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Abstract

mechanisms to promote bone metastasis.

Background: Bone is one of the most frequent metastatic sites of advanced breast cancer. Current therapeutic
agents aim to inhibit osteoclast-mediated bone resorption but only have palliative effects. During normal bone
remodeling, the balance between bone resorption and osteoblast-mediated bone formation is essential for bone
homeostasis. One major function of osteoblast during bone formation is to secrete type | procollagen, which will
then be processed before being crosslinked and deposited into the bone matrix.

Methods: Small RNA sequencing and quantitative real-time PCR were used to detect miRNA levels in patient blood
samples and in the cell lysates as well as extracellular vesicles of parental and bone-tropic MDA-MB-231 breast cancer
cells. The effects of cancer cell-derived extracellular vesicles isolated by ultracentrifugation and carrying varying levels of
miR-218 were examined in osteoblasts by quantitative real-time PCR, Western blot analysis, and PTNP bone formation
marker analysis. Cancer cells overexpressing miR-218 were examined by transcriptome profiling through RNA
sequencing to identify intrinsic genes and pathways influenced by miR-218.

Results: We show that circulating miR-218 is associated with breast cancer bone metastasis. Cancer-secreted
miR-218 directly downregulates type | collagen in osteoblasts, whereas intracellular miR-218 in breast cancer cells
regulates the expression of inhibin {3 subunits. Increased cancer secretion of inhibin BA results in elevated Timp3
expression in osteoblasts and the subsequent repression of procollagen processing during osteoblast differentiation.

Conclusions: Here we identify a twofold function of cancer-derived miR-218, whose levels in the blood are associated
with breast cancer metastasis to the bone, in the regulation of type | collagen deposition by osteoblasts. The adaptation
of the bone niche mediated by miR-218 might further tilt the balance towards osteolysis, thereby facilitating other
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Background

The “Seed and Soil” hypothesis first brought up by
Stephen Paget highlights the importance of matching be-
tween cancer and its metastatic niche, and implies the
requirement of niche adaptation during cancer metasta-
sis [1]. The bone tropism of breast cancer cells is in part
mediated by chemokines and their receptors, exemplified
by C-X-C chemokine receptor type 4 (CXCR4) expressed
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as one of the signature genes on bone-seeking breast can-
cer cells and its ligand stromal-derived-factor-1 expressed
by cells within the bone environment including osteo-
blasts [2, 3]. The adaption of bone metastatic niche in-
volves exchange of factors between breast cancer cells and
cells naturally residing in the bone niche. Previous
studies have shown that the osteolytic bone lesion,
which is induced by metastatic breast cancer cells
through secretion of bone catabolic factors including
parathyroid hormone-related protein (PTHrP), interleu-
kin (IL)-11, IL-8, and IL-6, in turn exacerbates this
tropism by promoting cancer cell growth in the bone
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via growth factors released from the degraded bone
matrix [4, 5].

In addition to cytokines, extracellular vesicles (EVs)
that contain biomaterials such as microRNA (miRNA),
mRNA, and proteins, including exosomes, are important
vehicles for intercellular communication in short or long
range [6]. Our lab has previously shown that breast
cancer-secreted EVs target endothelial cells and fibro-
blasts to induce vascular permeability and metabolic re-
programming, respectively [7-9]. Stromal cells in the
metastatic niche can also secrete EVs to regulate cancer
cells [10]. Bone marrow mesenchymal stem cells secrete
miR-23b-containing exosomes, which induce breast
cancer dormancy by targeting a cell cycle regulator
myristoylated alanine rich protein kinase C substrate
(MARCKS) [11]. Interestingly, a recent study found
that exosomes also exhibited organotropism, which was
regulated by the integrin profile of these exosomes [12].

