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Abstract

Background: Texture patterns have been shown to improve breast cancer risk segregation in addition to area-
based mammographic density. The additional value of texture pattern scores on top of volumetric mammographic
density measures in a large screening cohort has never been studied.

Methods: Volumetric mammographic density and texture pattern scores were assessed automatically for the first
available digital mammography (DM) screening examination of 51,400 women (50-75 years of age) participating in
the Dutch biennial breast cancer screening program between 2003 and 2011. The texture assessment method was
developed in a previous study and validated in the current study. Breast cancer information was obtained from the
screening registration system and through linkage with the Netherlands Cancer Registry. All screen-detected breast
cancers diagnosed at the first available digital screening examination were excluded. During a median follow-up
period of 4.2 (interquartile range (IQR) 2.0-6.2) years, 301 women were diagnosed with breast cancer. The
associations between texture pattern scores, volumetric breast density measures and breast cancer risk were
determined using Cox proportional hazard analyses. Discriminatory performance was assessed using c-indices.

Results: The median age of the women at the time of the first available digital mammography examination was
56 years (IQR 51-63). Texture pattern scores were positively associated with breast cancer risk (hazard ratio (HR) 3.16
(95% Cl 2.16-4.62) (p value for trend <0.001), for quartile (Q) 4 compared to Q1). The c-index of texture was 0.61
(95% CI 0.57-0.64). Dense volume and percentage dense volume showed positive associations with breast cancer
risk (HR 1.85 (95% Cl 1.32-2.59) (p value for trend <0.001) and HR 2.17 (95% Cl 1.51-3.12) (p value for trend <0.001),
respectively, for Q4 compared to Q1). When adding texture measures to models with dense volume or percentage
dense volume, c-indices increased from 0.56 (95% Cl 0.53-0.59) to 0.62 (95% Cl 0.58-0.65) (p < 0.001) and from 0.58
(95% Cl 0.54-0.61) to 0.60 (95% CI 0.57-0.63) (p = 0.054), respectively.

Conclusions: Deep-learning-based texture pattern scores, measured automatically on digital mammograms, are
associated with breast cancer risk, independently of volumetric mammographic density, and augment the capacity
to discriminate between future breast cancer and non-breast cancer cases.
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Background

Many countries have a breast cancer screening program
[1]. The intention of these programs is to find breast can-
cers at an early stage, to increase the chance of successful
treatment and to prevent premature mortality [2, 3]. Al-
though most screening programs have been shown to de-
crease breast cancer mortality [4], the programs do not
work equally well for all women. It is well-known that
women with more fibroglandular breast tissue (dense tis-
sue) have a lower probability that a cancer, if present, is
detected through mammographic screening: the screening
sensitivity is lower in women with dense breasts [5-13].
High mammographic density does not only lower mam-
mographic screening sensitivity, it is also a well-known
breast cancer risk factor [14, 15]. Therefore, the possibility
of developing more personalized screening, taking mam-
mographic density and breast cancer risk into account, is
being discussed widely [16, 17]. In the USA, legislation en-
forces physicians to inform a woman of her mammo-
graphic density after mammographic screening. Breast
density legislation is now in place in 36 states. Depending
on her mammographic density, a woman can choose to be
screened with another imaging modality, like ultrasound
(US) or magnetic resonance imaging (MRI), in addition to
mammography [16].

Besides mammographic density, mammographic tex-
ture patterns have also been shown to be associated with
breast cancer risk, and also to improve breast cancer risk
segregation in addition to area-based mammographic
density [18-21]. These texture patterns characterize the
spatial distribution of parenchymal tissue in the breast.
Examples of radiographic features of texture patterns
are, for example, co-occurrence features, which take into
account the pixel intensities or gray-levels of neighbor-
ing pixels in different directions; run-length features,
which characterize the coarseness of the texture patterns
by determining the length of consecutive pixels with the
same pixel intensity in linear directions; structural fea-
tures, which characterize the tissue complexity and vari-
ations in gray level between a specific pixel and its
neighboring pixels; and multi-resolution or spectral fea-
tures, which use frequency transforms, like Fourier or
wavelet, to capture texture structures that are repeatedly
found in a mammogram [19].

