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Abstract

Background: Models that accurately predict risk of breast cancer are needed to help younger women make
decisions about when to begin screening. Premenopausal concentrations of circulating anti-Mdllerian hormone
(AMH), a biomarker of ovarian reserve, and testosterone have been positively associated with breast cancer risk in
prospective studies. We assessed whether adding AMH and/or testosterone to the Gail model improves its prediction
performance for women aged 35-50.

Methods: In a nested case-control study including ten prospective cohorts (1762 invasive cases/1890 matched controls)
with pre-diagnostic serum/plasma samples, we estimated relative risks (RR) for the biomarkers and Gail risk factors using
conditional logistic regression and random-effects meta-analysis. Absolute risk models were developed using these RR
estimates, attributable risk fractions calculated using the distributions of the risk factors in the cases from the consortium,
and population-based incidence and mortality rates. The area under the receiver operating characteristic curve (AUC) was
used to compare the discriminatory accuracy of the models with and without biomarkers.

Results: The AUC for invasive breast cancer including only the Gail risk factor variables was 55.3 (95% Cl 534, 57.1). The
AUC increased moderately with the addition of AMH (AUC 57.6, 95% Cl 55.7, 59.5), testosterone (AUC 56.2, 95% Cl 544,
58.1), or both (AUC 58.1, 95% Cl 56.2, 59.9). The largest AUC improvement (4.0) was among women without a family
history of breast cancer.

Conclusions: AMH and testosterone moderately increase the discriminatory accuracy of the Gail model among women
aged 35-50. We observed the largest AUC increase for women without a family history of breast cancer, the group that
would benefit most from improved risk prediction because early screening is already recommended for women with a

family history.
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Background

Breast cancer risk prediction models can help women
and their health providers make decisions about screen-
ing and chemoprevention. While women aged 50 are
uniformly included in mammographic screening recom-
mendations, the guidelines regarding at what age to start
screening are inconsistent, varying from age 40 to 50,
particularly for women without a family history of breast
cancer (https://www.uspreventiveservicestaskforce.org/
Page/Document/UpdateSummaryFinal/breast-cancer-scr
eeningl [1-7]). Improvements in individualized risk as-
sessment would therefore be particularly valuable for
women younger than 50 to decide when to start mam-
mographic screening. A risk prediction model with high
accuracy could also help women decide whether to take
tamoxifen for breast cancer prevention. Younger women
are more likely to benefit from tamoxifen than older
women because they have lower risks of tamoxifen-re-
lated adverse events [8—13]. Nonetheless, an accurate es-
timate of risk of breast cancer is critical in calculating
the benefit-risk index for these women.

The Gail model 2 [14] is the most widely studied
breast cancer risk prediction model for women without
a strong family history of breast cancer or an inherited
mutation associated with high susceptibility. The breast
cancer risk factors in the model are age, age at menar-
che, age at first live birth, number of previous breast bi-
opsies, history of atypical hyperplasia, and first-degree
family history of breast cancer [14]. The Gail model 2
was initially developed using data from white women,
and race/ethnicity-specific adaptations of the model
were subsequently developed. The model was imple-
mented in the National Cancer Institute’s Breast Cancer
Risk Assessment Tool (BCRAT) which is available on-
line. The model has been validated in studies in the USA
and several Western European countries, including stud-
ies of younger women [15-23]. It has been shown in
most studies to be well calibrated [14, 15, 23], i.e,, it pre-
dicts fairly accurately the number of women who will
develop breast cancer overall and in subgroups defined
by risk factors. However, the model has limited discrim-
inatory accuracy, i.e., it does not separate well women
who subsequently develop cancer from those who do
not [15].

We recently showed that the premenopausal circulat-
ing concentration of anti-Miillerian hormone (AMH), a
marker of ovarian reserve, is associated with risk of
breast cancer [24]. Circulating testosterone concentration,
measured before [25-30] or after menopause [31-38], has
also been consistently associated with breast cancer risk.
AMH and testosterone are fairly stable during the men-
strual cycle and temporal reliability studies have shown
that a single measurement of AMH or testosterone can be
used to rank premenopausal women with regard to their
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average hormone level over a several-year period with rea-
sonable accuracy [25, 34, 39-42]. They are also relatively
inexpensive to measure. Thus, these two hormones are
good candidate biomarkers for inclusion in breast cancer
risk prediction models for younger women, who have
large fluctuations in other hormone-related biomarkers
during the menstrual cycle.