Human adult bones constantly undergo turnover
and remodeling to replace old bones and to repair
damaged ones [13]. Osteoclast-mediated bone resorp-
tion can be regulated by osteoblasts, which secrete
osteoclast differentiation-inducing factor receptor ac-
tivator of nuclear factor kappa-B ligand (RANKL) and
its decoy receptor osteoprotegerin (OPG) [14]. Con-
versely, recent studies revealed that osteoclasts could
also secrete coupling factors to regulate proliferation,
migration and differentiation of osteoblasts during
new bone formation [15]. Osteoblasts secrete type I
procollagen into the matrix during differentiation and
bone formation [16]. A disintegrin-like and metallopro-
tease with thrombospondin type 1 motif, 2 (ADAMTS2)
procollagenase then cleaves and releases the N'-terminus
of type I procollagen [17], which is often referred to as
PINP and widely used as a marker for bone formation
[18]. Crosslinked type I collagens then constitute 90% of
the organic matrix of the bone [16].

The transforming growth factor beta (TGF-B) super-
family has been shown to regulate bone physiology [19].
TGE-p can either enhance or repress osteoclast differen-
tiation dependent on dose and the presence of other cell
types [20, 21]. TGF-P1 has also been reported to induce
bone formation through regulating bone mesenchymal
stem cell migration [22]. Different bone morphogenetic
proteins (BMPs) are implicated in the positive or nega-
tive regulation of bone formation [23]. Activin A and
activin B, which also belong to the TGF-} superfamily, are
homodimers of inhibin BA and inhibin BB, respectively
[24]. They bind to type II receptors on plasma membrane
and subsequently activate type I receptors. Mothers against
DPP homolog (SMAD)2 and SMAD3 are then phosphory-
lated and bind with SMAD4, which translocates to the nu-
cleus and regulates target gene transcription. Inhibins,
which are heterodimers of inhibin a and [ subunits,
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usually antagonize the effect of activins. Blockade of activin
signaling by a soluble activin receptor type IIA fusion pro-
tein can promote osteoblast-mediated bone formation and
inhibit breast cancer bone metastasis in a murine model
[25], indicating an important role of activins in bone
homeostasis and bone metastasis.

Here we set out to understand the function of
miR-218, which is detected at a higher level in the sera
from stage IV breast cancer patients with bone metasta-
sis and in the EVs of bone-tropic breast cancer cells, in
mediating the profound interplay between breast cancer
and bone cells. Our data suggest a model through which
cancer-derived miR-218 inhibits osteoblast function of
collagen deposition though direct targeting of collagen
type I alpha 1 chain (COL1A1) and regulation of inhibin
BA expression.

Methods

Clinical specimens

Human serum specimens were obtained from voluntarily
consenting breast cancer patients between February
2006 and December 2011 at the City of Hope National
Medical Center (Duarte, CA, USA) under institutional
review board-approved protocols. All 47 patients in-
volved in this study had stage IV disease with or without
bone metastases at the time metastatic disease was diag-
nosed. Among them, 33 patients had bone metastases,
in most cases with concurrent metastases to other or-
gans, whereas the other 14 patients had distant metasta-
ses to other organs without the involvement of bone.
The two groups exhibited balanced age, tumor subtype,
and sample collection time. Serum specimens examined
in this study were collected at the time metastasis was
initially diagnosed or the earliest draw available. Clinical
characteristics are summarized in Additional file 1:
Table S1. Trizol LS reagent (Thermo Fisher Scientific;
Waltham, MA, USA) was used to extract total RNA
from ~0.5 ml of serum; RNA pellet was dissolved in
10 pl of RNase-free water and subjected to Solexa
sequencing and RT-qPCR as previously described [26].

Cells

Human breast cancer cell line MDA-MB-231, MCF-7, human
non-cancerous mammary epithelial cell line MCF10A,
and mouse preosteoblast cell line MC3T3-E1 were ob-
tained from American Type Culture Collection (Manas-
sas, VA, USA) and cultured in the recommended media.
The bone-tropic subline of MDA-MB-231 was a kind gift
from Dr. T. Yoneda. All cells used herein were tested to
be free of mycoplasma contamination and authenticated
by using the short tandem repeat profiling method.
MDA-MB-231 cells were stably transduced with control
and miR-218 lentiviral constructs purchased from Gene-
Copoeia (Rockville, MD, USA). miRIDIAN miR-218
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mimic and the corresponding negative control were
purchased from GE Dharmacon (Lafayette, CO, USA).
LNA oligonucleotides against miR-218 and control
were purchased from Exiqon (Woburn, MA, USA). Cell
transfection, reporter assays, production of viruses, in-
fection and selection of transduced cells, as well as flow
cytometry for cell characterization, were carried out as
previously described [7-9, 27]. Osteoblast differenti-
ation was induced by 50 pg/ml L-ascorbic acid, 10 mM
B-glycerolphosphate, and 0.1 puM dexamethasone for
16-21 days with medium change every 3—4 days. Con-
ditioned medium was collected by passing through
0.45 pm filters. Conditioned medium concentration was
performed using Vivaspin 20 columns from Sartorius
(Bohemia, NY, USA).