All these texture features are manually designed and se-
lected and will only capture mammographic, risk-prone
patterns to the extent the feature designs were relevant.
This problem is normally overcome by initially using large
banks of potential features but only maintaining the in-
formative ones in the final classification system [22, 23].
However, more modern texture quantification methods
based on deep learning address this challenge in a more
principled, domain, and task-specific way [24]. Here, fea-
tures are not designed but are learned from the domain
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data as part of training of the overall classification system.
In its simplest form, as those features that best describe
the domain (e.g.,, mammographic images) and in a more
complex form as the features that best describe the
domain and simultaneously contribute optimally to the
task at hand (e.g., cancer risk). It has been suggested
that the methods developed with deep learning have a
better ability to quantify breast cancer risk compared to
methods based on manually designed and selected
texture features [24].

Therefore, the aim of this study was to determine the
association between a previously developed deep-learning-
based texture score [24] alone and in combination with
automatically measured volumetric mammographic dens-
ity and breast cancer risk, and their ability to segregate fu-
ture breast cancer cases from non-breast cancer cases in a
“new” dataset. This dataset consists of a consecutive series
of unprocessed digital mammograms of a breast cancer
screening population in whom mammograms are pro-
spectively collected.

Methods

Study population

In the Netherlands, women aged 50-75 years have been
invited for mammographic breast cancer screening every
other year from 1989 and onwards. Approximately 80%
of the women attend the screening program [25]. Since
2003 the transition from analog to digital mammography
gradually took place, starting at one screening unit (Pre-
venticon screening unit, Utrecht, The Netherlands) and
in 2010 the transition was complete. For this study, all
women were included who had one or more digital
mammographic screening examinations at the Preventi-
con screening unit between 2003 and 2011. There are
five screening regions in the Netherlands that follow the
exact same procedures. The Preventicon screening unit
is part of the Foundation of Population Screening Mid-
West region. Women consent to their data being used
for evaluation and improvement of the screening, by
participating in the Dutch breast cancer screening pro-
gram, unless they have stated otherwise.

The research ethics committee of the Radboud Univer-
sity Nijmegen Medical Centre declared that this study
does not fall within the remit of the Medical Research
Involving Human Subjects Act. Therefore, this study
could be carried out (in The Netherlands) without ap-
proval by an accredited research ethics committee.

Data collection

We selected each woman’s first unprocessed (raw) digital
mammography examination. All mammograms were taken
using Lorad Selenia DM systems (Hologic, Danbury, CT,
USA). During the first examination in the screening pro-
gram, both craniocaudal (CC) and mediolateral oblique
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(MLO) views are always acquired. In subsequent rounds the
MLO is the standard view and an additional CC view is
taken only when indicated (e.g., visible abnormality, high
mammographic density). Information during follow up was
obtained through the screening registration system and
through linkage with the Netherlands Cancer Registry to
obtain complete information on both screen-detected and
interval breast cancers. Screen-detected breast cancers were
defined as breast cancers diagnosed on the basis of diagnos-
tic work-up of an “abnormal” screening examination. Inter-
val breast cancers were defined as breast cancers diagnosed
within 24 months after a screening examination that did
not lead to recall (negative mammogram), and before the
next scheduled screening examination. The median time
between the first available digital screening mammogram
and breast cancer diagnosis was 3.7 years (IQR 2.0-4.3,
minimum 0.1 years, maximum 7.9 years) for screen-
detected breast cancers and 2.2 years (IQR 1.1-3.9, mini-
mum 0.1 years, maximum 9.6 years) for interval cancers.
Both invasive and ductal carcinoma in situ breast cancers
were used for analyses.