The objective of this study was to evaluate whether
adding circulating AMH and/or testosterone measure-
ments to the Gail model improves its discriminatory ac-
curacy among women aged 35-50.

Methods

Study subjects

Participants in a nested case-control study in a consor-
tium of ten prospective cohorts from the USA, UK, Italy,
and Sweden [24] were included in this study. The parent
cohorts were the Generations Study (BGS); CLUE II;
Columbia, MO Serum Bank (CSB); Guernsey Cohort;
New York University Women’s Health Study (NYUWHS);
Nurses’ Health Studies (NHS) I and II; Northern Sweden
Mammary Screening Cohort (NSMSC); Hormones and
Diet in the Etiology of Breast Cancer (ORDET); and the
Sister Study (Sister). A brief description of the cohorts can
be found in Ge et al. [24]. Each cohort was approved by
its institutional review board, and informed consent was
obtained from each participant.

Incident breast cancer cases were ascertained by each
cohort through self-report on follow-up questionnaires
and/or linkages with local, regional, or national cancer
registries. All cases of incident invasive breast cancer di-
agnosed among women who were 35-50 at the time of
blood donation were included except in the NHS co-
horts, which further limited case selection to women
who were premenopausal and between the ages of 35—
50 at diagnosis. Controls were selected within each co-
hort using incidence density sampling. One control was
selected for each case (except for the Sister Study, which
matched 1:2). Matching variables included age and date
of blood donation, and race/ethnicity [24]. Many of the
cohorts matched on additional variables, for example,
phase or day of menstrual cycle and technical sample
characteristics, such as time between collection and pro-
cessing. Women who were ever users of hormone ther-
apy (HT) or current users of oral contraceptives (OCs)
were excluded.

Laboratory measurements

AMH was measured in serum or plasma samples from
women who were premenopausal at the time of blood
donation using the picoAMH assay (ANSH laboratories)
[24]. Women who had AMH concentrations below the
lowest detectable value (LDV) (< 10% of samples for
eight cohorts and <20% for the remaining two cohorts)
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were classified into the lowest quartile for analyses (see
“Statistical methods”). Because it has previously been
shown that postmenopausal women have AMH concen-
trations below the LDV [43, 44], we did not measure
AMH in postmenopausal women (23 cases and 40 con-
trols) but also classified them into the lowest quartile.

Total testosterone was measured for all subjects in
CLUE 1I, NHS, and NSMSC and for the matched sets
for which it was not measured previously for the other
cohorts. Measurements were done in the Immunochem-
ical Core Laboratory of the Mayo Clinic by liquid chro-
matography-tandem mass spectrometry (LC-MS/MS).
Assay coefficients of variation (CVs) were calculated using
blinded quality control samples. For AMH, the mean
intra-batch CV was 5.1% and the inter-batch CV was
21.4%. For testosterone, all intra- and inter-batch CVs
were <10.6%. Previous testosterone measurements were
performed as described in [25, 26, 29, 45-48].

Statistical methods

Relative risk estimation

We estimated cohort-specific relative risks (RRs) associ-
ated with the breast cancer risk factors included in the
Gail model and with each of the biomarkers (testoster-
one and AMH) using conditional logistic regression
(odds ratio estimates are referred to throughout as
relative risks (RRs), by convention). Cohort-specific
RRs were combined to obtain consortium-wide RR
estimates using the random-effects meta-analytic method.
I? and Q-tests were used to test for heterogeneity across
cohorts.

We used the same coding as the BCRAT for age at
menarche (< 12 years, 12 to 13, or > 14) and age at first
live birth (<20, 20 to 24, 25 to 29/nulliparous, or > 30
years) [14]. Family history of breast cancer was coded
using a three-category variable (0/1/>1 affected rela-
tive(s)). For cohorts that collected family history as a
yes/no variable, women who responded yes were in-
cluded in the intermediate category (1 affected relative).
History of breast biopsy was coded as yes/no. We did
not include an interaction between breast biopsy and
age (< 50/= 50 years) because this study was restricted to
younger women (<50). The interaction term between
age at first birth and number of affected relatives was
not statistically significant for any cohort and thus not
included in the model. To be consistent with BCRAT,
which imputes missing data to the lowest risk category,
we imputed missing data as follows: age at menarche: >
14 for 35 cases (1.5%) and 49 controls (1.9%); age at first
live birth: <20 for 5 cases (0.2%) and 7 (0.3%) controls;
and number of breast biopsies: 0 for 42 cases (1.8%) and
40 controls (1.6%). Data on history of atypical hyperpla-
sia were not available from any of the cohorts and this
variable was set to the lowest risk category as is the case
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when “unknown” is entered in the BCRAT. Because we
could not exclude the possibility that cohort differences
in the AMH and testosterone concentration distribu-
tions were related to collection/handling/storage of sam-
ples [24], biomarkers were categorized into quartiles
using cohort-specific cutpoints and modeled as ordered
categorical variables.

