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Abstract

Background: Breast cancer pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) varies with
tumor subtype. The purpose of this study was to identify an early treatment window for predicting pCR based on
tumor subtype, pretreatment total hemoglobin (tHb) level, and early changes in tHb following NAC.

Methods: Twenty-two patients (mean age 56 years, range 34–74 years) were assessed using a near-infrared imager
coupled with an Ultrasound system prior to treatment, 7 days after the first treatment, at the end of each of the first
three cycles, and before their definitive surgery. Pathologic responses were dichotomized by the Miller-Payne system.
Tumor vascularity was assessed from tHb; vascularity changes during NAC were assessed from a percentage tHb
normalized to the pretreatment level (%tHb). After training the logistic prediction models using the previous study data,
we assessed the early treatment window for predicting pathological response according to their tumor subtype (human
epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), triple-negative (TN)) based on tHb, and %tHb
measured at different cycles and evaluated by the area under the receiver operating characteristic (ROC) curve (AUC).

Results: In the new study cohort, maximum pretreatment tHb and %tHb changes after cycles 1, 2, and 3 were
significantly higher in responder Miller-Payne 4–5 tumors (n = 13) than non-or partial responder Miller-Payne 1–3 tumors
(n = 9). However, no significance was found at day 7. The AUC of the predictive power of pretreatment tHb in the
cohort was 0.75, which was similar to the performance of the HER2 subtype as a single predictor (AUC of 0.78). A greater
predictive power of pretreatment tHb was found within each subtype, with AUCs of 0.88, 0.69, and 0.72, in the HER2, ER,
and TN subtypes, respectively. Using pretreatment tHb and cycle 1 %tHb, AUC reached 0.96, 0.91, and 0.90 in HER2, ER,
and TN subtypes, respectively, and 0.95 regardless of subtype. Additional cycle 2 %tHb measurements moderately
improved prediction for the HER2 subtype but did not improve prediction for the ER and TN subtypes.

Conclusions: By combining tumor subtypes with tHb, we predicted the pCR of breast cancer to NAC before treatment.
Prediction accuracy can be significantly improved by incorporating cycle 1 and 2 %tHb for the HER2 subtype and cycle 1
%tHb for the ER and TN subtypes.
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Background
The increasingly widespread use of neoadjuvant chemo-
therapy (NAC) in breast cancer patients has improved
surgical outcomes by preoperatively downsizing the
tumor volume. Since the introduction of NAC, breast-
conserving surgery rates have increased [1]. Moreover,
patients who have achieved pathological complete re-
sponse (pCR) show improved survival rates compared
with those who did not achieve pCR [2]. This relation-
ship is so strong, in fact, that pCR is becoming a surro-
gate endpoint for evaluating the effectiveness of newer
chemotherapy protocols [3, 4]. Early assessment of the
degree of patient response to NAC can have a major im-
pact on individualized treatment management [5].
The ability to identify patients with tumors that have a

high likelihood of achieving a pCR before starting NAC
could enable targeting a treatment plan to patients with
only those tumor types. By eliminating ineffective treat-
ment of patients unlikely to benefit, outcomes would be
better, and toxicity would be reduced. Published litera-
ture shows that an increased probability of achieving
pCR is correlated with high tumor grade, positive human
epidermal growth factor receptor 2 (HER2) status, nega-
tive estrogen receptor (ER) status, and triple negative
(TN) receptor status [6–9]. However, prediction models
based on these tumor histopathological characteristics
are imperfect; within and among these subgroups, the
response to chemotherapy varies widely. Dual HER2
blockade with trastuzumab and pertuzumab in combin-
ation with cytotoxic chemotherapy now utilized in many
HER2+ patients in the neoadjuvant setting results in a
high pCR (16.8–66.2%) [10]. Despite this, there is a
significant percentage of HER2+ patients who do not
achieve a pCR or near pCR. Additionally, the pCR of
ER+/HER2– cancers is less robust (7.0–16.2%) and the
pCR for TN cancers is 33.6–35% [11, 12].
Many ongoing investigations are exploring imaging

techniques to monitor response and allow early modifi-
cation of treatment in order to enhance outcomes [13].
The use of imaging as an early surrogate biomarker of
response is appealing because it is noninvasive and
might allow for a window of opportunity during which
treatment regimens could be altered accordingly,
depending on the expected response.
Conventional imaging methods, such as mammog-

raphy and ultrasound (US), to monitor NAC have not
been widely used to date due to their low sensitivity for

monitoring NAC-treated tumors [14]. Positron emission
tomography (PET)/computed tomography (CT) is more
sensitive to tumor metabolic activity which has been
shown to be an early indicator of treatment effectiveness
for breast cancer in the neoadjuvant setting [15, 16].
Contrast-enhanced magnetic resonance imaging (MRI)
is effective in predicting TN or HER2+ cancers, but is
inaccurate for ER+/HER2– breast cancers [17]. Both
PET/CT and MRI require the injection of contrast
agents and are costly for repeated use during treatment.
Optical tomography and spectroscopy using near in-

frared (NIR) diffused light have been explored as novel
tools to predict and monitor the tumor vasculature re-
sponse to NAC [18–31]. The NIR technique utilizes the
intrinsic biomarker of hemoglobin contrast, which is dir-
ectly related to tumor angiogenesis. Cost effectiveness,
portability, and the absence of the need for contrast
agents make NIR systems ideal for repeated use in clin-
ical settings. We have reported the development of US-
guided optical tomography using NIR diffused light
coupled with a commercial ultrasound system (NIR/US)
to improve light localization and quantification accuracy
in the diagnosis of breast cancer [32, 33] and in predict-
ing NAC response [20]. The logistic prediction models
we developed utilize tumor pretreatment pathological
parameters and hemoglobin content measured before
NAC to predict pathological response [21]. The present
study was designed to identify the best treatment win-
dow for predicting pathological response during NAC
using breast cancer subtype, the pretreatment biomarker
of total hemoglobin (tHb) level, and changes in tHb dur-
ing early-treatment cycles 1, 2, and 3. Ultimately, effect-
ively predicting the response to NAC by combining
information from US-guided NIR with breast cancer
subtype could help to individualize treatment.