Primary bone marrow cell isolation and induction of
osteoclast differentiation

One million bone marrow cells isolated from C57BL/
6 mice were bulk cultured in a six-well plate and
40 ng/ml M-CSF was added to induce adherence for
3 days. Osteoclast differentiation was induced by add-
ing 40 ng/ml M-CSF and 100 ng/ml RANKL (R&D
Systems; Minneapolis, MN, USA) and culturing the
cells for 3-7 days. Tartrate-resistant acid phosphatase
(TRAP) staining was performed using an Acid Phosphat-
ase, Leukocyte (TRAP) Kit (Sigma-Aldrich; St. Louis,
MO, USA).

Constructs

PCR primers 5'- GATCAACTCGAGGTACACGGTGG
GCTGAGTA and 5'- GATCAAGCGGCCGCCCGTG
GCACTCAATCTTTTA were used to clone the wild-type
3’ untranslated region (UTR) of human INHBB. The
PCR-amplified fragments were digested with Xhol and
NotI and then inserted into the same sites of psiCHECK-2
reporter vector (Promega; Madison, WI, USA) down-
stream of the Renilla luciferase gene. PCR primers 5'-
AATTGCGCCTTCCGAGCACACATAACTCAGATAA
GACAGAGACGCAGAGA and 5'- CTCTCTCTCTCT
GCGTCTCTGTCTTATCTGAGTTATGTGTGCTCGGA
AGG (mutated nucleotides underlined) were used to clone
the miR-218-site-mutant of INHBB 3'UTR. Similarly,
human Yin and Yang 1 (YY1) 3'UTR was cloned into
psiCheck-2 vector using primers 5-GATCAACTCGAGTT
CTCGACCACGGGAAGCA, 5-GATCAAGCGGCCGCT
GAAATTAAGCTACTGGCACTCAA, and mutagenesis
primers 5-AAGAATATGGCAGAACAAGATCTGTCTC
AGATGTCTTATTTTCTTTTGTT and 5-TCTGGACA
ACAAAAGAAAATAAGACATCTGAGACAGATCTTGT
TCTGCCA. The YY1 overexpression plasmid was con-
structed by cloning the full-length YY1 ¢cDNA amplified
by primers 5-GATCAGAATTCATGGCCTCGGGCGAC
A and 5'- AATAGGATCCTCACTGGTTGTTTTTGGCC
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T from MDA-231 cells, and inserting the cDNA into the
EcoRI/BamHI sites of pSG5 vector. All constructs were
verified by sequencing.

EV purification and characterization

EVs secreted by MDA-MB-231 and derived cell lines
were prepared as previously reported [7-9]. Conditioned
medium was first collected after incubating cells in
growth medium containing 10% EV-depleted FBS (pre-
pared by overnight ultracentrifugation of medium-diluted
EBS at 100,000 x g at 4 °C) for 48 h, and pre-cleared by
centrifugation at 500 x g for 15 min and then at 10,000 x
g for 20 min. EVs were isolated by ultracentrifugation at
110,000 x g for 70 min, and washed in PBS using the same
ultracentrifugation conditions. When indicated, Dil
(1,1"-Dioctadecyl-3,3,3",3"-tetramethylindocarbocyanine
perchlorate; Sigma-Aldrich) was added into the PBS at
1 pM and incubated for 20 min before the washing spin,
followed by an additional wash to remove the excess dye.
The pelleted EVs were resuspended in ~ 100 pl of PBS for
cell treatment. For cell treatment, 2 pg of EVs (equivalent
to those collected from ~ 5 x 10° producer cells) based on
protein measurement using Pierce™ BCA protein assay
kit (Thermo Fisher Scientific) were added to 2 x 10° re-
cipient cells. For EV characterization, EVs were sub-
jected to mnanoparticle tracking analysis using a
NanoSight NS300 (Malvern; Westborough, MA,USA),
or further fractionated by gradient separation following
a modified protocol [28]. EVs isolated by ultracentrifu-
gation were loaded onto a 5-step OptiPrep (Sigma-Al-
drich) gradient consisted of 40, 30, 20, 10, and 5%
iodixanol in 20 mM Hepes (pH 7.2), 150 mM NacCl,
1 mM NazVOy,, and 50 mM NaF. After centrifugation in
a SW 40 Ti rotor (Beckman Coulter; Indianapolis, IN,
USA) at 110,000 x g at 4 °C for 16 h, 12 1-mL fractions
were collected and washed in PBS by another spin at
110,000 x g for 70 min before Western analysis and RNA
extraction for RT-qPCR.