Absolute risk estimation

We used the method described by Gail et al. [22, 49] to
estimate the 5-year absolute breast cancer risk for each
participant. We used consortium-wide estimates of RRs
for the Gail variables and biomarkers (calculated as de-
scribed above), consortium-based estimates of attribut-
able risk fractions, and population-based breast cancer
incidence and mortality rates. Attributable risk fractions
were estimated using consortium-wide RR estimates and
distributions of the Gail variables and biomarkers in the
cases (excluding the Sister Study because all women in
this study had a family history of breast cancer) [49].
Breast cancer incidence and competing mortality (i.e.,
non-breast cancer mortality) rates were obtained from
the countries of the participating cohorts (US, UK, Italy,
and Sweden) for the relevant 5-year age categories
(35-39, 40-44, 45-49) and calendar years of blood
collection (Additional file 1: Table S1).

For comparison, we also calculated the 5-year absolute
risks of developing breast cancer using the BCRAT SAS
macro (available at: https://dceg.cancer.gov/tools/risk-as-
sessment/bcrasasmacro), which uses US population-
based RR estimates [8, 14, 15, 22]. We refer to results
using these calculations as “BCRAT” (to distinguish
them from results based on RRs estimated from our
dataset, called “Gail model”).

Assessment of discriminatory accuracy

We estimated the area under the receiver operating
characteristic curve (AUC) based on the 5-year absolute
risk estimates from the BCRAT, the Gail model, and the
Gail model with addition of AMH and/or testosterone.
Summary AUCs were estimated from the cohort-specific
AUCs using random-effects meta-analytic methods.
AUCs were also estimated within subgroups, i.e., by age,
estrogen receptor (ER) status of the tumor, and Gail risk
score (< 1%/>1%), and for women without a family his-
tory of breast cancer. AUCs are expressed throughout as
percentages (AUC x 100) for ease of interpretation. Fi-
nally, we assessed reclassification of 5-year absolute risks
upon addition of biomarkers.

Results

Descriptive characteristics of the cases and controls are
shown in Table 1. By design, women were between the
ages of 35-50 at blood donation. About 40% of cases
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Table 1 Descriptive characteristics of invasive breast cancer cases
and matched controls
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Table 1 Descriptive characteristics of invasive breast cancer cases
and matched controls (Continued)