Methods
Patients
The study protocol was approved by institutional review
boards and was HIPAA compliant. Written informed
consent was obtained from all patients. From March
2014 to June 2016, 28 patients were recruited at three
hospitals. All had been referred for NAC to the one of
three medical oncologists (PD, ST, and KS) and agreed
to participate in our study. Five patients did not
complete the study because of a change in their treat-
ment plan or a desire to withdraw from the study. One
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patient had technically problematic baseline imaging.
Data from these six patients were not included in the
analysis. The remaining 22 patients (mean age 55 years,
range 34–74 years) were repeatedly imaged by NIR/US
prior to initiation of NAC, at the end of the first three
treatment cycles during chemotherapy, and prior to de-
finitive surgery. Of the 22 patients (Table 1), 11 were
HER2+ of which eight were also ER+; six were ER+/
HER2–, and five were TN. Of the 22 patients, 12 had T2
tumors, five had T1, and five had T3 tumors. Patients
were treated with regimens based on their tumor
biomarkers according to current clinical practice. For
ER+/HER2– tumors, patients were treated with dose-
dense doxorubicin/cyclophosphamide every 2 weeks for
four cycles followed by paclitaxel every 2 weeks for
four cycles (ACT). The NIR/US cycle 1 to 3 measure-
ments were performed at the end of the first three cycles

before the paclitaxel started. For HER2+ tumors, all
patients were treated with trastuzumab, pertuzumab,
and docetaxel or paclitaxel with or without carboplatin
(TPT) every 3 weeks for six cycles and one patient had
two additional cycles of 5-flurouracil, epirubicin, and
cyclophosphamide (FEC). The NIR/US cycle 1 to 3 mea-
surements were performed at the end of the first three
treatment cycles when TPT was given. For TN tumors,
three were treated with ACT, the same as ER+/HER2–

patients, and two were treated with carboplatin and
paclitaxel every 3 weeks for six cycles because of their
BRCA1 gene mutation. One elderly ER+/HER2– patient
was treated with cyclophosphamide/docetaxel without
doxorubicin (TC) every 3 weeks for four cycles.
The HER2+ cohort was monitored at an additional

time point of 7 days after the first treatment, and one
TN and four ER+/HER2– patients were also monitored

Table 1 Patient information, tumor characteristics, Miller-Payne Grade, initial tumor size (MRI/PET and US), and treatment regimen

Age Tumor type NS Mitotic count/10 HPF TN HER2/ER Miller-Payne grade Tumor size (MRI/PET) Tumor size (US) Treatment
regimen

59 IDC 6 2 – −/+ 3 2.7 1.7 ACT

55 ILC 6 1 – −/+ 4 8.6 –a ACT

33 IDC 4 2 – −/+ 3 1.6 1.5 ACT

61 IDC/ILC 6 1 + −/− 1 3.3 1.9 ACT

59 IDC 6 5 – −/+ 2 5.6 2.2 ACT

68 IDC 6 3 – −/+ 3 7.6 2.2 ACT

51 IDC 9 40 + −/− 5 3.6 2.2 ACT

53 IDC 9 62 + −/− 3 PET: 3.7 4.3 ACT

TPT

51 IDC 7 15 – +/+ 5 N/A 1.2 TPT

74 IDC 8 8 – +/− 5 6.2 –a TPT

57 IDC 9 16 – +/− 4 6.9 –b TPT&FEC

TPT

51 IDC 9 14 – +/− 5 3.0 1.9 TPT

59 IDC 7 1 – +/+ 5 N/A 0.6 TPT

61 IDC 4 3 – +/+c 5 2.0 1.4 TPT

37 IDC/ILC 8 9 – +/+ 4 3.6 1.9 TPT

54 IDC 8 20 – +/+ 5 2.9 2.3 TPT

40 IDC 8 15 – +/+ 5 2.2 2.1 TPT

62 IDC 9 12 – +/+ 3 PET: 1.8 1.2 TPT

37 IDC 8 42 – +/+c 5 1.5 1.6 TPT

72 IDC 9 42 – −/+ 3 4.3 2.3 TC

57 IDC 9 14 + −/− 5 2.3 1.3 Carbo/T

41 IDC 9 8 + −/− 3 4.0 4.0 Carbo/T
aNot US visible
bMuch larger than the size of the US transducer
cER showed a weak positive result
ACT, dose-dense doxorubicin/cyclophosphamide and paclitaxel; Carbo/T, carboplatin and paclitaxel, ER estrogen receptor, FEC 5flurouracil, epirubicin, and cyclophosphamide,
HER2 human epidermal growth factor receptor 2, IDC invasive ductal carcinoma, ILC invasive lobular carcinoma, MRImagnetic resonance imaging, N/A not available, NS
Nottingham Score (out of 9), PET positron emission tomography, TC cyclophosphamide and docetaxel, TN triple negative, TPT TP and taxane-based therapy—trastuzumab,
pertuzumab and docetaxel or paclitaxel with or without carboplatin, TPT&FEC trastuzumab, pertuzumab, paclitaxel; 5flurouracil, epirubicin, cyclophosphamide, US ultrasound
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at an optional time point of 7 days after the first
treatment. The median from 7 days was 0 with a range
of 0 to 2 days. Moreover, four TN and five ER+/HER2–

patients were monitored at an additional time point at
the end of cycle 5. Thus, a total of 16 patients had an
additional time point at 7 days after the first treatment
and nine patients had an additional time point at the
end of cycle 5.
All 22 patients were studied after their diagnostic core

biopsy with an average interval of 28 days (median 26
days, range 7–56 days). Among the 22 patients, one had
pretreatment NIR measurements 7 days after biopsy and
the remaining patients had the NIR measurements more
than 10 days after biopsy. All patients received the first
cycle of NAC after the initial NIR/US study (median 2
days, range 0–10 days). The average interval between
post-treatment NIR/US and surgery was 19 days (me-
dian 15 days, range 2–67 days). During the treatment,
the NIR/US scans were performed before their sched-
uled chemotherapy (median 0 days, range 0–5 days).
Among the 22 patients, 18 patients had pretreatment
MRI and 12 patients had post-treatment MRI. Two pa-
tients had pretreatment PET.
The histologic type of 19 patients was invasive ductal

carcinoma; one patient had invasive lobular carcinoma,
and the other two patients had invasive mammary carcin-
oma with mixed ductal and lobular features. One of the 22
patients had two distinct tumor masses in the same breast,
adjacent to each other and with the same histologic charac-
teristics. For this patient, one of the two masses was used
for data analysis. Invasive carcinoma within the pretreat-
ment core biopsies was graded using the Nottingham
histologic score (NS). ER, progesterone receptor (PR), and
HER-2/neu (c-erbB-2) immunohistochemistry was per-
formed on formalin-fixed, paraffin-embedded core biopsy
tissue. The ER and PR were scored by a modified San
Antonio scoring system [34], where the total score ranges
from 0 to 8 (scores 0–2 are negative, a score of 3 is equivo-
cal and scores ≥ 4 are positive). Testing for the HER2 gene
was performed by immunohistochemistry and by gene
amplification utilizing the fluorescence in situ hybridization
(FISH) technique, and the results were reported in accord-
ance with 2014 ASCO/CAP guidelines [35]. Results were
reported as equivocal HER2 if there was weak to moderate,
incomplete membranous staining in > 10% of cells or if
FISH showed a HER2/CEP17 ratio < 2, or if the HER2 copy
number was ≥ 4 and < 6. HER2 results were negative if the
immunohistochemistry or FISH assays fell below the
thresholds for interpretation as equivocal. All assays were
performed on pretreatment core biopsy samples.