We excluded all screen-detected breast cancer cases
that were diagnosed based on the first digital screening
examination, to minimize the number of breast cancer
cases in the study that were diagnosed based on the
same mammogram as was used for breast density and
texture score assessment.

The texture measure used in this study was previously
developed using a selection of women with and without
breast cancer who had one or more digital mammo-
graphic screening examinations at the Preventicon
screening unit between 2003 and 2011 [24]. Therefore,
we also excluded all women whose mammograms were
used to train the texture measure used in this study, to
ensure an independent validation.

The data were obtained through the registry of a
breast cancer screening program in which mammograms
are routinely collected. Therefore, besides age, no add-
itional information was available about the women.

Volumetric mammographic density assessment

Absolute dense volume (DV) and percentage dense volume
(PDV) were automatically assessed from unprocessed
mammograms of the left and right breasts, using Volpara
Density (version 1.5.0, Volpara Health Technologies,
Wellington, New Zealand) [26]. We used the mean of the
left and right MLO views, since this is the routinely ac-
quired view and CC views were not available for all women.
In this way, we ensured that mammographic density was
assessed in the exact same way in all participants.

Mammographic texture assessment
The deep-learning-based mammographic texture-based risk
assessment was calculated from unprocessed mammograms
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using prototype software by Biomediq A/S as described by
Kallenberg et al. [24]. The deep-learning framework was a
5-layer convolutional neural network that maps mammo-
graphic patches to a cancer risk score when trained as de-
scribed below. The first four layers were three convolutional
and one pooling layer. These layers learned mammographic
features (mammographic structure/texture) of decreasing
size and increasing level of abstraction. The initial three
layers were trained in an unsupervised fashion: they learn
features that describe mammographic structure independ-
ent of cancer risk. The final two layers (the last convolution
layer and the final 5th Softmax classification layer) were
trained in a supervised fashion using the features encoded
in the previous layers as the starting point. The weights of
these final layers were optimized to distinguish between
patches from breasts without cancer diagnosis (at both
baseline and follow up) and patches from breasts that were
without diagnosis at baseline but were diagnosed with
breast cancer at follow up. The implication of this is that
the network was trained to score cancer risk realized as the
probability that a patch originates from a breast with
cancer-prone mammographic texture/structure. Further
technical/mathematical details of texture methodology can
be found in the article of Kallenberg et al. [24]. The training
dataset described subsequently corresponds to the dataset
named “Dutch Breast Cancer Screening Dataset” in that
same article [24]. For the purposes of this study, the deep-
learning framework was trained on a subset of the Preventi-
con data consisting of 394 cancer cases and 1182 healthy
controls - 3 controls per case, matched on age and acquisi-
tion date. The cancer cases included 285 screen-detected
cancers and 109 interval cancers. For screen-detected can-
cers, the cases were represented by the contralateral view at
the time of diagnosis. For interval cancers, the cases were
represented by the contralateral view from the screening
visit immediately prior to diagnosis. The laterality distribu-
tion of the controls was sampled to match that of the cases.

The left and right MLO views in the remaining inde-
pendent validation subset of the Preventicon cohort were
scored for texture-based risk using the framework above.
The texture score for a single screening visit was obtained
as the average of the left and right MLO texture risk
scores. This scoring was performed such that both soft-
ware and operator were fully blinded to cancer outcome
during scoring. For each MLO view, the software ex-
tracted 500 randomly sampled patches within the fully
compressed part of the breast tissue. To identify the fully
compressed part of the breast, the geometry of the un-
compressed breast is modelled as a semi-sphere, as has
been proposed in the works of Highnam and Brady [27].
According to this model, the boundary between the fully
compressed and the uncompressed part of the breast is
found at those locations within the breast where the dis-
tance to the skin edge equals half the height of the breast.
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Each patch was scored for cancer risk using the trained
deep-learning framework described above and the result-
ing texture score for a single view was obtained as the
average of the 500 patch-based risk scores.

