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Abstract

could probably be screened less intensively.

detection, Prevention

Background: Most mammography screening programs are not individualized. To efficiently screen for breast
cancer, the individual risk of the disease should be determined. We describe a model that could be used at most
mammography screening units without adding substantial cost.

Methods: The study was based on the Karma cohort, which included 70,877 participants. Mammograms were collected
up to 3 years following the baseline mammogram. A prediction protocol was developed using mammographic density,
computer-aided detection of microcalcifications and masses, use of hormone replacement therapy (HRT), family history
of breast cancer, menopausal status, age, and body mass index. Relative risks were calculated using conditional logistic
regression. Absolute risks were calculated using the iCARE protocol.

Results: Comparing women at highest and lowest mammographic density yielded a fivefold higher risk of breast cancer
for women at highest density. When adding microcalcifications and masses to the model, high-risk women had a nearly
ninefold higher risk of breast cancer than those at lowest risk. In the full model, taking HRT use, family history of breast
cancer, and menopausal status into consideration, the AUC reached 0.71.

Conclusions: Measures of mammographic features and information on HRT use, family history of breast cancer, and
menopausal status enabled early identification of women within the mammography screening program at
such a high risk of breast cancer that additional examinations are warranted. In contrast, women at low risk
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Background

Risk prediction models for breast cancer use lifestyle
factors [1], family history of breast cancer [2], mam-
mographic density [3], genetic determinants [4], or
any combination of these factors to predict risk of de-
veloping the disease [3]. Mammographic density is
one of the strongest risk factors for breast cancer and
consists of the radiographically dense fibroglandular
part of the mammogram. Women with dense breasts
have both an increased risk of breast cancer and a
lesser likelihood of a cancer being detected. It is currently
mandatory by law to report the level of mammographic
density to a woman undergoing a mammography in 27

* Correspondence: mikael.eriksson@ki.se

'Department of Medical Epidemiology and Biostatistics, Karolinska Institutet,
Box 281, Stockholm 171 77, Sweden

Full list of author information is available at the end of the article

( BioMed Central

U.S. states, but there is no obligation to report the risk of
breast cancer.

Computer-aided detection (CAD) is designed to sup-
port radiologists at mammographic screening units in
diagnosing early breast cancer. These software can indi-
cate suspicious microcalcifications and masses. We used
fully automated CAD and breast density measurement
systems and predicted the probability for a woman with
a negative mammogram result to be diagnosed with
breast cancer within 2 years. We wanted to create an
easily implementable prediction tool for individualized
breast cancer screening without adding substantial cost
or effort to the health care system.

We merged established risk factors, such as use of hor-
mone replacement therapy (HRT), family history of breast
cancer, menopausal status, body mass index (BMI), and
mammographic density with microcalcifications and
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masses, using U.S. Food and Drug Administration-
approved CAD software [5]. We were able to identify
high-risk women who would probably benefit from in-
tensified breast cancer screening or would be in immedi-
ate need of clinical examinations. In parallel, we identified
women with such a low breast cancer risk that they might
not benefit from screening. To achieve these goals, we
used a unique, prospective Swedish population-based
screening cohort: the Karolinska Mammography Project
for Risk Prediction of Breast Cancer (KARMA) cohort
(karmastudy.org).

Methods

In Sweden, women aged 40-74 years are invited every
18-24 months to the national screening program [6].
Women who attended mammographic screening at four
hospitals in Sweden were invited to be included in the
KARMA cohort between January 2011 and March 2013.
A total of 70,877 women chose to participate (age range
31-79 years) [7]. Participants answered a comprehensive
web-based questionnaire, donated blood, allowed storage
of mammograms, and accepted linkage to national breast
cancer registers. By October 2015, a total of 570 incident
breast cancers had been identified. Women diagnosed
with breast cancer within 3 months of a negative entry
mammogram were omitted because it could not be ex-
cluded that a cancer was detected at the screening visit. A
total of 137 patients lacked information on one or several
risk factors, leaving 433 breast cancer cases to be used for
the model development. However, the 137 women lacking
information were included in calculating the absolute risk
estimates, whereby missing data were replaced with the
average risk of that risk factor. Four control subjects were
matched on age to each case in a prospective nested case-
control design.