Pathology assessment
Pathologic response was assessed by applying the Miller-
Payne grading criteria to definitive surgery specimens in

comparison with initial core biopsies (Table 1). Two
breast pathologists (AR and PH) individually evaluated
cases from their respective hospitals and additional cases
from the third hospital. The Miller-Payne system [36]
divides pathologic response into five grades based on a
comparison of tumor cellularity between the pretreat-
ment core biopsy and the definitive surgical specimen.
Grade 1 indicates no change or some minor alteration in
individual malignant cells but no reduction in overall
cellularity; this is a pathological nonresponse (pNR).
Grade 2 indicates a minor loss of tumor cells (up to
30%) but with overall cellularity still high; this is a partial
pathologic response (pPR). Grade 3 indicates an esti-
mated 30–90% reduction in tumor cells (pPR). Grade 4
indicates a marked disappearance of tumor cells (> 90%),
with only small clusters or widely dispersed individual
cells remaining (almost pCR). Grade 5 indicates that no
malignant cells are identifiable in sections from the
tumor bed (pCR). Grade 5 may show that necrosis,
granulation tissue, histiocytes, and vascular fibroelastotic
stroma remains, often containing macrophages. Residual
ductal carcinoma in situ (DCIS) is acceptable for Miller-
Payne grade 5.

US and NIR system and imaging
Ultrasound examinations were performed using a com-
mercial ultrasound system (Phillips IU22 or GE Logiq 5)
at the corresponding hospital. Three NIR systems with
identical designs were used at the three hospitals, and
the details have been given previously [24]. Briefly, the
NIR/US probe consists of the commercial US transducer
located centrally, with source and detector light guides
(optical fibers) distributed around the periphery of the
NIR/US probe. Four laser diodes of 740 nm, 780 nm,
808 nm, and 830 nm optical wavelengths were sequen-
tially switched to nine positions on the probe, while the
reflected light was coupled by the light guides to 14 par-
allel detectors. The entire NIR data acquisition interval
was less than 5 s. For each patient, US images and op-
tical measurements were acquired simultaneously in the
cancer region and a normal region within the contralat-
eral breast in the same quadrant as the cancer. At each
cancer and normal region, multiple datasets were ac-
quired. The optical data acquired from the normal
contralateral breast was used as a reference for calculat-
ing the background optical absorption and reduced scat-
tering coefficients that were used in the image
reconstruction of the lesions.
Details of the optical imaging reconstruction algorithm

with experimental validation have been described else-
where [37]. Briefly, the NIR reconstruction takes advan-
tages of the ultrasound localization of lesions to segment
the imaging volume into a region of interest (ROI) and
background nonlesion regions. Since the spatial
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resolution of diffused light is poorer than that of US, the
ROI is chosen to be at least two to three times larger
than the tumor size measured by coregistered US in x to
y dimensions. In addition, because the depth localization
of diffused light is very poor, a tighter ROI in the depth
dimension is set by using coregistered US. For each
patient, the same size of ROI as that obtained from the
pretreatment US is used for processing all datasets ob-
tained at different treatment cycles. Therefore, the
changes in tumor size seen by US during treatment have
no major effect on the NIR image reconstruction.
Among the 22 patients, two patients had initially palp-
able tumors with ill-defined and heterogeneous pretreat-
ment ultrasound images. For these patients, tumor sizes
estimated from pretreatment MRI measurements were
used to assist in determining the US ROI in the x to y
dimensions. The ROI in the depth dimension was typic-
ally set from the top border of the ill-defined tissue pat-
tern to the chest wall as seen by US.
The optical absorption distribution at each wavelength

was reconstructed and the tHb concentration, oxygen-
ated hemoglobin (oxyHb) concentration, and deoxygen-
ated hemoglobin (deoxyHb) concentration maps were
computed from absorption maps at the four wavelengths
[38]. The maximum values of tHb, oxyHb, and deoxyHb
were measured for each set of hemoglobin maps. For
each patient imaged at each time point, an average max-
imum that was obtained from 5 to 10 quality NIR im-
ages at the tumor location was used to characterize the
tumor. Data with patient motion as evaluated by using
two coregistered US images before and after each NIR
measurement were excluded from averaging. To assess
the response of each patient, the tHb obtained before
treatment was taken as the baseline and the percentage
normalized to the baseline (%tHb) was used to quantita-
tively evaluate the remaining tumor vascular fraction
during chemotherapy.

MRI and US imaging and measurements
Nineteen patients had well-defined tumors visible by US.
Tumor sizes were measured by US technologists under
direct supervision of attending radiologists. The percent-
age ratio (%US) of the largest dimension of each post-
treatment measurement over the largest dimension of
pretreatment measurement was used to evaluate the
morphological change during NAC. One patient had a
much larger tumor size than the US transducer, and the
baseline US measurement was not accurate. The initial
tumor mass of this patient measured by MRI was 6.
9 cm. US scans performed from both medial lateral and
cranial-caudal directions using the 5-cm US transducer
were used to estimate the approximate mass center.
Then the combined probe of 10-cm diameter was placed
at the estimated mass center for NIR data acquisition.

This procedure had minimal effect on NIR reconstruc-
tion. For the two patients with initially palpable but ill-
defined and heterogeneous US images, the tumor loca-
tion at each measurement was tracked using previous
US images as references. The tumor clock position, dis-
tance of the tumor from the nipple, and depth below the
skin were documented for each case. Additionally, the
tumor posterior shadowing and surrounding tissue
structures, as well as the metal clip position, were also
reviewed and used to help identify the tumor for each
subsequent measurement. If an MRI was ordered for
clinical reasons, the MRI measurements were obtained
from the medical records of the patients.

Prediction models
We have previously developed a logistic regression
model to predict the NAC response of a patient using
pretreatment tumor clinicopathologic variables, tumor
subtype, and baseline tHb values [21]. Briefly, logistic
regression is a statistical modeling approach that can be
used to describe the relationship of several predictor var-
iables X1, X2… Xk to a dichotomous response variable Y,
where Y is coded 1 (responder) or 0 (nonresponder) for
its two possible categories [39]. The model can be
written in the form of the conditional probability of the
occurrence of one of the two possible outcomes of Y, as
follows:

pr Y ¼ 1 j X1;X2;…Xkð Þ
¼ 1

1þ exp − β0þ
Xk

n¼1

βnXn

 ! ! ð1Þ

The estimated outputs (probability) for each set of
predictor variables range from 0 to 1. Given the data on
Y, X1, … Xk, the unknown parameters βn, n = 0, 1, …, k,
n = 0, 1, …k can be estimated using the maximum likeli-
hood method.
In this study, we used the data from 32 patients ob-

tained from an earlier study as a training set [20] to esti-
mate a total of four groups of logistic models, and
validated these models using the new dataset reported in
this study as a testing dataset. The earlier data obtained
from 2008 to 2011 were acquired from almost identical
NIR systems with the same data processing and image
reconstruction procedures as reported in this study.
To validate that the early data and new data are gener-

ated from the same population, we have introduced a
dummy variable Xk + 1 in Eq. 1 which is coded as 0 for
early data and 1 as new data [40, 41]. We have estimated
the model with this dummy variable along with the eight
predictor variables using the combined datasets. The es-
timate on βk + 1 (P = 0.214) is statistically insignificant.
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Therefore, we can assume both datasets come from the
same patient population.
The Matlab (version 2016a) logistic regression func-

tion glmfit was used to estimate the coefficients βnβn, n
= 0, 1, …, k, and glmval was used to calculate the re-
ceiver operating characteristic (ROC) with these coeffi-
cients for the training set. The same coefficients
obtained from the training set were used to predict the
response for the testing set.