An example of mammograms from each of the four
combinations of high or low texture score with high or
low percentage dense volume is given in Fig. 1. The
stronger textural properties of mammograms with high
texture scores are clear in both density categories.

Statistical analysis

Age and breast measures (mammographic density and
mammographic texture scores) were determined for the
first available unprocessed digital mammography examin-
ation of each woman. In addition, the number of digital
screening rounds and follow-up years were determined. We
described our study population by the median and inter-
quartile range (IQR) for each of these characteristics and
tested whether these characteristics were significantly differ-
ent in breast cancer and non-breast cancer cases. We used
the two-sample ¢ test for normally distributed measures and
the Mann-Whitney U test for non-normally distributed
measures. Breast density measures were transformed using
the natural logarithm (In) to obtain normal distributions

-
Low texture

High texture

High PDV

Low PDV

Fig. 1 High and low texture and high and low density
mammograms. Mammogram combinations of low and high texture
patterns scores and percentage dense volume (PDV): high PDV
(14%) and high texture (0.58) and high PDV (19%) and low texture
(0.47) scores (top); low PDV (5%) and high texture (0.51) and low
PDV (4%) and low texture scores (0.44) (bottom)
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and Pearson correlation coefficients were determined to test
correlation between breast measures and between age and
breast measures.

Associations of continuous measures (per standard de-
viation (SD) increase, using normally distributed mea-
sures) and quartiles of density and texture scores with
breast cancer risk were determined using Cox propor-
tional hazards analyses. We calculated hazard ratios
(HR) and their 95% confidence intervals (95% CI). Age
was used as the underlying time scale. The entry time
was defined as subject’s age at the time of the first avail-
able digital mammogram. Exit time was defined as one
of the following options: (1) age at breast cancer diagno-
sis (event), (2) age at death (censoring), or (3) age at 2
years after the last digital mammogram performed be-
fore 1 January 2012 (censoring). The age used as the exit
time was determined by the option that occurred first.

We aimed to determine whether the previously de-
scribed texture score is associated with breast cancer risk
and has additional value, next to volumetric mammo-
graphic density measures, in distinguishing future breast
cancer cases from non-breast cancer cases. To study this,
we constructed several models. First, three Cox propor-
tional hazard models were developed with dense volume,
percentage dense volume, or texture as the determinant
(model 1, 2 and 3, respectively). With these models we
could determine the ability of a density or texture measure
alone to separate breast cancer from non-breast cancer
cases. Thereafter, we constructed two additional Cox pro-
portional hazard models. The first contained both dense
volume and texture determinants (model 1a). The other
model contained both percentage dense volume and tex-
ture determinants (model 2a). To determine the ability of
the models to discriminate between breast cancer cases
and non-cases, concordance indices (c-indices) were ob-
tained for all models. The c-index can be seen as the frac-
tion of “case - non-case” pairs for which the model
correctly identified the breast cancer case. Across 2000
bootstrap samples, c-indices of models containing only a
breast density measure (model 1 or 2) were compared to
models containing both density measures and texture
scores (model 1a or 2a) to test whether differences in c-
indices were statistically significant.

As the density and texture scores were expected to be
strongly correlated, we prevented multicollinearity from oc-
curring in models 1a and 2a by including the residuals of
the texture scores regressed on breast density instead of the
texture score itself. This “residual method” is often used in
the field of nutritional epidemiology [28]. Residuals were
obtained by using linear regression analysis. There was no
correlation between the residuals and breast density.

Additionally, two extra Cox proportional hazard models
were constructed in which the residuals of breast density
(dense volume for model 3a and percentage dense volume
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for model 3b) regressed on texture were combined with
the texture score. Using these models, we could determine
whether breast density measures added some distinctive
power to the texture score alone.

