.001).
Figures 3 and 4 show the typical SWS maps for a re-
sponder and a non-responder for the three SWE studies,
respectively; Emean and fmass for different molecular sub-
types measured during the three visits are shown in
Figs. 5 and 6, respectively, indicating that stiffness
decreased significantly for the responders, while
remained high for the non-responders; the fmass

remained low for non-responders and increased signifi-
cantly for responders.

Leave-one-out cross-validation for the NACT response
prediction
Selected SWE parameters measured at each visit were
combined using the LOOCV to predict the NACT treat-
ment response, and the models were denoted as the
noninvasive models. The Emean_ratio1 and s1 were com-
bined for the first visit, the Emean2 and s2 were combined
for the second visit, and the Emax_ratio3 and fmass3 were
combined for the third visit. The corresponding ROCs
are shown in Fig. 7a. The AUCs, optimal cutoffs, and
the corresponding specificity and sensitivity are summa-
rized in Table 3. The AUC (0.84, 0.95 CI 0.78–0.97) for
the third visit was the highest among the three visits. A
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significant difference was found for the AUC between
the first and the third visits (p = 0.04). No significant dif-
ference was found between the second and the third
visits (p = 0.29). Therefore, the AUC (0.75, 0.95 CI 0.62–
0.88) for the second visit gave the second best predic-
tion, given the balance between timing and accuracy.
For ER-positive tumors, the Ki-67 index obtained from

the pre-NACT biopsy was then added to the selected
SWE parameters included in the noninvasive models
with the LOOCV to predict NACT response. The corre-
sponding models were denoted as the mixed models,
with ROCs shown in Fig. 7b. The AUCs, optimal cutoffs,
and the corresponding specificity and sensitivity are

summarized in Table 3. Among the mixed models, the
ROC for the first visit showed the best prediction (0.80,
0.95 CI 0.65–0.96). With an optimal of 0.68, the specifi-
city was 0.93 and the sensitivity was 0.70.
The AUCs for both the invasive models and the mixed

models during the three visits are compared in Fig. 7c.
The AUCs for the NACT response prediction with the
MRI volume during the three visits were also plotted.
The corresponding AUCs were 0.62 (0.95 CI 0.45–0.78),
0.73 (0.95 CI 0.46–1.00), and 0.73 (0.95 CI 0.54–0.92),
respectively. No significant difference was found among
the three AUCs. Since most patients only had the first
MRI imaging before NACT, the number of MRI volume

Table 1 Participant demographics and clinical pathological results

Parameters Responder (n = 34) Non-responder (n = 28) p value

Age at enrollment (years)a 52.8 ± 11.3 53.1 ± 16.3 0.72

Pathologic type 0.03*

Invasive ductal carcinoma 29 (63.0) 17 (37.0)

Invasive lobular carcinoma 4 (50.0) 4 (50.0)

Invasive mammary carcinoma with mixed ductal
and lobular features

1 (12.5) 7 (87.5)

Pathologic grade 0.05

I/II 11 (39.3) 17 (60.7)

III 23 (67.7) 11 (32.3)

Estrogen receptor status 0.17

Positive 20 (47.6) 22 (52.4)

Negative 14 (70.0) 6 (30.0)

Progesterone receptor status 0.44

Positive 20 (50.0) 20 (50.0)

Negative 14 (63.6) 8 (36.4)

HER2 status 0.19

Positive 15 (68.2) 7 (31.8)

Negative 19 (47.5) 21 (52.5)

Ki-67 index (%)

Measureda 40.1 ± 25.1 (46.7) 27.0 ± 20.1 (53.3) 0.05

Data missing (76.5) (23.5)

Subtype

ER+ tumor types 0.03*

Luminal A 1 (12.5) 7 (87.5)

Luminal B (HER2-) 8 (47.1) 9 (52.9)

Luminal B (HER2+) 11 (68.8) 5 (31.2)

Other tumor types 0.92

HER2+ 4 (66.7) 2 (33.3)

TN 9 (81.8) 2 (18.2)

Data missing 1 (25.0) 3 (75.0)

Data in parentheses are percentages
ER estrogen receptor, HER2 human epidermal growth factor receptor 2, TN triple-negative
aData are mean ± standard deviation
*p < 0.05; the difference is statistically significant
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results available for the second and third visit was rela-
tively small. Therefore, we also included the AUCs of
the MRI volume adapted from [24] for reference. In con-
trast to the calculation method used in this study, tumor
volume in [24] was computed by summing all voxels

with percentage enhancement (PE) above a nominal
threshold value of 70%, and PE = ((S1-S0)/S0) × 100%,
where S0, S1, and S2 represented the signal intensities on
the precontrast, early postcontrast, and late postcontrast
images, respectively.