RNA extraction and quantitative reverse transcription PCR
These procedures were performed as described previ-
ously [7-9]. Primers used in RT-qPCR are indicated in
Additional file 2: Table S2. The miR-218, miR-140-3p
(as internal control for miR-218 in EVs and sera), and
U6 primers (as internal control for intracellular
miR-218) were purchased from Qiagen (Valencia, CA,
USA). An annealing temperature of 57.5 °C was used for
all primers.

Western blot analysis

Protein extracts were separated by SDS-PAGE. Protein
detection was performed using the following anti-
bodies: Collagen alpha-1(I) chain carboxy-telopeptide
(LF68) (Kerafast; Boston, MA, USA, ENHO018), Inhibin
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BA (Novus, NBP1-30928), Inhibin fB (Thermo Fisher
Scientific, PA5-28814), Inhibin « (Santa Cruz Biotech-
nology; Dallas, TX, USA, SC-22048), YY1 (Abcam;
Cambridge, MA, USA, ab109228), Phospho-Smad2
(Ser465/467) (Cell Signaling Technology; Danvers,
MA, USA, 3108S), SMAD2 (Cell Signaling Technol-
ogy, 3122S), Phospho-Smad3 (Ser423/425) (Cell Sig-
naling Technology, 9520S), SMAD3 (Cell Signaling
Technology, 9523S), tissue inhibitor of metalloprotein-
ases 3 (TIMP3) (Abcam, ab155749), B-actin (Sigma-Al-
drich, A1978), as well as anti-rabbit, anti-mouse, and
anti-goat HRP-conjugated secondary antibodies (Santa
Cruz Biotechnology).

ELISA

Bone formation marker PINP was detected by a rat/
mouse PINP enzyme immunoassay kit (Immunodiag-
nostic Systems; Boldons, UK). Bone resorption marker
C-terminal telopeptide (CTX-1) was detected by a
RatLaps EIA kit (Immunodiagnostic Systems).

Animals

All animal experiments were approved by the institu-
tional animal care and use committee at the Beckman
Research Institute of the City of Hope. Female NOD/
SCID/IL2Ry-null (NSG) mice of 6-month-old were used
in this study. EVs from ~ 107 cancer cells were used to
treat mice through tail vein injection with 27G needles
twice a week for 4 weeks. Serum was collected 1 week
after the last EV injection via retro-orbital bleeding.

smRNA-seq and RNA-seq

[llumina sequencing was performed by the City of Hope
Integrative Genomics Core using RNA samples from pa-
tient sera, EVs from parental and bone-tropic MDA-231,
and MDA-231 transduced with miR-218-overexpressing
or control vector. For smRNA-seq, each serum sample
was independently subjected to library preparation and
deep sequencing. All small RNAs of 15-52 nts were
selected and sequenced using the Hiseq 2500 system,
following the manufacturer’s protocol (Illumina; San
Diego, CA, USA). Raw counts were normalized by
trimmed mean of M value (TMM) method and differen-
tially expressed miRNAs between patients with and
without bone metastasis or between different cell lines
were identified using Bioconductor package “edgeR”.
The miRNAs will be regarded as differentially expressed
when their P values were less than 0.05, minimum ex-
pression value more than 50 and log2 fold change more
than 1. For RNA-seq, poly(A) RNA was enriched and
reverse-transcribed into ¢cDNA, followed by end repair,
A-tailing, and linker ligation. The ligated material was
amplified by PCR and then analyzed on a HiSeq2500
(Ilumina) for parallel sequencing. Sequences were
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aligned to human genome assembly hg19. Quantification
of RefSeq mRNAs was performed using customized R
scripts. Counts were normalized by TMM method and
differential expression analysis was performed using Bio-
conductor package “edgeR”.