The proportional hazards assumption was evaluated
by Schoenfeld residual plots and log minus log plots,
and the assumption was not violated. To examine the
presence of a linear trend in HRs over the quartiles of
breast measures, quartiles were added to the models as
continuous variables.

Finally, in a secondary analysis we also separately de-
termined the associations between breast measures
(dense volume, percentage dense volume, and texture)
and breast cancer for screen-detected and interval breast
cancers. Statistical analyses were performed using SPSS
version 22 and R version 3.2.0.

Results

Of the 54,285 women in our screening cohort, 898 were di-
agnosed with breast cancer within 2 years after their last
digital screening mammogram. In the development study
of the texture score used in this study, mammograms of
1576 women (both with and without breast cancer) from
the aforementioned cohort were used for texture score de-
velopment and therefore excluded from our analyses [24].
Next, 217 women were excluded as they were diagnosed
with breast cancer as a result of their first digital screening
examination and for 1062 women the breast density and/or
texture scores could not be determined from the first digital
screening examinations, therefore the mammograms of
these women were also excluded. Finally, women were
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excluded for whom information on breast cancer outcome
was missing (N = 20) and for whom the screening examin-
ation date came after the date of death (as we only had in-
formation on year of death and therefore set the date of
death for all women on 1 July in the year they died) (N =
10). This resulted in a dataset that was used for data ana-
lysis containing 51,400 women, of whom 301 women devel-
oped breast cancer and 51,099 women did not (Fig. 2).

Characteristics of the study population are presented in
Table 1. At the first available digital screening examination,
the median age of women in our cohort (N =51,400) was
56 years (IQR 51-63), the median dense breast volume was
57.8 cm® (IQR 42.9-78.9), the percentage breast volume
was 6.4% (IQR 4.8-9.8) and the texture score was 0.50
(IQR 0.48-0.53). The median total number of screening
examinations (analog and digital combined) that a woman
had was 5 (IQR 2-8) of which the median number of
digital examinations was 2 (IQR 1-3). The median follow-
up time was 4.2 years (IQ: 2.0-6.2).

Table 2 shows that age was negatively correlated with
dense volume (Pearson correlation coefficient — 0.16, p < 0.
01), percentage dense volume (- 0.29, p < 0.01), and texture
(-0.35, p<0.01). Percentage dense volume and texture
were strongly positively correlated (0.90 (p < 0.01)). Finally,
dense volume was positively correlated with percentage
dense volume (0.27, p < 0.01) and texture (0.20, p < 0.01).

High mammographic dense volume, percentage dense
breast and texture scores were all associated with a higher
breast cancer risk (Table 3, model 1, 2, and 3, respect-
ively). Women in the highest compared to the lowest
quartile (Q) of dense volume had almost two times higher

54,285

301 breast cancers

women who died as 1 July in the year they died

1576: used for texture score development

217: screen detected breast cancer at first
digital screening examination

1062: breast density and/or texture could not
determined for first digital screening
examination

20: breast cancer outcome missing

10: negative follow up (date of death was
before date of first mammogram)*

51,099 non breast cancers

Fig. 2 Flowchart - reasons to exclude mammograms. *We only had information on year of death and therefore we set the date of death for all
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Table 1 Characteristics of the total study population (N =51,400) and of women with breast cancer (cases) (N =301) and without

breast cancer (N =50,099)

Variable Total study population Breast cancer cases Non breast cancer cases p value
Median (IQR) Median (IQR) Median (IQR)