Cases (n=1762) Controls (n=1890) Cases (n=1762) Controls (n = 1890)
Cohort, n Number of benign breast biopsies, n (%)
BGS 230 230 0 or missing® 1339 (76.0) 1559 (82.5)
CLUE Il 87 87 21 423 (24.0) 331 (17.5)
CSB 69 69 0 1311 (744) 1415 (74.9)
Guernsey 124 124 19 382 (21.7) 412 (21.8)
NHS 93 93 >1¢ 69 (39) 63 (3.3)
NHS I 248 250 BMI, kg/m?, n (%)
NSMSC 31 31 <25 1097 (59.9) 1124 (62.6)
NYUWHS 493 496 25-29 420 (24.8) 465 (24.0)
ORDET 214 224 230 234 (154) 289 (134)
Sister 173 286 Missing 11 12
Age at blood donation, years, n (%) AMH cohort-specific quartiles, n(%)
35-40 472 (26.8) 487 (25.8) Q1 365 (20.7) 480 (254)
41-45 708 (40.2) 752 (39.8) Q2 444 (25.1) 468 (24.8)
46-50° 582 (33.0) 651 (34.5) Q3 453 (25.7) 468 (24.8)
Race/ethnicity, n (%) Q4 500 (284) 474 (25
White 1587 (90.1) 1696 (89.7) Testosterone cohort-specific quartiles, n (%)
Black/African American 76 (4.3) 73 (3.9) Q1 423 (24.0) 511 (27.0)
Other or missing 99 (5.6) 121 (64) Q2 414 (23.5) 464 (24.6)
Age at diagnosis, years, n (%) Q3 452 (25.7) 460 (24.3)
35-45 287 (16.3) Q4 473 (26.8) 455 (24.1)
46-50 579 (32.9) BCRAT 5-year risk score (%), n (%)°
51-55 436 (24.7) <0.6% 296 (16.8) 332 (17.6)
56-60 235(133) 0.6-0.99% 679 (385) 765 (40.5)
61-65 141 (8.0) 1-1.66% 525 (29.8) 7(27.3)
> 65 84 (4.8) 1.67-1.99% 110 (6.2) 0 (6.9
Lag time between blood donation and diagnosis, years, n (%) 2-2.99% 115 (6.5) 5(6.1)
0-2 274 (15.6) 23% 3720 31 (1.6)
3-5 420 (23.8) ER status, n (%)
6-10 443 (25.1) ER-positive 1139 (79.8)
1-15 286 (16.2) ER-negative 289 (20.2)
16-20 201 (11.4) Unknown 334
> 20 138 (7.8) Note: Cases and controls were matched 1:1 for all cohorts except for Sister
Study which matched 1:2
Age at menarche, years, n (%) 2All cases had age at blood donation < 50, though for 24 sets, matched
<12 376 (21.3) 411 (217) Eontrols ag'es wer<=j <512 years. at .blood dopa.tion .
To be consistent with BCRAT, which imputes missing data to the lowest risk category,
12-13 976 (55.4) 1012 (53.5) we imputed missing data as follows: age at menarche: > 14 for 35 cases (1.5%) and 49
o 4eroa o 17 5 e 2 S s 02 7 02 o
Age at first live birth, years, n (%) ;/(-\)smdbci)::dlrilnBj:R/r-\nT(;:;ISI|parous and women who were 25-29 at first birth were
<20 or missing® 4 (6.5) 143 (7.6) %The number of first-degree family members with breast cancer was coded as 0, 1,
ey o o> e eliesFor ot it ol oy o 22 s vl
25-29¢ 473 (26.8) 511 (27.1) ®Calculated using the following variables: race, age at menarche, age at first
live birth, number of breast biopsies, and number of first-degree family
230 304 (17.3) 307 (16.2) members with breast cancer, history of atypical hyperplasia was missing for
Nulliparous 4(235) 408 215) all cohorts and set to “no.” Gail model 2 rates and parameters were used as

described in [14]
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donated blood samples in the 5 years preceding breast
cancer diagnosis. Consistent with known breast cancer
risk factor associations, cases were more likely than con-
trols to have had a breast biopsy, to have a family history
of breast cancer, and to be nulliparous or have had their
first live birth after age 30. The vast majority of women
had low to average BCRAT 5-year risk scores (over half
of the women had a risk < 1%), as expected in a study of
younger women.

Table 2 shows the RR estimates for invasive breast
cancer associated with Gail model risk factors and bio-
markers. The RRs for the Gail model variables did not
change appreciably with the addition of biomarkers to
the model. When individually added to the Gail model,
AMH was associated with a 55% increase in risk and tes-
tosterone with a 27% increase in risk for the 4th vs. 1st
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quartiles; when added together, AMH was associated
with a 53%, and testosterone with a 22%, increase.
Table 2 also shows the attributable risk fraction esti-
mates for each unit increase in risk factor or biomarker.
For Gail model variables, the risk attributable to age at
menarche was low (< 1%), while attributable risks were
higher for family history of breast cancer (7%), history of
breast biopsy (8%), and age at first pregnancy (18%). The
attributable risk for a one-quartile increase in AMH was
19% and for testosterone 9%. In a sensitivity analysis re-
stricted to the five US cohorts included in our study, the
attributable risks calculated using US population risk
factor distributions were similar to estimates based on
risk factor distributions in the cases (data not shown)
[22, 49-51]. Cohort-specific RR estimates for invasive
breast cancer from the model including both biomarkers

Table 2 Relative risks calculated using random-effects meta-analysis and attributable risk fractions