Full-field digital mammograms from the mediolateral ob-
lique (MLO) and craniocaudal (CC) views of the left and
right breasts were used to measure mammographic density
using the area-based STRATUS method (Additional file 1:
Supplementary methods 1). The percentage mammo-
graphic density was calculated by dividing the dense area
by the total breast area. Breast density was categorized on
scale cutpoints (2%, 18%, 49%) into four breast compos-
ition groups reflecting the clinically accepted Breast Im-
aging Reporting and Data System (BI-RADS; American
College of Radiology, Reston, VA, USA) score [5, 8-10]
(Additional file 1: Supplementary methods 2). The
computer-generated score is hereafter called ¢cBIRADS.

The CAD software (M-Vu CAD® iCAD, Nashua, NH,
USA) identifies suspicious microcalcifications and masses
and presents the findings to the radiologist or as digital
text information. Raw mammograms of the MLO and CC
views of right and left breasts were used to identify micro-
calcifications and masses. On the basis of the distribution
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of microcalcifications among control subjects, the num-
ber of microcalcifications was categorized into five
groups: 0, 1-10, 11-20, 21-40, and >40 microcalcifica-
tions. The number of masses was given as the true
number. Level of density and number of microcalcifica-
tions and masses, as well as the differences in density
and number of microcalcifications and masses between
breasts, were used in the model.

On the basis of self-reported information, dichotom-
ous variables were created for current use of HRT, his-
tory of breast cancer in first-degree relatives, and
menopausal status. Current use of HRT was defined as
use within the last 12 months. BMI and age were
assessed at the time of study entry, which was the time
the baseline mammogram was taken. Screening-detected
breast cancer was defined as breast cancer diagnosed
within 3 months of a screen. An interval breast cancer
was defined as a breast cancer diagnosed at least
3 months after a negative screen but before the date of
the next scheduled screen [11].

Descriptive statistics were presented for participant char-
acteristics and to describe mammographic features in the
tumor breast side (where the tumor eventually was diag-
nosed) versus the nontumor breast side in the cases. Differ-
ences between the breasts were calculated without
assuming knowledge of the tumor breast side. These abso-
lute differences were calculated as the standard deviation
(SD) of the two breasts for each mammographic feature
and were used as continuous predictors in the final model.

The continuous predictors in the conditional logistic
regression model were tested for the best transformation
using the Sauerbrei method [12] with fractional polyno-
mials, and the predictors for the absolute breast differ-
ences were transformed as reciprocal numbers. The
functional form of the final model was assessed using
the branch-and-bound Furnival and Wilson statistics for
main effects and interaction terms [13]. Relative risks
were reported as HRs in this prospective study design.

Absolute risks were calculated using the Individualized
Coherent Absolute Risk Estimator (iCARE) package in R
[14]. The Swedish national incidence rates of breast cancer
and competing mortality risks were used and calculated as
the average rates from 2007 to 2011. Prevalence rates of
HRT use and family history of breast cancer were derived
from the KARMA cohort, and the relative risks from the
regression analyses were entered into the model matrix.
Missing data from nonreported risk factors were imputed
with model averaged risk estimates using the iCARE proto-
col (Additional file 1: Supplementary methods 3).

Using the same data, a cross-validated AUC was calcu-
lated and compared with values generated by the estab-
lished Tyrer-Cuzick and Gail risk models. The numbers
of invasive and in situ cases that were diagnosed during
follow-up were tabulated by quintile of the 2-year
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absolute risks predicted at baseline. The increase in
number of diagnosed cases by quintile of baseline risk
was calculated and tested for linear trend.

All statistical tests were two-sided at a significance
level of 0.05 and calculated using SAS version 9.4 soft-
ware (SAS Institute, Cary, NC, USA) for descriptive sta-
tistics and relative risks. Absolute risks were evaluated
with R 3.3.0 software using the iCARE package 1.0.0.

Results

In all, 433 women had a negative mammogram result
more than 3 months prior to diagnosis and had full in-
formation on risk factors. The data of these women were
used to develop the model (Table 1). The median follow-
up time between the baseline mammogram and diagno-
sis of breast cancer was 1.7 years, mean age at breast
cancer diagnosis was 59.0 years, 88% of the breast can-
cers were invasive, and 63% were detected by screening.
Significantly more cases were current users of HRT
(6.9% in cases and 4.4% in control subjects, p = 0.05) and
had a family history of breast cancer (19% of cases and
13% of control subjects, p = 4.5 x 10™*) (Table 1).