Statistics

All quantitative data are presented as mean + standard
deviation (s.d.) unless stated otherwise. Two-sample
two-tailed Student ¢ tests were used for comparison
of means of quantitative data between two groups.
For multiple independent groups, one-way ANOVA with
post hoc Tukey tests were used. Values of P <0.05 were
considered significant. Sample size was generally chosen
based on preliminary data indicating the variance within
each group and the differences between groups. All
samples/animals that have received the proper procedures
with confidence were included for the analyses. For
experiments in which no quantification is shown, images
representative of at least three independent experiments
are shown.

Results

miR-218 is associated with breast cancer bone metastasis
To search for miRNAs that might be functionally rele-
vant to breast cancer bone metastasis, we obtained sera
from 47 stage IV breast cancer patients with (n =33) or
without (# =14) bone metastases and performed small
RNA sequencing. In addition, to identify miRNAs
characteristically secreted by bone-metastasizing breast
cancer cells, we profiled the miRNAs in the EVs se-
creted by the metastatic breast cancer cell line MDA-
MB-231 (MDA-231) as well as its bone-seeking variant
designated as MDA-231-bone [29]. hsa-miR-218-5p
(miR-218) was significantly higher in the sera from pa-
tients with bone metastases compared to those without
(Additional file 3: Table S3), and was > 5-fold higher in
the EVs from MDA-231-bone cells compared to those
from parental MDA-231 (Additional file 4: Table S4).
These results were confirmed by qRT-PCR using a se-
lected internal reference miR-140-3p, which was con-
sistent among all serum samples tested and between
EVs from the two cell lines based on the smRNA-seq
data (Fig. 1a and b). In contrast, levels of circulating
miR-218 were not significantly different when the
same cohort of patients was stratified by the presence
or absence of brain metastases (Fig. 1a, right panel). In
addition, miR-218 was also expressed at a higher intra-
cellular level in the bone-tropic MDA-231 cells com-
pared to parental MDA-231 and the non-cancerous
mammary epithelial cells MCF10A (Fig. 1b). Thus, we
focused on miR-218 in the subsequent studies for its
potential role in breast cancer bone metastasis.
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Cancer-secreted miR-218 directly targets Col7al in
preosteoblasts and decreases type | collagen secretion by
differentiated osteoblasts

To determine the specific effects of miR-218 we estab-
lished a stable cell line of MDA-231 that overexpresses
miR-218 (MDA-231-miR-218) or control vector (MDA-
231-miR-ctr]l) (Fig. 2a). Compared to the control cells,
the miR-218-overexpressing cells also secreted a higher
level of miR-218 into the EVs. Upon density gradient
fractionation of the EVs, miR-218 was found to be
enriched in the fractions containing exosomes and with
a density between ~1.10 and ~ 1.145 g/mL (Additional
file 5: Figure S1). When fluorescently labeled EVs from
MDA-231-miR-ctrl, MDA-231-miR-218, and MDA-231-
bone were added to preosteoblast cells MC3T3, a high
EV uptake efficiency was observed with all types of EVs
(Fig. 2b). We also detected transfer of miR-218 into re-
cipient MC3T3 cells upon EV treatment in the presence
of an RNA polymerase II inhibitor DRB to block en-
dogenous miR-218 transcription (Fig. 2c). COLIAI has
been reported as a direct target of miR-218 in gastric
cancer cells and human stellate cells [30, 31]. We found
that Collal, but not collagen type I alpha 2 chain
(Colla2), was significantly downregulated by EVs from