Table 2 Summary of the clinical MRI and SWE parameters for the 62 patients

Parameters Responder (n = 34) Non-responder (n = 28) p value

MRI volume (mm3)

VMRI1 104,589.2 ± 254,548.7 (24) 117,407.7 ± 164,022.0 (25) 0.17

VMRI2 24,458.6 ± 65,700.82 (16) 115,921.4 ± 131,323.6 (7) 0.09

VMRI3 16,939 ± 52,964.8 (14) 72,912.7 ± 123,127.2 (14) 0.04*

Mass size (mm)

s1 27.1 ± 13.7 (28) 34 ± 20.5 (28) 0.27

s2 16.5 ± 8.5 (32) 29.0 ± 16.5 (26) < 0.001*

s3 10.6 ± 6.6 (25) 24.3 ± 15.4 (24) < 0.001*

Mean elasticity (kPa)

Emean1 82.2 ± 38.0 (28) 92.1 ± 32.9 (28) 0.76

Emean2 38.5 ± 22.7 (32) 60.0 ± 30.3 (26) 0.01*

Emean3 29.5 ± 25.4 (25) 47.6 ± 33.3 (24) 0.03*

Maximum elasticity (kPa)

Emax1 163.1 ± 55.7 (28) 179.6 ± 38.6 (28) 0.50

Emax2 95.7 ± 51.1 (32) 134.9 ± 59.0 (26) 0.01*

Emax3 63.4 ± 49.8 (25) 114.3 ± 72.9 (24) 0.02*

Ratio of mean elasticity

Emean-ratio1 16.2 ± 14.8 (28) 26.0 ± 21.2 (28) 0.02*

Emean-ratio2 10.9 ± 10.2 (32) 16.8 ± 14.9 (26) 0.07

Emean-ratio3 5.3 ± 6.1 (25) 10.8 ± 9.8 (24) 0.02*

Ratio of maximum elasticity

Emax-ratio1 16.6 ± 14.0 (28) 22.2 ± 14.0 (28) 0.08

Emax-ratio2 14.3 ± 15.1 (32) 23.0 ± 31.8 (26) 0.22

Emax-ratio3 6.1 ± 5.5 (25) 15.6 ± 16.2 (24) 0.02*

Mass characteristic frequency (Hz)

fmass1 125.7 ± 71.2 (28) 119.1 ± 74.8 (28) 0.82

fmass2 135.3 ± 72.2 (32) 105.0 ± 79.2 (26) 0.05

fmass3 243.9 ± 156.3 (25) 102.2 ± 61.2 (24) < 0.001*

Change of elasticity (kPa)

Emean1–2 39.8 ± 35.9 (26) 31.3 ± 42.4 (26) 0.42

Emean1–3 50.9 ± 41.4 (19) 45.6 ± 43.1 (24) 0.46

Emax1–2 57.2 ± 60.8 (26) 48.5 ± 69.7 (26) 0.50

Emax1–3 102.7 ± 56.0 (19) 65.8 ± 77.3 (24) 0.09

Change of mass characteristic frequency (Hz)

fmass1–2 −8.9 ± 97.6 (26) 16.1 ± 86.3 (26) 0.90

fmass1–3 −88.4 ± 98.4 (19) 16.1 ± 55.4 (24) < 0.001*

Data are mean ± standard deviation; data in parentheses are mass numbers
Emean mean elasticity, Emax maximum elasticity, Emean_ratio ratio of the mean elasticity between the mass and the surrounding normal tissue, Emax_ratio ratio of the
maximum elasticity between the mass and the surrounding normal tissue, fmass mass characteristic frequency
The subscripts 1, 2, and 3 indicate the corresponding parameters measured at the first, the second, and the third visit, respectively
*p < 0.05; the difference is statistically significant
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Discussion
The results of our study demonstrate that SWE aids ac-
curate assessment and early prediction of tumor re-
sponse to NACT; for ER-positive tumors, combining the
Ki-67 index with some SWE parameters can further im-
prove the response prediction. Our study showed that

the averaged stiffness decreased for both the responders
and the non-responders. Moreover, the changes in stiff-
ness for both the Emean and Emax between the first two
visits were larger than the changes between the second
and the third visits. The slower drop in stiffness during
the later course of NACT treatment may be due to hyp-
oxia, which is associated with increased matrix stiffness
in the non-necrotic area of the tumors [29, 30].