Risk factor RR estimates

Attributable risk (%) for

Gail+ AMH + testosterone

Gail Gail + AMH Gail + testosterone Gail + AMH + testosterone model®
Age at menarche, years 0.67%
<12 1.00 (0.90, 1.11) 1.02 (091, 1.13) 1.00 (0.90, 1.11) 1.01 (091, 1.12)
12-13 1.00 (090, 1.11) 101 (091, 1.12) ~ 1.00 (090, 1.11) 1.01 (091, 1.12)
> 14 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)
Age at first live birth, years 1847%
<20 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)
20-24 1.11 (1.00, 1.24) 1.12 (1.00, 1.25) 1.12 (1.00, 1.26) 1.12 (1.00, 1.26)
25-29 or nulliparous 1.24 (1.11,1.38) 1.25(1.12,1.39) 126 (1.12, 1.41) 1.26 (1.13,1.42)
=30 1.38 (1.23, 1.54) 140 (1.25, 1.56) 141 (1.26, 1.58) 142 (1.27, 1.60)
Number of benign breast biopsies 8.13%
0 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)
21 1.58 (1.33, 1.88) 1.55(1.31, 1.85) 1.59 (1.34, 1.89) 1.56 (1.31, 1.86)
Number of first-degree family members with breast cancer® 6.56%
0 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)
1 1.58 (1.32, 1.89) 1.57 (1.31, 1.88) 1.57 (1.30, 1.88) 1.56 (1.30, 1.87)
>1 249 (2.08, 2.99) 247 (2.06, 2.96) 245 (2.04, 2.94) 243 (2.03,292)
AMH 19.38%
Q1 - 1.0 (ref) - 1.0 (ref)
Q2 - 1.16 (1.04, 1.29) - 1.15(1.03, 1.28)
Q3 - 1.34 (1.20, 1.49) - 1.33(1.19, 1.48)
Q4 - 1.55(1.39, 1.73) - 1.53 (1.37, 1.70)
Testosterone 9.48%
Q1 - - 1.0 (ref) 1.0 (ref)
Q2 - - 1.08 (1.02, 1.15) 1.07 (1.00, 1.14)
Q3 - - 1.17 (1.10, 1.25) 1.14 (1.07, 1.22)
Q4 - - 1.27 (1.19, 1.35) 1.22 (1.15,1.30)

*The number of first-degree family members with breast cancer was coded as either 0, 1, or > 1 affected relatives. For cohorts that collected family history as a
no/yes variable, “yes” answers were assigned to the intermediate category (1 affected relative)

PWe used the method described in Bruzzi et al. [49] to estimate attributable risk for a one-category increase (or decrease for age at menarche) in the risk factor.
The Sister study was excluded from attributable risk estimation because all participants had a family history of breast cancer
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are shown in Additional file 1: Figure S1. Tests for het-
erogeneity by cohort were not statistically significant.
Removing one cohort at a time from the analysis did not
change the RRs appreciably (data not shown).

Figure 1 and Table 3 show the AUCs based on
BCRAT, the Gail model, and the Gail model with bio-
markers. The summary AUC for invasive breast cancer
using the BCRAT was 55.0 (95% CI 53.1, 56.8). The
AUC in our implementation of the Gail model was very
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similar (AUC 55.3, 95% CI 53.4, 57.1). The AUC in-
creased with the addition of AMH (AUC 57.6, 95% CI
55.7, 59.5), testosterone (AUC 56.2, 95% CI 54.4, 58.1),
and both AMH and testosterone (AUC 58.1, 95% CI
56.2, 59.9). The percent increase relative to the Gail
model was statistically significant for the model includ-
ing AMH (4.2%, p = 0.007) and the model including both
AMH and testosterone (5.1%, p = 0.001), but not testos-
terone alone (1.6%, p = 0.086). AUCs were similar when