the two high-miR-218-secreting cell lines at the mRNA
level (Fig. 2d), and that this effect on type I collagen ex-
pression was more dramatic at the protein level (Fig. 2e).
Consistent with the lower levels of all forms of type I
collagen, the bone formation marker PINP was also de-
creased in the conditioned medium (CM) from differen-
tiated MC3T3 treated with high-miR-218 EVs (Fig. 2f).
To test the effect of secreted miR-218 in vivo, we injected
EVs from MDA-231-miR-ctr] or MDA-231-miR-218 into
NSG mice through the tail vein twice a week for 4 weeks.
The bone formation marker PINP was significantly de-
creased in the serum from mice treated with MDA-
231-miR-218 EVs, whereas the bone resorption marker
CTX-1 was not affected (Fig. 2g and h). Taken together,
cancer-secreted miR-218 encapsulated in the EVs down-
regulated type I collagen expression and deposition by os-
teoblasts. In comparison, breast cancer-secreted EVs were
found incapable of regulating osteoclast differentiation
(Additional file 6: Figure S2).

miR-218 regulates the expression of inhibin B subunits in
breast cancer cells

To identify other genes regulated by miR-218, we per-
formed RNA-seq to compare the gene expression profile
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in MDA-231-miR-ctrl and MDA-231-miR-218 cells.
Among the genes showing significantly different expres-
sion between the two cell lines, we found that inhibin

beta A subunit (INHBA) was upregulated and inhibin
beta B subunit (INHBB) downregulated by miR-218
overexpression (Additional file 7: Table S5). This was
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also observed at both mRNA and protein levels in par-
ental MDA-231 cells upon transient transfection of a
miR-218 mimic (Fig. 3a and b). Similar results were ob-
served in another breast cancer cell line MCF-7, where
miR-218 also upregulated INHBA but downregulated
INHBB expression (Additional file 8: Figure S3a). In
contrast, transfection of an antagomiR against miR-218
into MDA-231 bone cells led to a lower mRNA level of
INHBA and a higher level of INHBB (Fig. 3c). Since
INHBB is predicted to be a direct target of miR-218 by
TargetScan (Fig. 3d), we performed dual luciferase re-
porter assay using psiCheck2 vector to confirm that
the 3’'UTR of INHBB containing the wild-type, but not
mutated, miR-218 binding site responded to miR-218
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(Fig. 3e). In search of the mechanism through which
INHBA was upregulated by miR-218, we focused on
YY1, a transcriptional repressor that is also a putative
miR-218 target (Fig. 3d) and has been associated with
Inhba expression in ovaries [32]. YY1 mRNA was
downregulated by miR-218 in MDA-231 cells (Fig. 3f).
Ectopic expression of YY1 abolished the effect of
miR-218 on inducing inhibin BA (Fig. 3g). Further-
more, dual luciferase assay revealed that YY1 was dir-
ectly targeted by miR-218 through the predicted
binding site in the 3’'UTR (Fig. 3h). Thus, miR-218 reg-
ulates the expression of two TGEFP superfamily cyto-
kines in breast cancer cells by directly targeting YY1
and INHBB.
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Cancer-secreted inhibin BA regulates SMAD2/3 signaling
differently in cancer and preosteoblast cells

We continued to test how miR-218-mediated differential
expression of inhibin B subunits in breast cancer cells
potentially influences the surrounding cancer cells and
preosteoblasts to respectively establish autocrine and
paracrine signaling. We treated serum-starved MDA-231
or MC3T3 with EV-depleted CM collected from miR-
218-transfected MDA-231 cells or anti-miR-218-trans-
fected MDA-231-bone cells. To our surprise, CM from
miR-218-overexpressing breast cancer cells induced
SMAD?2/3 phosphorylation in MDA-231 cells (Fig. 4a),
whereas the same CM treatment to MC3T3 cells sup-
pressed the level of phospho-SMAD2/3 (Fig. 4b). Simi-
larly, CM from miR-218-overexpressing MCF-7 cells
also induced SMAD2 phosphorylation in untransfected
MCE-7 cells (Additional file 8: Figure S3b). Conversely,
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anti-miR inhibition of miR-218 in CM-producing MDA -
231-bone cells led to reduction of SMAD2/3 phosphoryl-
ation in cancer cells (Fig. 4a) and de-repression of
SMAD?2/3 signaling in preosteoblasts (Fig. 4b) at the 2-h
time point.