Evaluation of prediction models
We also assessed the overall performance of the predic-
tion models through the ROC curves and the area under
the curves (AUCs) for each pair of training and testing
sets of each prediction model. The early data used for
training had 20 ER+/HER2– patients, six TN patients,
five HER2+ patients, and one ER–/PR+/HER2– patient
[20]. Similar to the new patient cohort, ER+/HER– (n =
14) and TN (n = 6) tumors were treated with ACT every
2 weeks for eight cycles. Six ER+/HER2– tumors and one
ER–/PR+/HER2– tumor were treated with ACT (n = 3)
or TC (n = 4) every 3 weeks for six cycles. HER2+

tumors (n = 5) were treated with trastuzumab and
docetaxel or paclitaxel with or without carboplatin
(TPT) every 3 weeks for six cycles.
Since the early data did not contain any patients

treated with dual HER2 blockade, we have randomly se-
lected six HER2+ patients treated with this regimen from
the current study and added these six datasets to the
training data. For each random selection, the total of
patients in training was 38 (32 from the early data and 6
from this study) and testing was 16 from this study. A
total of 6 out of 11 random selections result in 462
combinations of paired training and testing datasets for
each group of predictors, and the mean of 462 AUC
values was used to evaluate the training and testing
results of each prediction model. Each pair of training
and testing ROCs was generated using a threshold of
0.5. This was used to separate responders (> 0.5) and
nonresponders (≤ 0.5) for each prediction model
output. We also used the 462 AUC values to
construct the 95% confidence interval (CI) for the
mean AUC for each model using a binomial formula.
These confidence intervals can provide summary
information on comparisons of the different models

in terms of their AUC values. For example, if model I
has a higher mean AUC than model II, and if their
corresponding confidence intervals do not overlap,
then this is an indication that model I may have a
higher prediction power than the model II in terms
of the AUC criterion. However, this interpretation
should be understood with the caveat that the 462
values are not true random samples.

Selection of predictors
To select the independent predictors, Spearman’s rho
was evaluated between each predictor and Miller-Payne
grade and between each pair of predictors. Spearman’s
rho is more appropriate for assessing the relationship for
both continuous and discrete variables. Note that both
training and testing data were combined to assess the
predictors and the Spearman’s rhos reported in this sec-
tion are from the entire cohort of both earlier and new
data (Table 2). To compute rho, the tumor HER2, ER,
and TN status were coded as: 1 for TN and 0 for other-
wise; 1 for HER2+ and 0 for HER2–; and 0 for ER+ and 1
for ER–. Note that 1 presents increased probability of
achieving pCR and 0 otherwise.
Both HER2 and ER are highly correlated with Miller-

Payne grade (rho = 0.45, P < 0.001; rho = 0.29, P = 0.035)
and are independent of each other (rho = 0.01, P = 0.
928); thus, they were selected as predictors. TN tumors
did not have a significant correlation with Miller-Payne
grade (rho = 0.124, P = 0.362). However, TN was selected
as a predictor because it is used clinically to characterize
this group of patients. Among tumor pathological pa-
rameters, NS is a traditional pathological variable used
by oncologists to predict response. NS is highly corre-
lated with mitotic counts (rho = 0.82, P < 0.001). Thus,
only NS was selected as an independent pathological
predictor and used in each HER2, ER, and TN subtypes
to predict response.Baseline tHb and %tHb changes
measured during first three treatment cycles are highly
correlated with Miller-Payne grade ( see Table 2) and
were selected to assess the optimal time window to pre-
dict response.

Statistical analysis
A two-sample two-sided t test was used to calculate the
statistical significance for comparisons between responder

Table 2 Spearman’s rho correlation coefficient and P value between Miller-Payne grade and tumor pathological variables (MC, NS),
tumor subtype (HER2, ER, TN), tHb, and %tHb measured at the end of cycles 1 to 3

NS MC HER2 ER TN tHb %tHb cycle 1 %tHb cycle 2 %tHb cycle 3

rho 0.42 0.45 0.45 0.29 0.12 0.48 0.50 0.52 0.69

P P = 0.001 P < 0.001 P < 0.001 P = 0.035 P = 0.364 P < 0.001 P < 0.001 P < 0.001 P < 0.001

Data are from [20] and this study (n = 54 patients)
ER estrogen receptor, HER2 human epidermal growth factor 2, MC mitotic count, NS Nottingham score, tHb total hemoglobin, TN triple negative
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groups, and a difference with a P value of 0.05 was consid-
ered significant. The t test was also used to test the differ-
ence between AUCs of different prediction models when
their 95% CIs overlapped. Minitab 17 software (Minitab,
State College, PA) was used for statistical calculations.

Results
There were nine Miller-Payne grade 1–3 tumors and 13
grade 4–5 tumors. For grade 4–5 tumors, the pretreat-
ment mean maximum tHb was 84.8 ± 11.3 μmol/L
(mean ± standard deviation), whereas for grade 1–3 tu-
mors the pretreatment mean maximum tHb was 67.9 ±
16.2 μmol/L (P = 0.018). The mean difference of the
maximum tHb was 16.9 μmol/L and the 95% CI was 3.
5–3.04 μmol/L. However, no statistical significance was
found at day 7 and at the end of treatment cycles 1, 2,
and 3 as the mean tHb level was reduced in grade 4–5
tumors but the mean level did not change in grade 1–3
tumors (Fig. 1).
The pretreatment oxyHb was not significantly different

between grade 4–5 and grade 1–3 tumors (P = 0.083);
however, the deoxyHb difference was significant (P = 0.
028) (Fig. 2). In subsequent measurements, no signifi-
cant difference was observed in either oxyHb or
deoxyHb.
The %tHb (percentage fraction from baseline) was cal-

culated and the results for the two groups are given in
Fig. 3. No statistical significance between the two groups
was found at day 7 (P = 0.238). Statistical significance
was achieved at the end of cycle 1. For Miller-Payne
grade 1–3 tumors %tHb was 102 ± 12%, whereas for
grade 4–5 tumors %tHb was 72 ± 22%. The mean differ-
ence was 30% (P = 0.001), and the 95% CI was 14.6–45.