45 56.25

BCRAT
BGS —_— 55.61[50.33, 60.88]
CLUE Il ~ 56.32 [47.76, 64.87]
Columbia . 54.95 [45.22, 64.67]
Guernsey _— 53.40 [46.19, 60.62]
NHS _— 54.86 [46.55, 63.16]
NHsII — . 55.70 [50.65, 60.75]
NSMSC - 63.06 [49.01, 77.11]
NYUWHS : — 54.49 [50.90, 58.08]
ORDET ——-—c 51.14 [45.71, 56.57]
Sister ——y 57.48 [52.02, 62.95]
RE Model : —— 54.96 [53.08, 56.83]
Gail
BGS — 55.26 [49.99, 60.53]
CLUE Il : 57.19 [48.66, 65.71]
Columbia - 55.39 [45.67, 65.11]
Guernsey —_— 53.64 [46.43, 60.85]
NHS '—c 55.23 [46.88, 63.57]
NHSII Lo— 56.39 [51.35, 61.44]
NSMSC + 58.17 [43.73, 72.61]
NYUWHS : —l—— 55.15[51.57, 58.73]
ORDET —_—— 51.14 [45.70, 56.58]
Sister D o— 58.02 [52.58, 63.47]
RE Model : — 55.26 [53.38, 57.14]
p b
Gail+AMH
BGS — 54.84 [49.58, 60.10]
CLUE Il 57.91[49.41, 66.42]
Columbia 63.14 [53.75, 72.52]
Guernsey —_— 54.64 [47.43, 61.84]
NHS — 60.13 [52.00, 68.27]
NHsII —_— 58.85[53.86, 63.83]
NSMSC 66.18 [52.44, 79.92]
NYUWHS —_— 56.75 [53.18, 60.32]
ORDET —_— 55.46 [50.07, 60.84]
Sister —_— 60.47 [54.97, 65.97]
RE Model —_— 57.59 [55.73, 59.46]
Gail+Testosterone °
BGS i 55.49 [50.21, 60.78]
CLUE Il - 58.34 [49.85, 66.83]
Columbia : 58.66 [49.12, 68.21]
Guernsey e — 55.14 [47.95, 62.33]
NHS _— 53.71 [45.36, 62.07]
NHsII Do——— 57.48 [52.45, 62.51]
NSMSC o 63.48 [49.46, 77.49]
NYUWHS Do—a— 55.73 [52.16, 59.31]
ORDET —_— 52.67 [47.25, 58.09]
Sister : —_— 50.22 [53.83, 64.61]
RE Model —_ 56.24 [54.37, 58.11]
Gail+AMH+Testosterone °
BGS 54.93 [49.66, 60.20]
CLUE Il 58.84 [50.38, 67.30]
Columbia 64.40 [55.15, 73.65]
Guernsey —_— 56.00 [48.83, 63.16]
NHS —_— 59.13 [50.92, 67.35]
NHSII —_— 59.24 [54.26, 64.21]
NSMSC 67.07 [53.51, 80.62]
NYUWHS — 57.04 [53.48, 60.60]
ORDET ————y 56.23 [50.85, 61.62]
Sister ——y 61.04 [55.57, 66.51]
RE Model — 58.06 [56.20, 59.92]
T

T T 1
67.5 78.75 90

Fig. 1 Area under the receiver operating curve (AUC) estimates and 95% confidence intervals
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Table 3 AUCs by subgroups
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BCRAT® Gail®

Gail + AMHP

Gail + testosterone® Gail + AMH + testosterone®

Total AUC 55.0 (53.1, 56.8) 553 (534, 57.1)

Age at blood donation, years

<40 559 (52.3, 59.6) 56.2 (52.5, 59.8)
41-45 552 (52.2,58.2) 549 (51.9, 57.9)
>45 586 (554, 61.9) 586 (553,61.9)

Gail 5-year risk score, %
<1° 53.2(50.2, 55.2)
>1° 56.6 (53.7, 59.5)

52.9 (504, 55.4)

58.2 (55.3,61.0)

Estrogen receptor status

56.1 (53.8, 584)

558 (51.1,60.5)

Number of first-degree family members with breast cancer, n (%)
0 522 (500, 54.3) 52.8 (506, 55.0)
21 559 (52.1, 59.6) 55.0 (51.3,587)

ER-positive 564 (54.1, 58.8)

ER-negative 56.8 (52.1,61.5)

57.6 (55.7, 59.5)

57.5(53.8,61.1)
56.3 (533, 59.2)
60.6 (574, 63.8)

547 (522, 57.2)
59.1 (56.3, 62.0)

589 (56.2,61.6)
580 (533, 62.7)

55.6 (52.9, 58.3)
57.2 (534, 60.9)

56.2 (544, 58.1) 58.1 (56.2, 59.9)
573 (53.7,61.0)
56.0 (53.0, 589)
60.9 (57.7, 64.1)

58.1 (544, 61.8)
56.6 (53.7, 59.6)
62.1 (589, 65.3)

543 (518, 56.8)
574 (543, 60.5)

559 (534, 583)
59.2 (56.3, 62.1)

57.2 (549, 59.5)
57.1(524,61.8)

59.2 (563, 62.0)
57.1(523,61.8)

54.6 (524, 56.8)
564 (52.7, 60.1)

56.8 (54.6, 58.9)
572 (520, 624)

Estimates from the model as implemented in BCRAT and using BCRAT regression coefficients
PModel including Gail model variables and biomarker(s) and using regression coefficients in Table 2

“Median 5-year absolute risk was approximately 1%

both in situ and invasive cases were considered together
(Additional file 1: Figure S4).