Age (years) 56 (51-63) 58 (51-63) 56 (51-63) 0.21
Digital screening rounds, number 2 (1-3) 2 (2-3) 2 (1-3) 0.05
Follow up (years)b 4.2 (20-6.2) 2.8 (1.9-4.3) 4.2 (20-6.2) <0.01
Dense volume (cm?)° 578 (42.9-78.9) 639 (484-86.9) 57.8 (42.9-78.8) <001
Percent dense volume (%)? 6.4 (4.8-9.8) 75 (5.5-7.5) 6.4 (4.8-9.8) <0.01
Non-dense volume (cm?)? 804.9 (518.6-1183.9) 825.3 (521.8-1159.1) 804.9 (5185-1184.0) 0.88
Total breast volume (cm?)? 866.9 (573.9-1256.7) 900.8 (592.4-12284) 866.8 (573.8-1256.8) 0.88
Texture score? 0.50 (048-0.53) 0.51 (0.49-0.54) 0.50 (048-0.53) <0.01

At first available digital screening mammogram

PWomen were followed until breast cancer diagnosis (event), till death or till 2 years after the last available mammogram, whichever came first

breast cancer risk during a median follow up of 4.2 years
(Q4 vs Q1 HR 1.85, 95% CI 1.32-2.59, p value for trend
<0.001). There were comparable results for percentage
dense volume (Q4 vs Q1 HR 2.17, 95% CI 1.51-3.12, p
value for trend <0.001). Women with a high texture pat-
tern score had three times higher breast cancer risk than
women with a low texture pattern score (Q4 vs Q1 HR 3.
16, 95% CI 2.16—4.62, p value for trend < 0.001).

When the residuals of texture scores regressed on
dense volume were added to the model with only dense
volume (model 1a vs 1 in Table 3) the c-index increased
from 0.56 (95% CI 0.53-0.59) to 0.62 (0.58—0.65). This
difference was statistically significant (p <0.001). When
both dense volume and texture residuals were included
in the model, they were both positively associated with
breast cancer risk (Q4 vs Q1 HR 1.98, 95% CI 1.41-2.79,
p value for trend <0.001 and Q4 vs Q1 HR 2.69, 95%
CI1.87-3.88, p value for trend <0.001, respectively).

When the residuals of texture scores regressed on per-
centage dense volume were added to the model contain-
ing only percentage dense volume (model 2a vs 2 in
Table 3) the c-index increased from 0.58 (95% CI 0.54—
0.61) to 0.60 (95% CI 0.57-0.63). This difference was
borderline significant (p = 0.054). In the model with both

Table 2 Pearson correlation coefficients for tests of correlation
between mammographic measures and between mammographic
measures and age

Age DV PDV Texture
Age 1 -0.16 -0.29 -035
DV 1 0.27 0.20
PDV 1 0.90
Texture 1

Age, breast density, and texture were assessed at the first digital

screening mammogram

DV dense volume (natural logarithm (Ln) transformed), PDV percent dense
volume (Ln transformed)

The p values were statistically significant (<0.01) for all correlation coefficients

percentage dense volume and texture residuals (model
2a, Table 3), both breast measures showed an approxi-
mately two times higher breast cancer risk for women in
the highest compared to lowest quartile (Q4 vs Q1 HR
2.15, 95% CI 1.49-3.10, p value for trend <0.001 and Q4
vs Q1 HR 1.92, 95% CI 1.37-2.70, p value for trend <O.
001, respectively).

The results of the models including continuous breast
density measures were in line with those including quar-
tiles of breast measures (Table 3).

The results of model 3a (texture score in combination
with the residuals of dense volume regressed on texture
scores) and model 3b (texture score in combination with
the residuals of percentage dense volume regressed on tex-
ture scores) are presented in Additional file 1: Table S1.
Dense volume and percentage dense volume did not sig-
nificantly improve the discriminative power in addition to
the texture score (p = 0.076 and p = 0.760, respectively).

The results of analysis of the associations between breast
measures and screen-detected breast cancer are presented
in Additional file 2: Table S2 and Additional file 3: Table S3.
The corresponding results for interval breast cancers are
presented in Additional file 4: Table S4 and Additional file 5:
Table S5. The associations between density or texture mea-
sures and interval breast cancer were stronger overall than
the associations with screen-detected breast cancer. Both
for screen-detected and for interval-detected breast cancers,
the highest predictive values were for the combination of
dense volume and texture models.