0%. The significance remained high at the end of cycles
2 and 3, with mean differences of 26% (P = 0.018) and
95% CI 5.1–46.4%, and 25% (P = 0.012) and 95% CI 6.4–
43.7%, respectively.
In this new cohort, Spearman’s rhos calculated be-

tween Miller-Payne grade and pretreatment tHb, oxyHb,
and deoxyHb, as well as %tHb measured at different cy-
cles, reveal that the pretreatment maximum tHb and
maximum deoxyHb have achieved statistical significance
(P = 0.049 and 0.030; Table 3). The %tHb values mea-
sured at the end of cycles 1, 2, and 3 are highly predict-
ive (P = 0.002, P = 0.006, and P = 0.048, respectively),
while %tHb measured at day 7, the end of cycle 5, and
before operation are not predictive (P = 0.321, P = 0.321,
and P = 0.202, respectively).
There is no correlation between the pretreatment

tumor size measured by MRI (n = 18, P = 0.150) and US
(n = 19, P = 0.152) and the Miller-Payne grade.
An example of a pCR is shown in an HER2-positive

tumor (Fig. 4) in a 51-year-old woman with a high-grade
invasive ductal carcinoma treated with TPT every 3
weeks for six cycles. US images obtained at pretreat-
ment, day 7, at the completion of cycle 1, and before
surgery are shown in the left panel. The tumor was well
defined and seen by US before treatment and at day 7,
was barely visible at the completion of cycle 1, and was
not visible at the completion of cycles 2 (data not
shown) and 3 (data not shown), and before surgery. tHb
concentration maps obtained at the corresponding time
points are shown in the right panel. The tHb reduced
from 85.8 μmol/L measured before treatment to 69.4,
36.3, and 21.8 μmol/L measured at day 7, before the
completion of cycle 1, and before surgery, respectively.
tHb measured at the completion of cycles 2 and 3 were

Fig. 1 Box plot of mean maximum total hemoglobin (tHb; μmol/L) of two responder groups of Miller-Payne (MP) 4–5 and MP 1–3 measured at
baseline, day 7, and at the end of cycles (cyc) 1, 2, and 3 of NAC
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41.8 and 28.7 μmol/L, respectively (data not shown). A
dramatic tHb reduction occurred at the end of cycle 1
(%tHb = 42%). This patient had a complete pathologic
response with no residual tumor (Miller-Payne grade 5).
An example of a partial responder is shown in a high-

grade ER-positive/HER2-negative tumor (Fig. 5). A 72-
year-old woman had a locally recurrent invasive ductal
carcinoma. She was treated with TC every 3 weeks for
four cycles before surgery. US images at the four time
points pretreatment, day 7, at the completion of cycle 1,
and before surgery are shown in the left panel. The
tumor was ill-defined with unclear boundary seen by
US. tHb concentration maps obtained at the corre-
sponding time points are shown in the right panel. tHbs

of 90.2, 99.3, 108.8, 105.0 (data not shown), 85.0 (data
not shown), and 69.0 μmol/L were measured at pretreat-
ment, day 7, at the completions of cycles 1 to 3, and be-
fore surgery, respectively. The patient had a partial
response with a residual invasive carcinoma of 2.8 cm
(Miller-Payne grade 3).
Based on tumor biomarkers and hemoglobin measure-

ments, predictors are grouped into four categories:1)
HER2 status with hemoglobin predictors; 2) ER with
hemoglobin predictors; 3) TN with hemoglobin predic-
tors; and 4) hemoglobin predictors (see Table 4). ROCs
of validation or testing of these four groups are given in
Fig. 6 and Table 4. Note that predictor groups that
achieve higher training AUCs do not necessarily

Fig. 2 Box plot of pretreatment maximum total hemoglobin (tHb), oxygenated hemoglobin (oxyHb), and deoxygenated hemoglobin (deoxyHb)
(μmol/L) of two responder groups. MP, Miller-Payne

Fig. 3 Box plot of percent total hemoglobin (%tHb) of two responder groups of Miller-Payne (MP) 4–5 and MP 1–3 measured at baseline, day 7,
and at the end of cycles (cyc) 1, 2, and 3 of NAC
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Table 3 Spearman’s rho correlation coefficient and P value between Miller-Payne grade and pretreatment tHb (maximum), oxyHb
(maximum), deoxyHb (maximum), %tHb at day 7, and at the end of cycles 1, 2, 3, and 5, and before surgery

tHb (max) oxyHb (max) deoxyHb (max) %tHb day7 %tHb cycle 1 %tHb cycle 2 %tHb cycle 3 %tHb Cycle 5 %tHb before surgery

rho 0.43 0.28 0.46 0.26 0.61 0.57 0.43 0.26 0.29

P P = 0.049 P = 0.205 P = 0.030 P = 0.321 P = 0.002 P = 0.006 P = 0.048 P = 0.321 P = 0.202

Data are from the new cohort (n = 22 patients)
deoxyHb deoxygenated hemoglobin, oxyHb oxygenated hemoglobin, tHb total hemoglobin

Fig. 4 pCR in an HER2-positive tumor in a 51-year-old woman with a high-grade invasive ductal carcinoma treated with TPT every 3 weeks for six
cycles. Left panel: US images obtained at pretreatment, at day 7, at the completion of cycle 1, and before surgery. Right panel: tHb concentration
maps obtained at the corresponding time points. Each map shows seven subimages marked as slice 1 to 7, and each subimage shows spatial x
and y distribution of tHb concentration reconstructed from 0.5 cm to 3.5 cm below the skin surface. The depth spacing between the subimages
in depth is 0.5 cm. The color bar is tHb in micromoles per liter. This patient had a complete pathologic response with no residual tumor, Miller-
Payne grade 5
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translate into higher testing AUCs, and higher AUCs of
testing data are used to compare prediction models.
For HER2 group 1, HER2 used alone can achieve

an AUC of 0.78 (95% CI 0.74–0.81). When HER2 and
tHb are used together, the AUC reached 0.88 (95% CI
0.85–0.91). The addition of ER or NS essentially pro-
duces similar AUCs of 0.87 (95% CI 0.84–0.90) and 0.
85 (0.82–0.88). However, the statistical significance of
HER2 and tHb is higher than HER2, tHb, and ER (P
= 0.016) and HER2, tHb, and NS (P < 0.001). This

suggests that HER2 and tHb are the best pretreat-
ment predictors regardless of ER or NS. The highest
AUC of 0.96 (95% CI 0.95–0.98) is achieved when
%tHb measured at the end of cycle 1 is added to
HER2 and tHb. This was further modestly improved
to 0.97 (95% CI 0.96–0.99) when %tHb measured at
end of cycles 1 and 2 are used together with HER2
and tHb. Thus, the optimal time window with an ac-
curate prediction of pathologic response in the HER2
subtype is at the end of cycle 2.