Table 3 also shows AUCs in subgroups. Small im-
provements in AUCs with the addition of both bio-
markers to the Gail model were observed in each
age-at-blood-donation subgroup, with the largest in-
crease (3.5, a relative increase of 6.0%) for women ages
45-50, for whom the Gail model also had the highest
AUC (58.6). AUC improvements for women with a
5-year risk lower than 1% were greater (3.0, a relative in-
crease of 5.7%) than those for women with risk of at
least 1% (1.0, a relative increase of 1.7%). AUC improve-
ment was larger for ER-positive tumors (2.8, a relative
increase of 5.0%) than ER-negative tumors (0.3, a relative
increase of 0.5%). We also found that the AUC increased
(4.0, a relative increase of 7.6%) with the addition of
biomarkers for the subgroup of women without a
family history of breast cancer, but less so for women
with a family history (2.2, a relative increase of 4.4%).

Figure 2 shows the histograms displaying absolute
risk estimates of cases and controls for the Gail
model with and without testosterone and AMH.
Though there was substantial overlap between the
distributions in cases and controls, the distribution
was skewed to the right for cases. Adding the bio-
markers resulted in a slight shift of the distribution
to the right for cases (9.3% had risk estimates move
from below to above 1%, while 8.1% moved down,
Table 4) and a slight shift to the left for controls
(8.7% had risk estimates move from below to above
1%, while 10.4% moved down, Table 4).

Discussion

Circulating AMH and testosterone moderately increased
the discriminatory accuracy of the Gail breast cancer
risk prediction model among women ages 35-50 in our
study of 1762 invasive cases and 1890 matched controls.
Discriminatory accuracy improved with the addition of
either AMH or testosterone, though the improvement
was only statistically significant for AMH. In the model
including both biomarkers, we observed an AUC in-
crease from 55.3 to 58.1 (relative increase of 5.1%).
Overall, inclusion of biomarkers tended to moderately
increase 5-year risk estimates for cases and reduce esti-
mates for controls.

The increase in AUC resulting from the addition of
biomarkers was slightly higher in analyses limited to
women without a family history of breast cancer than
that observed in analyses including all women. This is of
interest because the majority of breast cancers occur
among women without a family history. Further, women
without a family history are the group in which improve-
ments in risk prediction could have the most impact,
since it is already recommended that women with a fam-
ily history start screening early (https://www.uspreventi
veservicestaskforce.org/Page/Document/UpdateSummar
yFinal/breast-cancer-screeningl).

While risk prediction models applicable to younger
women would be valuable for screening and preventive
treatment decision-making, less work has focused on
this group of women as compared to older women
[52-54]. To our knowledge, risk prediction estimation
has been assessed for premenopausal women from
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the general population in six studies [55-60]. Most of
these assessed or modified the Gail model, but some
had extensive missing data for Gail model variables
[55, 57] or did not assess discriminatory accuracy
[57]. Others developed new models for which validation
has not yet been attempted in independent studies
[55, 60]. Testosterone was added to the Gail model in
one study that included premenopausal women [56]. In
this study of 430 cases/684 controls, the addition of hor-
mones, including testosterone, to the Gail model did not

Table 4 Absolute risk reclassification upon adding AMH and
testosterone to the Gail model

Gail + AMH + Moved ~ Moved
testosterone up (%) down (%)
5-year risk
Reclassification in cases <1% 21%
Gail 5-year risk <1% 588 163
2 1% 143 868
9.3% 8.1%
Reclassification in controls <1% 21%
Gail 5-year risk <1% 708 165
21% 196 821
8.7% 10.4%

result in any change in the AUC for premenopausal
women [56]. Unlike this study, the increase in AUC that
we observed with the addition of testosterone is in agree-
ment with the premenopausal testosterone-breast cancer
risk association that has been consistently observed
[25-30]. AMH has not been included in breast cancer
risk prediction models previously.

Some studies, though not all [61, 62], have reported
correlations of BMI with testosterone and AMH in pre-
menopausal women [39, 63, 64]. These correlations have
generally been weak, including in our study (Spearman
partial correlations with BMI among controls, adjusted
for cohort and age, were 0.06 for testosterone, and -
0.07 for AMH). This suggests that including BMI in the
model, though it would be easier than including bio-
markers because BMI does not require a blood draw,
would not capture the impact of AMH and testosterone
on breast cancer risk.