Fig. 3 Shear wave speed map for a 48-year-old female with HER2+
tumor (grade III invasive ductal carcinoma) measured a before NACT,
b during the mid-course of NACT, and c after NACT but before
surgery. The mean elasticity, maximum elasticity, and mass
characteristic frequency are shown in d. This is a responder with RCB
score of 0. NACT, neoadjuvant chemotherapy; RCB, residual
cancer burden

Fig. 4 Shear wave speed map for a 59-year-old female with Luminal
A tumor (grade II invasive ductal carcinoma) measured a before
NACT, b during the mid-course of NACT, and c after NACT but
before surgery. The mean elasticity, maximum elasticity, and mass
characteristic frequency are shown in d. This is a non-responder
with an RCB score of 1.6. NACT, neoadjuvant chemotherapy; RCB,
residual cancer burden
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Moreover, it has been shown that residual tumor ap-
pears to be stiffer than the fibrous tissue left for the pCR
[22]. These changes in stiffness can also be detected with
SWE during the NACT treatment [8, 31].
The fmass is a newly introduced SWE parameter for

breast cancer characterization, and a lower fmass value is
significantly correlated with poor histologic prognostic
factors. The average fmass value for the non-responders
stayed relatively constant throughout the NACT treat-
ment. Recalling the definition of fmass, this result

indicated that the change of SWS and mass size during
the NACT was such that the net effect on fmass was min-
imal for the non-responders. This study showed that the
averaged fmass for the responders was higher than that
for the non-responders during all three visits. For the
third visit, a significant difference was found among the
responders and non-responders. Among the responders,
there was no significant difference between fmass1 and
fmass2. When compared to the average fmass1, the average
fmass3 significantly increased by 70%, indicating that the

Fig. 5 The mean shear wave elasticity measured before NACT, at the mid-course of NACT, and after NACT but before surgery for different
molecular subtypes: a–c Luminal A type, d–f Luminal B (HER2-) type, g–i Luminal B (HER2+) type, j–l HER2+ type, and m–o TN type. NACT,
neoadjuvant chemotherapy; TN, triple-negative
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effect of size reduction was dominant on fmass (compared
to the change of minimum SWS) after the mid-course of
NACT. A similar trend was observed in each molecular
subtype. However, the average Emean decreased continu-
ously throughout the NACT. When compared to the
first measurement, the average Emean decreased by 48%
during the second visit and by 62% during the third visit.
Therefore, fmass could be used as a useful indicator to
determine the end-of-treatment point for the NACT for
responders. Currently, response to NACT is routinely
assessed using MRI, clinical ultrasound, and mammography

[22]. The addition of fmass could further facilitate the
individualized NACT treatment plan. We plan to extend
our study to a larger number of patients and with more
frequent fmass measurements in the course of NACT to
further investigate the role of fmass in predicting earlier
response to NACT.
Predictions of response to NACT with the noninvasive

models which combine the SWE parameters show
promising results for all three visits. To balance the tim-
ing and accuracy, the parameters obtained during the
mid-course of NACT could be used for evaluating the

Fig. 6 The mass characteristic frequency measured before NACT, at the mid-course of NACT, and after NACT but before surgery for different
molecular subtypes: a–c Luminal A type, d–f Luminal B (HER2-) type, g–i Luminal B (HER2+) type, j–l HER2+ type, and m–o TN type. NACT,
neoadjuvant chemotherapy; TN, triple-negative
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NACT treatment outcome. Similarly, a previous study
showed that the optimal time for early evaluation to
identify patients who would be responsive to treatment
was after 2 cycles of treatment and immediately before
the third cycle of the therapy [29].
The Ki-67 index is an important predictive factor for

the effectiveness of NACT [32, 33]. Breast cancer with a
high Ki-67 index level has repeatedly been shown to re-
spond better to chemotherapy. A previous study also
showed that there was no pathological complete re-
sponse in cases with Ki-67 < 25% [34]. In this study, we
found that the average Ki-67 value was higher in re-
sponders than in non-responders. Mixed models, which
combined the Ki-67 index obtained before NACT with
the noninvasive models, were proposed for ER-positive
tumors. When compared to the noninvasive model for
the second visit, an earlier prediction with improved ac-
curacy could be achieved with the mixed model. Similarly,
the study by Ma et al. has shown the potential value of