Fig. 5 Partial response in a high-grade ER-positive/HER2-negative tumor in a 72-year-old woman with a locally recurrent invasive ductal carcinoma. She was
treated with cyclophosphamide and docetaxel every 3 weeks for four cycles before surgery. Left panel: US images at four time points of pretreatment, at day
7, at the completion of cycle (Cyc) 1, and before surgery. The tumor was ill-defined with an unclear boundary seen by US. Right panel: tHb concentration
maps obtained at the corresponding time points. The patient had a partial response with residual invasive carcinoma of 2.8 cm, Miller-Payne grade 3
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Table 4 Four groups of logistic regression models based on tumor subtype and hemoglobin parameters, AUC of training data, and
AUC of testing data

Tumor subtypes Training AUC (95% CI) Testing AUC (95% CI)

Group 1 (HER2 subtype)

Her2 0.71 (0.66–0.75) 0.78 (0.74–0.81)

Her2, tHb 0.88 (0.85–0.91) 0.88 (0.85–0.91)

Her2, tHb, ER 0.91 (0.89–0/94) 0.87 (0.84–0.90)

Her2, tHb, NS 0.91 (0.88–0.94) 0.85 (0.82–0.88)

Her2, tHb, %tHb_cyc1 0.89 (0.87–0.92) 0.96 (0.95–0.98)

Her2, tHb, %tHb_cyc2 0.89 (0.86–0.91) 0.94 (0.92–0.96)

Her2, tHb, %tHb_cyc3 0.96 (0.94–0/97) 0.89 (0.86–0.92)

Her2, tHb, %tHb_cyc1, %tHb_cyc2 0.90 (0.87–0.93) 0.97 (0.96–0.99)

Her2, tHb, %tHb_cyc1, %tHb_cyc3 0.96 (0.94–0.97) 0.88 (0.85–0.91)

Her2, tHb, %tHb_cyc2, %tHb_cyc3 0.96 (0.94–0.98) 0.88 (0.85–0.91)

Her2, tHb, %tHb_cyc1, %tHb_cyc2, %tHb_cyc3 0.96 (0.94–0.98) 0.88 (0.86–0.92)

Group 2 (ER subtype)

ER 0.67 (0.63–0.72) 0.55 (0.50–0.59)

ER, tHb 0.81 (0.77–0.85) 0.69 (0.64–0.73)

ER, tHb, NS 0.83 (0.80–0.87) 0.69 (0.65–0.73)

ER, tHb, %tHb_cyc1 0.85 (0.82–0.89) 0.91 (0.88–0.93)

ER, tHb, %tHb_cyc2 0.86 (0.83–0.89) 0.79 (0.75–0.83)

ER, tHb, %tHb_cyc3 0.97 (0.95–0.98) 0.77 (0.73–0.81)

ER, tHb, %tHb_cyc1, %tHb_cyc2 0.88 (0.85–0.91) 0.86 (0.83–0.89)

ER, tHb, %tHb_cyc1, %tHb_cyc3 0.96 (0.95–0.98) 0.76 (0.73–0.80)

ER, tHb, %tHb_cyc2, %tHb_cyc3 0.97 (0.95–0.98) 0.77 (0.73–0.81)

Group 3 (TN subtype)

TN 0.55 (0.51–0.56) 0.46 (0.41–0.50)

TN, tHb 0.77 (0.74–0.81) 0.72 (0.68–0.76)

TN, tHb, NS 0.81 (0.78–0.85) 0.69 (0.65–0.75)

TN, tHb, %tHb_cyc1 0.84 (0.81–0.87) 0.90 (0.87–0.93)

TN, tHb, %tHb_cyc2 0.85 (0.82–0.88) 0.84 (0.81–0.88)

TN, tHb, %tHb_cyc3 0.96 (0.94–0.98) 0.76 (0.72–0.80)

TN, tHb, %tHb_cyc1, %tHb_cyc2 0.85 (0.82–0.88) 0.90 (0.87–0.93)

TN, tHb, %tHb_cyc1, %tHb_cyc3 0.96 (0.94–0.98) 0.75 (0.71–0.79)

TN, tHb, %tHb_cyc2, %tHb_cyc3 0.96 (0.94–0.98) 0.75 (0.71–0.79)

Group 4 (tHb and %tHb, all patients)

tHb 0.77 (0.73–0.81) 0.75 (0.71–0.79)

tHb, %tHb_cyc1 0.83 (0.80–0.87) 0.95 (0.93–0.97)

tHb, %tHb_cyc2 0.84 (0.80–0.86) 0.87 (0.84–0.90)

tHb, %tHb_cyc3 0.94 (0.92–0.97) 0.80 (0.76–0.84)

tHb, %tHb_cyc1, %tHb_cyc2 0.84 (0.81–0.88) 0.92 (0.90–0.95)

tHb, %tHb_cyc1, %tHb_cyc2, %tHb_cyc3 0.94 (0.92–0.96) 0.80 (0.76–0.84)

%tHb_cyc1 0.79 (0.75–0.83) 0.89 (0.86–0.92)

%tHb_cyc2 0.83 (0.80–0.86) 0.81 (0.78–0.85)

%tHb_cyc3 0.94 (0.92–0.96) 0.82 (0.78–0.85)

%tHb_cyc1, %tHb_cyc2 0.82 (0.78–0.87) 0.87 (0.83–0.90)
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For ER group 2, ER used alone can achieve an AUC of
0.55 (95% CI 0.50–0.59). ER and tHb achieve AUC of 0.
69 (95% CI 0.64–0.73), and ER, tHb, and NS achieve
AUC of 0.69 (95% CI 0.65–0.73). NS does not add any
value to predicting the response of the ER patient group.
The addition of %tHb measured at the end of cycle 1
improves the AUC of ER and tHb to 0.91 (95% CI 0.88–
0.93). For TN group 3, TN used alone can achieve an
AUC of 0.46 (95% CI 0.40–0.50). TN and tHb achieve
an AUC of 0.72 (95% CI 0.68–0.76), and TN, tHb, and
NS achieve an AUC of 0.69 (95% CI 0.65–0.75). NS does
not add any value to predicting the response of the TN
patient group. The addition of %tHb measured at cycle 1
improves the AUC to 0.90 (95% CI 0.87–0.93). For both
ER and TN subtypes, %tHbs measured at the end of cy-
cles 2 and 3 do not significantly improve prediction
(Table 4). Thus, the optimal time window for assessing
response in ER or TN subtypes is at the end of cycle 1.