To explain the differential response of SMAD signal-
ing in cancer or bone stromal cells to CM from breast
cancer cells with varying levels of miR-218, we concen-
trated the CM from MDA-231 cells and found that the
inhibin BA subunit was secreted at a higher level by
miR-218-transfected MDA-231 cells compared to con-
trol group while inhibin B was undetectable in the con-
centrated CM (Fig. 4c). Moreover, we also detected
increased secretion of activin A in the CM from MDA-231
cells transfected with miR-218 (Fig. 4d). Interestingly, con-
centrated CM from MC3T3 preosteoblast cells contained
inhibin « subunits (Fig. 4e), which was not expressed by
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MDA-231 or MCF-7 breast cancer cells (Additional file 7:
Table S5, Fig. 4e, Additional file 8: Figure S3c). We thereby
hypothesized that the presence of inhibin a in the en-
vironment led to a functional switch of cancer-secreted
inhibin BA from activin-mediated SMAD2/3 activation
to inhibin-mediated suppression. Indeed, addition of re-
combinant inhibin « into the CM from miR-218-overex-
pressing cells reversed the activation of SMAD2/3
phosphorylation in recipient cancer cells (Fig. 4f), whereas
adding neutralizing antibody against inhibin a into the
CM to treat MC3T3 cells led to de-repression of SMAD2/
3 signaling (Fig. 4g). Therefore, secreted inhibin A, which
is upregulated by miR-218 in breast cancer cells, autocrin-
ally activates SMAD signaling in MDA-231 cancer cells
but paracrinally represses this pathway in bone stromal
cells, due to the different expression status of inhibin « in
the environment.

Paracrinal inhibin BA controls type | collagen processing
of differentiating osteoblasts by regulating Timp3
expression

We next examined the downstream effect of cancer-se-
creted inhibin BA on preosteoblasts. Tissue inhibitor of me-
talloproteinases 3 (TIMP3) has been shown to inhibit the
activity of ADAMTS2, which is the processing enzyme of
type I procollagen during osteoblast differentiation [33].
We found that Timp3 was upregulated in differentiating
MC3TS3 cells following the treatment with EV-depleted CM
from miR-218-overexpressing MDA-231 cells, and was
downregulated when miR-218 was inhibited in CM-
producing cells (Fig. 5a and b). As a result, the process-
ing of type I procollagen was suppressed during osteo-
blast differentiation when miR-218 level was high in
breast cancer cells, and vice versa (Fig. 5a). To confirm
that this effect was caused by higher level of inhibin fA
in the CM from miR-218-overexpressing MDA-231
cells, which contributed to the upregulation of Timp3
expression, we added neutralizing antibody against in-
hibin PA into the CM and detected restoration of
Timp3 level in differentiating MC3T3 (Fig. 5¢ and d).
Taken together, we show that paracrinal inhibin PA se-
cretion by breast cancer cells, which is regulated by
miR-218, alters the processing of procollagen during
osteoblast differentiation through regulating Timp3
expression.

Discussion

Bone matrix is composed of inorganic and organic ma-
terials deposited and mineralized mainly by osteo-
blasts. Of the organic components of the bone matrix,
90% are type I collagen [16]. During osteoblast differ-
entiation, type I procollagen is expressed and secreted
into the bone matrix where ADAMTS2 and BMP1 cleave
the N'- and C’-terminus of procollagen, respectively, to
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generate mature collagens before they are crosslinked and
stabilized [17]. Due to the abundance of type I collagen
and the importance of its processing in bone formation,
PINP is one of the most commonly used marker for bone
formation [18]. Our study identified miR-218 as a miRNA
associated with breast cancer bone metastasis, which can
inhibit the deposition of type I collagen through two
mechanisms (Fig. 5e): (1) miR-218 secretion into the EVs
and transfer to osteoblasts during differentiation, where
miR-218 directly downregulates COL1A1 expression; (2)
direct targeting of YY1 in cancer cells to induce inhibin
BA expression and secretion, which then represses procol-
lagen processing by inducing TIMP3, an inhibitor of the
N-procollagenase ADAMTS2.