Discussion

In this study, we found that the deep-learning-based texture
score [24] assessed on digital mammograms was positively
associated with breast cancer risk. Women in the highest
quartile of texture pattern scores had approximately three
times higher breast cancer risk than women in the lowest
quartile. In addition, we found that the texture pattern score
had additional value for the discriminatory performance
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Table 3 The association between breast measures and breast cancer risk

Variables in the model HR (95% Cl) HR (95% Cl) HR (95% Cl) HR (95% Cl) p value for trend  c-index (95% Cl)
per one SD Q2 Q3 Q4

Model 1 DV 1.32 (1.18-1.48) 4 (087-1.78) 153 (1.08-2016)  1.85(1.32-259)  <0.001 0.56 (0.53-0.59)

Model 1a DV 1.32 (1.18-147) 0 (097-2.01)  1.75(1.23-248) 1.98 (141-2.79)  <0.001 0.62 (0.58-0.65)
Texture residuals (DV)? 1.38 (1.23-1.56) 8 (1.15-244) 240 (1.68-343) 269 (1.87-3.88)  <0.001

Model 2 PDV 1.34 (1.20-1.50) 49 (1.03-2.15)  2.07 (1.46-2.96) 217 (151-3.12)  <0.001 0.58 (0.54-0.61)

Model 2a  PDV 1.36 (1.21-1.53) 0(1.04-2.17)  2.00 (1.41-2.86) 2.15(149-3.10)  <0.001 0.60 (0.57-0.63)
Texture residuals (PDV)® 127 (1.13-142) 8(090-1.82) 169 (1.21-237) 192 (137-2.70) <0.001

Model 3 Texture 146 (1.30-164) 169 (1.15-2.50)  2.65 (1.83-3.84) 3.16 (216-462)  <0.001 061 (0.57-0.64)

Difference c-index model 1 and 1a, p < 0.001; difference c-index model 2 and 2a, p = 0.054

SD standard deviation, Q quartile, DV dense volume, PDV percentage dense volume

*Texture residuals (DV): residuals of texture pattern scores regressed on natural logarithm (Ln) transformed DV using a linear regression model
PTexture residuals (PDV): residuals of texture pattern scores regressed on Ln transformed PDV using a linear regression model

next to breast density. The highest c-index was observed for
the combination of dense volume with the texture score
(0.62, 95% CI 0.58-0.65).

This was the first study investigating the combination
of a deep-learning-based texture score method and volu-
metric breast density (both percent density and absolute
dense volume) in relation to breast cancer risk. In a re-
view by Gastounioti et al., studies were described in which
computerized approaches with manually designed and se-
lected texture features were used for breast cancer risk as-
sessment on both digitized film screen and digital
mammograms [19]. In some of these studies the predict-
ive value of these texture measures was studied in com-
bination with area-based percent density. Three of these
were on digital mammograms, like our study [29-31].
The first study by Li et al. used a Bayesian artificial neural
network (BANN) model and found discriminatory capaci-
ties (area under the curve (AUC)) of 0.70, 0.57, and 0.68
for texture, percent density, and the combination of both,
respectively [29]. Chen et al. and Zheng et al. both used
logistic regression models and found discriminatory cap-
acities (AUC) of 0.71, 0.62, and 0.68 (Chen et al) [30] and
0.85, 0.59, and 0.86 (Zheng et al.) [31] for texture, percent
density, and the combination of both, respectively. The
discriminatory ability in the last study is remarkably high.
As this texture score has not been externally validated,
the results should be interpreted with caution. Also the
studies of Li et al. and Chen et al. have not been externally
validated. Additionally, in all three studies the texture
score was trained and tested in the same group of cases
and controls, using cross-validation techniques. The tex-
ture measure used in the current study was developed
and trained in a study sample drawn from the screening
cohort used in this study, also using cross-validation tech-
niques. In this study, we, however, validated this texture
score in an independent “new” dataset, as we excluded
the training sample used for texture development from
our cohort data.