For group 4, tHb used alone can achieve an AUC of 0.
75 (95% CI 0.71–0.79), and %tHb cycle 1 used alone can
achieve an AUC of 0.89 (95% CI 0.86–0.92). tHb and
%tHb cycle 1 achieve an AUC of 0.95 (95% CI 0.93–0.
97), which is significantly higher compared with the ER
or TN subtype groups (P < 0.001). %tHbs measured at
the end of cycles 2 and 3 do not significantly improve
prediction (Table 4). Therefore, for ER and TN subtypes,
tHb and %tHb are the best predictors and the early win-
dow for prediction is at the end of cycle 1.
The sensitivity, specificity, positive predictive value

(PPV), and negative predictive values (NPV) of the best
groups of predictors are shown in Table 5.
The %US ratio, the largest dimensions of post-

treatment US measurements normalized to the pretreat-
ment, of grade 1–3 and 4–5 tumors were calculated for
19 patients with well-defined US images. For grade 1–3
tumors (n = 9), %USs were 90.1 ± 9.8%, 84.9 ± 17.3%,

Table 4 Four groups of logistic regression models based on tumor subtype and hemoglobin parameters, AUC of training data, and
AUC of testing data (Continued)

Tumor subtypes Training AUC (95% CI) Testing AUC (95% CI)

%tHb_cyc1, %tHb_cyc2, %tHb_cyc3 0.94 (0.92–0.96) 0.82 (0.79–0.86)

Bold entries indicate the best set of predictors in each group
AUC area under the curve, CI confidence interval, ER estrogen receptor, HER2 human epidermal growth factor receptor 2, NS Nottingham score, tHb total
hemoglobin, TN triple negative

Fig. 6 ROC curves of testing data of four groups of prediction models based on a HER2 subtype and hemoglobin parameters, b ER subtype and
hemoglobin parameters, c TN subtype and hemoglobin parameters, and d hemoglobin parameters
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and 77.0 ± 20% measured at end of cycles 1 to 3, re-
spectively, whereas for grade 4–5 tumors (n = 11), %USs
were 61.2 ± 18.0%, 52.3 ± 15.6%, and 42.8 ± 13.7%, re-
spectively. Statistical significance was achieved at all cy-
cles (P < 0.001, P < 0.001, and P = 0.001, respectively).

Discussion
The clinical inclination to select patients for NAC who
are more likely to be good responders accounts for the
large number (11/22, 50%) of HER2+ tumors in this
study, especially with the ability to utilize dual HER2
blockade in this setting. In the HER2+ group, there were
Miller-Payne grade 4 and 5 responses in 91% despite the
large number of cases that coexpressed ER. This appar-
ent anomaly of HER2/ER coexpression is partially ex-
plained by the relatively low-level ER expression in two
of the eight HER2+/ER+ cases. The remaining patients
were either ER+/HER2– or TN and had Miller-Payne 4
or 5 responses of 17% and 40%, respectively.
In our previous work, we dichotomized our compari-

son groups as pCR and near pCR (Miller-Payne grades
4–5) versus “other” (Miller-Payne grades 1–3). Our ra-
tionale for using these same comparison groups in this
report is further supported as follows. In the original
study by Ogston [36], the Miller-Payne 5 and 4 groups
tended to track together with regard to 5-year disease-
free survival after NAC and surgery (85% and 72%) ver-
sus 66%, 60%, and 55% for Miller-Payne 1–3, respect-
ively. Later, Zhao et al. [42] while evaluating the Miller-
Payne system using a different dataset found very similar
5-year distant disease-free survival and local recurrence-
free survival rates for Miller-Payne 4–5 versus Miller-
Payne 1–3. Finally, Symmans et al. [43] using the re-
sidual cancer burden (RCB) system and another separate
dataset for evaluating tumor response after NAC also
found that pCR and near-pCR had very similar survival
curves after surgery (their categories RCB-0 and RCB-1
compared with RCB-2 (partial response) and RCB-3
(chemoresistant)).
In studies published to date, diffused optical tomog-

raphy and diffused optical spectroscopy have demon-
strated the potential for predicting breast cancer

pathological response. Studies have shown that accurate
predictions were made in the neoadjuvant setting by
utilizing pretreatment hemoglobin levels or blood oxy-
gen saturations (SO2) [20, 21, 23, 31], or by monitoring
early changes of hemoglobin content and SO2 at 1 day
or 1 week [19, 27], or after the first two cycles of NAC
[20, 22, 23]. In this study, we have developed prediction
models and have shown that the best pretreatment pre-
dictors are HER2 and tHb (AUC = 0.88). The pretreat-
ment predictors based on ER and tHb, and TN and tHb
predict response with moderate AUC accuracies of AUC
0.69 and 0.72, which are about the same as for the single
predictor tHb (AUC = 0.75). For the HER2 subtype, the
best window to accurately predict response is at the
completion of the first two cycles of NAC. For ER or TN
subtypes, the best window is at the completion of the
first cycle of NAC and the best predictors are tHb and
%tHb.
In our earlier study of 32 patients [21], the testing data

obtained from cross-validations showed that the addition
of the pretreatment tHb to pathological variables and
biomarkers significantly improved the prediction (AUC
0.92 (95%CI 79.4–99.8)) compared with using these vari-
ables alone (AUC 0.84 (95% CI 57.2–99.0). The best pre-
treatment predictors of HER2, ER, and tHb reported in
this study using the new cohort data as the testing set
has achieved similar results of AUC 0.87 (95% CI 0.84–
0.90).
NIR/US measurements obtained at the end of the first

three treatment cycles were used for development and
validation of the prediction models. Chemotherapy treat-
ments are delivered generally in specific cycles. These
schedules are based on maximal tumor cell kill and al-
lowance of recovery of normal tissues (http://chemocare.
com/chemotherapy/what-is-chemotherapy/cancer-cells-
chemotherapy.aspx). Some cycles are given every 2
weeks and others every 3 weeks. Tumor responses by
imaging studies occur after a specified number of treat-
ment cycles, and not by specific times. Because treat-
ments vary for HER2-positive disease compared with
ER-positive or TN disease, the drugs utilized and sched-
ules vary. The effects of the treatments are studied by

Table 5 Sensitivity, specificity, PPV, NPV, and AUC of the best set of predictors based on tumor subtype and hemoglobin
parameters of the testing data