The first mechanism could be initiated at an early
tumor stage before bone metastasis occurs, as miR-
218-containing EVs secreted by breast cancer cells in
situ could travel through the blood stream to the bone
environment where miR-218 could exert its effect on os-
teoblasts after being taken up. The second mechanism
would require close proximity of cancer cells and osteo-
blasts because a previous study has shown that most cir-
culating activins are bound by their endogenous
antagonist follistatin [34]. However, several studies found
that serum activin A level was elevated in patients with
breast cancer bone metastasis [35, 36], indicating a pos-
sible long-range effect of activin A on bone cells includ-
ing osteoblasts. These two mechanisms, acting both
distantly and locally, might have synergistic effects on
the inhibition of collagen deposition and bone forma-
tion, thereby undermining the quality of newly formed
bone. Considering the large amount of collagen within
the bone environment, the blockade of collagen deposition
by miR-218 might require time to take effect on bone for-
mation and breast cancer bone metastasis. Therefore,
miR-218 may be insufficient to induce bone metastasis by
itself but may facilitate other cancer-autonomous mecha-
nisms to promote breast cancer bone metastasis.

Our study shows that secreted inhibin BA regulates
SMAD?2/3 signaling in cancer cells and osteoblasts in
opposite directions, which is dependent on the absence
or presence of inhibin a subunit. We show that inhibin
BA, when encountering inhibin a to form inhibin A, in-
hibits phosphorylation of SMAD2/3 in osteoblasts, and
thereby blocks an important function of these cells by
inducing the expression and secretion of TIMP3. As for
the consequences of SMAD2/3 activation in cancer cells,
a study has reported intense immunohistochemical
staining of phosphorylated SMAD?2 in metastatic breast
tumors in the bone and that knockdown of SMAD4, the
downstream effector of activated SMAD2/3, was able to
decrease bone metastasis of breast cancer in mice [37].
On the other hand, activin A has been shown to inhibit
breast cancer proliferation [38]. Therefore, it is possible
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that the formation of inhibin A in the bone microenvir-
onment, as a result of osteoblast-derived inhibin «, could
alleviate or even reverse the growth inhibitory effect of
activin A in the outer layer of tumor mass growing in
the bone. Together, increased secretion of inhibin PA
might promote breast cancer bone metastasis by regulat-
ing SMAD signaling differently in cancer and bone stro-
mal cells.

A recent study on miR-218 also implicated this miRNA
in breast cancer metastasis [39]. It also found that
miR-218 level was higher in breast cancer metastasized to
the bone. In consistent with this, we show that miR-218 is
not only overexpressed in bone-tropic breast cancer cells,

but also more abundant in EVs from these cells as well
as in the sera from breast cancer patients with bone
metastases. Mechanistically, this previous study found
that miR-218 directly targeted Wnt inhibitors to pro-
mote PTHrP expression, which in turn stimulated oste-
oclastogenesis and osteolytic bone lesion. Another
study on miR-218 suggested that this miRNA had a role
in the induction of osteomimicry phenotype of breast
cancer cells [40]. Therefore, it is possible that miR-218
contributes to a pro-metastatic bone environment through
regulating the function of both osteoclasts and osteo-
blasts, thereby tilting the balance towards osteoclast-medi-
ated bone resorption and providing a permissive
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environment for cancer growth in the bone. Based on the
association between miR-218 and breast cancer bone me-
tastasis, it would be of interest to test the possibility of
using miR-218 as a diagnostic and/or prognostic marker
for the disease.

Conclusions

In summary, our study showed that miR-218, which ex-
hibited higher levels in the blood of breast cancer patients
with bone metastases, and which was overexpressed and
highly secreted by bone-tropic MDA-MB-231 breast can-
cer cells, could contribute to the adaption of bone niche.
Cancer cell-secreted miR-218 directly downregulated type
I collagen expression by osteoblasts, whereas intracellular
miR-218 in breast cancer cells elevated inhibin A expres-
sion, whose secretion in turn inhibited the processing of
type I collagen during collagen deposition and osteoblast
differentiation. Together, compromised collagen depos-
ition might further enhance the vicious cycle of osteolysis
and thereby facilitate other cancer-autonomous mecha-
nisms to promote breast cancer colonization in the bone
environment.
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