The current texture measure was developed in a rela-
tively large population (394 cases and 1182 controls)
compared to other studies developing a texture measure
[19, 24]. The use of a larger dataset reduces the chance
of model overfitting. The comparable discriminative per-
formance for texture found in the development study
and the current study suggests that the degree of overfit-
ting was only limited in the development study.

In our study, we used a cohort design, studying mam-
mograms in a breast-cancer-free cohort and then follow-
ing up for breast cancer diagnosis, for an average period
of 4 years. In the previously discussed studies mammo-
grams of the contralateral breast at the time of breast can-
cer diagnosis were used [29-31]. For personalized breast
cancer screening, knowing which women will develop
breast cancer in the future is of greater added value com-
pared to predicting it at time of breast cancer diagnosis.
In addition, by using cohort data, we were able to deter-
mine how well the texture pattern score performs in the
“general screening population” instead of in a selected
subset, which is the case in case-control studies.

All studies investigating the combination of texture and
breast density in relation to breast cancer risk or the abil-
ity to separate breast cancer from non-breast cancer cases
used area-based percent breast density measures. The
most widely used quantitative are-based breast density as-
sessment method is the semi-automatic method, Cumulus
[32]. This is a very labor-intensive method to determine
breast density. With the advent of digital mammography,
fully automatic volumetric breast density assessment
methods, like Volpara [26], have been developed. Volpara
gives objective and reproducible density measurements,
representing the amount of dense tissue rather than the
size of the dense tissue projection as measured by area-
based methods. We are the first to investigate the add-
itional value of adding texture to both volumetric percent
and absolute breast density to separate breast cancer from
non-breast cancer cases.
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A limitation of our study is that as far as potential
confounders are concerned, we only had information
about age. We made use of anonymized routinely col-
lected screening data and the Dutch screening pro-
gram, like many other screening programs, does not
collect any information on risk factors. In studies
where adjustment for breast cancer risk factors, in
particular body mass index, was possible, this usually
led to slightly higher risk estimates for percent dens-
ity [14, 22]. The association between absolute dense
volume and breast cancer risk is hardly influenced by
adjustment for body mass index (BMI) [33, 34]. Des-
pite the absence of information on BMI or other
breast cancer risk factors, we think that our study
provides useful information as to the additional value
of adding texture characteristics to breast density esti-
mates. In many screening programs there is either no
information or no extensive information available on
risk factors other than age, and breast tissue charac-
teristics can be relatively easily obtained from the
mammograms. Another limitation is the fact that the
texture pattern score in this study was trained on
mammograms of women from the same screening
population. Despite the fact that mammograms that
were used for texture training were excluded from
our study population, one might expect that the
mammograms that were used for texture training
were more similar to the mammograms in our study
population as compared to other breast cancer
screening populations in the world. Therefore, the
performance of this texture pattern score should also
be externally validated in other screening populations.

Strengths of this study are the automatically mea-
sured density and texture scores, as they give object-
ive and reproducible results. In addition, these are
high-throughput methods which make them suitable
for screening practice. Finally, the ability of breast
density and texture to discriminate non-breast can-
cer from breast cancer cases in a population-based
breast cancer screening cohort resembles the per-
formance of these measures in real screening prac-
tice, probably better than when using a case-control
study.

Conclusions

Deep-learning-based texture pattern scores measured
automatically on digital mammograms were shown
to be related to breast cancer risk. Additionally, tex-
ture pattern scores statistically significantly im-
proved the discriminatory performance in addition
to absolute dense volume. Therefore, texture mea-
sures in addition to density may be taken into ac-
count in the development of more personalized
breast cancer screening.
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