The AUC increases with the addition of AMH, and
testosterone were greater for ER-positive than ER-nega-
tive tumors, as expected since AMH was more strongly
associated with risk of ER-positive than ER-negative tu-
mors in our study [24]. Though AMH and estrogen con-
centrations are not strongly correlated in premenopausal
women [39, 64], AMH is strongly associated with age at
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menopause, at which time estrogen exposure decreases.
This association may explain the greater improvement
in prediction of estrogen-sensitive tumors than
ER-negative tumors with the inclusion of AMH in the
Gail model.

Several other risk factors have been proposed for in-
clusion in the Gail model to improve discriminatory ac-
curacy, with varying applicability to premenopausal
women. Mammographic density has been shown to in-
crease the discriminatory accuracy of the Gail model in
several studies [51, 55, 65, 66], but density is not avail-
able yet to women deciding when to begin screening.
Endogenous hormones other than AMH and testoster-
one, such as estrogen, progesterone, and prolactin, fluc-
tuate during the menstrual cycle and/or are not
consistently associated with risk in premenopausal
women [31, 67]. Common, low-penetrance genetic risk
factors may also have utility for risk prediction in
younger women. Single nucleotide polymorphisms
(SNPs), and their combined risk scores (ranging from
6 to 77 SNPs across studies), have increased Gail
model AUCs (AUC increases of 0.6-7.0) in most
studies [54, 59, 68-75], including among younger
women [59]. Inclusion of a 77-SNP score increased
the AUC from 0.64 to 0.66 among women < 50 years
of age [59], an increase comparable to that observed
with the addition of AMH and testosterone. Because
most genetic variants that are associated with breast
cancer risk are not in hormone-related genes, they
are likely to contribute to risk prediction independ-
ently of AMH and testosterone. Thus, models includ-
ing both genetic variants and hormone biomarkers as
a panel may perform better than models including
only one type of marker.

We could not directly assess the calibration of the
model including biomarkers because AMH and testos-
terone were measured only in matched case-control sets;
thus, the expected number of cases in the full cohorts
using the model including biomarkers could not be esti-
mated [76]. Another method to indirectly assess calibra-
tion is inverse probability weighting [77], which uses the
probability of being selected into the nested case-control
study as a weighting factor to estimate the expected
number of cases in the cohort. However, closely matched
nested case-control studies, as in this consortium, yield
high selection probabilities for a substantial proportion of
controls because the risk sets from which controls are se-
lected can be very small. For example, for the 496 controls
in the NYUWHS, we would expect an average selection
probability of ~10% (5600 cohort participants were be-
tween the ages of 35 and 50 at enrollment), but the aver-
age probability was 35%. The controls in this study
provided insufficient information about the full cohort,
precluding the assessment of calibration [76].
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Our study included past users of oral contraceptives
(> 65%) [24], but not current users because AMH levels
go down during oral contraceptive use [62, 78, 79].
Thus, our results only apply to women not on oral
contraceptives.

In addition to the large size of our study, its major
strength is the prospective design. Samples collected
prior to diagnosis are valuable for measuring biomarkers
that can be affected by the diagnosis and/or treatment of
breast cancer. Another strength is that detailed epi-
demiological data on breast cancer risk factors were col-
lected from all cohorts.

Conclusions

In conclusion, we observed moderate increases in the
discriminatory accuracy of the Gail model 2 for women
aged 35-50 with the addition of AMH and testosterone.
Combining these markers with others (e.g., SNPs) may
improve risk prediction models, though the improve-
ment in discriminatory accuracy will remain limited
until new markers with stronger associations with breast
cancer risk are identified [80, 81].

Additional file

Additional file 1: Table S1. Breast cancer incidence and competing
mortality rates used for each cohort to estimate absolute risk. Table S2.
Descriptive characteristics of invasive + in situ cases and matched controls.
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matched controls, by cohort. Table S4. Descriptive characteristics of
invasive plus in situ breast cancer cases and matched controls, by cohort.
Table S5. Random-effects meta-analysis relative risk estimates, invasive and
in situ. Figure S1. Cohort-specific and random-effects meta-analysis relative
risk estimates for Gail model variables, AMH and testosterone (invasive cases
only). Figure S2. Cohort-specific and random-effects meta-analysis relative
risk estimates for Gail model variables, AMH and testosterone, invasive and
in situ. Figure S3. Relative risk estimates by age group, invasive cases only.
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