adding Ki-67 to shear wave parameters for better and earl-
ier prediction of the response to therapy [35].
Both the noninvasive models and the mixed models

were generated with the leave-one-out cross-validation
analysis, which included internal validations to quantify
any optimism in the predictive performance and adjust
the models for overfittings [36, 37]. Therefore, the
models proposed in this paper for predicting the re-
sponse to NACT have high reproducibility and stability.
Studies showed that MRI volumetric assessment was

more accurate than the diameter for earlier detection of
treatment response [22, 24]. The volume from clinical
MRI was also recorded in this study for all three visits.
Though the MRI volume data was limited in this study,
the ROCs were comparable to the results from a previous
study with a larger patient number. Moreover, both the
AUCs from the noninvasive model for the second visit
and from the mixed model for the first visit were higher
than the MRI volume prediction at the corresponding

Fig. 7 a ROCs for the three noninvasive models generated with the leave-one-out cross-validation, which is based on the combination of
Emean_ratio1 and s1 for the first visit, the combination of Emean2 and s2 for the second visit, the combination of Emax_ratio3 and fmass3 for the third
visit. b ROCs for the three mixed models which were generated with the Ki-67 index added to the noninvasive models for ER-positive tumors. c
Comparisons of the AUCs for the ROCs for NACT response prediction with the MRI volume from reference [23], the MRI volume in this study, the
noninvasive models, and the mixed models. The 1st visit for the MRI volume measurement in [23] was after the first cycle of NACT treatment.
ROC, receiver operating characteristic; SWE, shear wave elastography; PR, progesterone receptor; NACT, neoadjuvant chemotherapy; AUC, area
under the curve; MRI, magnetic resonance imaging; IHC, immunohistochemical

Table 3 Summary of the ROCs for the leave-one-out cross-validation analysis

Parameters AUC Cutoff Specificity Sensitivity

Noninvasive model

The first visit 0.64 (0.95 CI 0.49–0.79) 0.51 0.75 0.57

The second visit 0.75 (0.95 CI 0.62–0.88) 0.38 0.75 0.77

The third visit 0.84 (0.95 CI 0.78–0.97) 0.58 0.84 0.71

Mixed model

The first visit 0.80 (0.95 CI 0.65–0.96) 0.68 0.93 0.70

The second visit 0.80 (0.95 CI 0.64–0.95) 0.53 0.73 0.72

The third visit 0.79 (0.95 CI 0.60–0.98) 0.62 0.73 0.83

AUC area under the curve, CI confidence interval, ROC receiver operating characteristic
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time point. However, the results of proposed prediction
models could vary among different study populations.
Therefore, a future study based on a larger population will
be helpful for comparing the results from the MRI predic-
tion and the proposed models in this study.
There are some limitations in this study. Firstly, the

sample size was relatively small; moreover, as shown in
the flowchart, some patients did not complete all three
visits for the SWE studies, leading to some missing data.
However, the leave-one-out cross-validation has been
applied to compensate for the sample number limitation.
Secondly, this is a one-center study. Thus, a multicenter
study with a larger population is required to further in-
vestigate the role of SWE parameters in NACT response
prediction.
In summary, this study investigated the application of

SWE in discriminating the responders from non-
responders to chemotherapy, before NACT, during the
mid-course of NACT, and after NACT but prior to sur-
gery. In conclusion, when the noninvasive model is used
for response prediction, a balance between the timing
and accuracy is achieved when the Emean2 and s2 are
measured during the mid-course of the treatment. For
ER-positive tumors, an even earlier and more accurate
response prediction could be obtained with the combin-
ation of Ki-67 index, Emean_ratio1, and s1 measured before
the treatment using the mixed model. Moreover, this
study also shows that fmass is useful in determining the
endpoint of the NACT.

Conclusions
Our study findings highlight the value of SWE estima-
tion in the mid-course of NACT for the early prediction
of treatment response. For ER+ tumors, the addition of
Ki-67 improves the predictive power of SWE. Moreover,
fmass is presented as a new marker in predicting the
endpoint of NACT in responders. These results may
facilitate personalizing the treatment regimens of pa-
tients with breast cancer receiving NACT. Furthermore,
the role of these SWE parameters can be validated in the
future by carrying out a multicenter prospective study
with a larger patient population.
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