Sensitivity Specificity PPV NPV AUC

Her2, tHb, %tHb_cyc1 73.7 94.9 92.4 84.8 0.96

Her, tHb, %tHb_cyc1, %tHb_cyc2 82.4 94.9 92.5 86.7 0.97

ER, tHb, %tHb_cyc1 81.8 88.1 85.8 85.1 0.90

TN, tHb, %tHb_cyc1 82.0 88.1 85.9 85.1 0.90

tHb, %tHb_cyc1 83.8 88.1 86.1 86.5 0.95

AUC area under the curve, ER estrogen receptor, HER2 human epidermal growth factor receptor 2, NPV negative predictive value, PPV positive predictive value,
tHb total hemoglobin, TN triple negative
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equivalent treatment cycles. The goal was to give
guideline-based treatments and to measure the maximal
effect of each of these treatments before the next cycle is
given. When combining all patients together, the mea-
surements points were different in terms of weeks but
not by cycles—they were consistent. The results show
that pretreatment tHb and first cycle %tHb can achieve
an accuracy of AUC 0.96 in the HER2 subtype, and
AUCs of 0.91 in ER and 0.90 in TN subtypes, and AUC
of 0.95 regardless of subtype. Thus, it is the ultimate ef-
fect of the drug on the tumor vascularity that is being
assessed by near infrared functional parameters.
Baseline tHb measures tumor angiogenesis and corre-

lates with tumor aggressiveness as evaluated by Spear-
man’s rhos with Nottingham score (rho = 0.355, P = 0.
007) in the combined training and testing data of 54 pa-
tients. Aggressive tumors have high proliferative rates
and respond quickly to chemotherapy, as shown by
PET/CT which detects pretreatment and early changes
in tumor metabolic activity after one or two cycles of
NAC [44] and predicts pCR. As expected from log cell-
kill kinetics of cytotoxic drugs, a given dose kills a con-
stant proportion of a tumor cell population rather than a
constant number of cells (https://bajan.files.wordpress.
com/2010/09/principles-of-cancer-chemotherapy.pdf ).
Therefore, for chemosensitive tumors, there are more
total cells killed in the first cycle of treatment and more
tumor neovasculature damage that may cause a signifi-
cant decrease in tumor hemoglobin measured by the
NIR system. For HER2+ responders, the cycle 1 %tHb is
lower (mean %tHb = 77%) and more predictive than that
of ER+/HER2– and TN responders (mean %tHb =84%)
because trastuzumab has been demonstrated to have a
strong antiangiogenic effect [45].
Our study has substantial implications for the com-

bined use of tumor subtypes and NIR-measured tumor
hemoglobin content in predicting pathological response
even before therapy has begun. If a decision is made to
initiate therapy, modification of the treatment can be
implemented as soon as cycles 1 and 2 are completed,
allowing for personalized treatment. This ability will be
of even greater value as our armamentarium of interven-
tions increases and responses can more effectively tailor
the agents selected.
In this new cohort of patients, 86% of the tumors were

visible on US compared with 65% in our earlier study
[20]. This difference could be due to a greater represen-
tation of HER2-positive tumors in which US has been
shown to be more accurate in measuring tumor size
[46]. Pretreatment US does not predict response. How-
ever, %US of this cohort demonstrated statistical signifi-
cance between responders and nonresponders at the
early treatment cycles 1 to 3, while the earlier study
group [20] showed no statistical significance at the end

of cycles 1 and 2 (P = 0.437 and P = 0.172) between these
two responder groups. Significance was achieved at the
end of cycle 3. Additionally, earlier data showed no cor-
relation between %US measured at the end of cycles 1 to
3 and Miller-Payne grade (rho = 0.27, P = 0.211; rho = 0.
25, P = 0.257; and rho = 0.36, P = 0.106), respectively.
With more patient data, the %US measure will be
assessed on its role in predicting response.
There are some limitations to this study. First, all pa-

tients were referred for NAC after core biopsy, and
hence the baseline NIR/US imaging was performed after
the initial biopsy. Bruise or hematoma due to prior bi-
opsy could have some effect on pretreatment NIR mea-
surements. However, 21 patients had the pretreatment
NIR measurements more than 10 days and one patient
7 days after biopsy. Based on the literature, the pretreat-
ment NIR measurements 1 week after core biopsy were
not affected by the biopsy [47]. However, another study
followed a patient before and after biopsy and showed a
10% increase in diffuse optical spectroscopy (DOS)-mea-
sured deoxygenated hemoglobin after 9 days following
biopsy [48]. Our study patient who imaged 7 days fol-
lowing biopsy had a pCR of Miller-Payne grade 5, and
her cycle 1 %tHb was 58%, or a reduction of 42%. This
level of %tHb change is too large to be counted as a bi-
opsy effect. Secondly, this new pool of 22 patients had
50% HER2+ tumors and were treated with the dual
HER2 blockade regimen which was not available in the
training data obtained from 2008 to 2011. We have
randomly selected data from 6 out of 11 patients from
this study and added these 6 patients’ data to the
training set to train the prediction models using all
combinations. The testing data includes 73% from this
study, with adequate samples of all subtypes. Thirdly,
the training and testing datasets are still small and
overfitting can occur when the training dataset is limited
[21]. We have selected the minimal number of
independent predictors for each prediction model,
performed partial cross-validation, and used fairly high
amounts (16/54, 30%) of the patient data for testing. The
performances of the prediction models based on respect-
ive training and testing datasets are similar with no obvi-
ous pattern of higher AUC values for training data and
much lower AUCs for testing data, which would be ex-
pected if there were problem of overfitting. With more
patients recruited to the study, we will be able to estab-
lish a large database to validate prediction models with
more input predictors.
The technical limitations of the US-guided NIR tech-

nique include the accuracy of the reconstructed optical
absorption coefficients, the longitudinal repeatability of
the measurements, and SO2 estimation. For a large
high-contrast phantom of 3–5 cm in size, about 60–70%
reconstruction accuracy in target absorption can be
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achieved [38]. Because the average pretreatment tumor
sizes of the two responder groups were similar, any
under-reconstruction should affect the light quantifica-
tion of both groups similarly. Therefore, the comparison
of pretreatment and early treatment hemoglobin levels
between the two responder groups should be minimally
affected. Additionally, because the same sized ROI ob-
tained from the pretreatment US of each patient is used
for reconstructions at all subsequent treatment cycles
for the same patient, under-reconstruction should have a
minimal effect on the %tHb, which is normalized to the
pretreatment level. The longitudinal repeatability of the
reconstructed phantom absorption coefficient is about
5–10%, which is obtained by repeatedly imaging solid
absorbers embedded in the same concentration of Intra-
lipid over a 1- to 2-year period. This level of change is
much smaller than the changes seen in patients who
responded to treatments. Finally, SO2 estimated from
DOS has been reported as a good pretreatment pre-
dictor [31]. However, SO2 distribution = oxyHb distribu-
tion/tHb distribution is not as robust as tHb, oxyHb,
and deoxyHb when the tHb values reconstructed from
tomography are lower in some voxels, especially when
the tumor is large and distribution is heterogeneous.

Conclusions
In conclusion, our findings indicate that the breast
tumor biomarkers (HER2, TN, and ER) combined with
the pretreatment tumor total hemoglobin content are
strong predictors of the response to NAC. The optimal
treatment window to identify patients destined to have
complete or near-complete responses is after the com-
pletion of the first two treatment cycles for HER2 tu-
mors and the first treatment cycle for ER or TN tumors,
when the assessment of total hemoglobin change is fur-
ther predictive. This technology could be a valuable tool
in personalizing treatments by response. These initial re-
sults remain to be validated with a larger trial of more
patients.
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