At baseline, the median mammographic density was
23.0% in cases on the tumor side (i.e., on the side where
the tumor was diagnosed at follow-up) and 12.2% in con-
trol subjects (p =4.0 x 107'%) in the breast corresponding
to the tumor side in cases (Table 2). The corresponding
figures for the contralateral side in cases and control sub-
jects were 21.7% and 12.5%, respectively (p=2.5x107).
Comparing density pairwise between the tumor side and
nontumor side in cases showed a mean difference of 1.1%
(p =34 x107°) (Table 2).

The mean number of microcalcifications in cases and
control subjects was significantly different on both the

Table 1 Characteristics of cases and control subjects
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tumor side (for cases versus corresponding side for
control subjects, 6.1 vs. 2.6; p=4.0x107° and the
contralateral side in cases and control subjects (3.4
vs. 2.6, p =0.03). The comparison between tumor and
nontumor sides in cases showed a mean difference of
2.7 microcalcifications (p = 1.9 x 107%) (Table 2).

The mean number of detected masses in cases versus
control subjects was significantly different on the tumor
side (for cases and corresponding side for control subjects,
0.77 vs. 0.56; p =84 x107°) but not on the contralateral
side in cases and control subjects. The pairwise compari-
son between tumor and nontumor sides in cases showed a
mean difference of 0.26 masses (p = 9.2 x 107°) (Table 2).

In the lower part of Table 2, the absolute differences be-
tween the breasts are presented to contrast cases and con-
trol subjects. It can be seen that cases have a more uneven
distribution of mammographic density (p=1.7 x 107°),
microcalcifications (p = 4.0 x 107*¢), and masses (p = 0.02).

Relative risks of breast cancer within 3 years from a
negative mammographic screening result at baseline
were calculated using two models (Table 3). In the fully
adjusted model, the risk of breast cancer in women with
a family history of the disease was 1.3 (95% CI 1.0-1.7).
A significant difference was seen for women with the
highest versus lowest cBIRADS scores (HR 4.8), in
women with microcalcifications in category 4 compared
with no microcalcifications (HR 2.0), in women with sig-
nificant difference in density (HR 1.9), and in microcalci-
fications (HR 2.8) between left and right breasts
(Table 3). A more detailed stratification is provided in
Additional file 1: Table S1.

Dividing cases into invasive (# = 383) and in situ (n = 50)
cancers (Additional file 1: Table S2) revealed that microcal-
cifications were significantly more likely to identify risk of

Study participant characteristics Cases Control subjects p Value®
Number of women 433 1732 -

Age at breast cancer diagnosis, mean (SD) 59.0 94) - -

Years from mammography to breast cancer, median 1.74 - -
Invasive breast cancer, % 88 - -
Screening detected breast cancer, % 63 - -

Age at mammography, mean (SD) 574 (9.2) 574 (9.2) 0.99
BMI, mean (SD) 256 (4.6) 253 (4.0) 0.19
Age at menarche, mean (SD) 13.1(14) 132 (1.5 061
Parity, % 89 88 0.56
Age at first birth, mean (SD) 27.1 (54) 266 (5.2) 0.11
Current use of HRT, % 6.9 44 0.05
Postmenopausal, % 65 65 0.78
Breast cancer in family, % 19 13 45%x 1074

BMI Body mass index, HRT Hormone replacement therapy

p Values for means were calculated with Student’s t test, medians with Wilcoxon rank-sum test, and percentages with the chi-square test
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Table 2 Mammaographic features in tumor and nontumor side in cases and control subjects
Mammographic features Cases (n=433) Control subjects (n=1732) p Value®
Percentage mammographic density on tumor side, median (IQR) 23.0 (6.1-44.1) 12.2 (24-32.8) 40x 10710
Percentage mammographic density on nontumor side, median (IQR) 21.7 (51-434) 125 (2.7-332) 25%x 1077
Tumor vs. nontumor side, percentage mammographic density 1(7.8) - 34x1073
Number of microcalcifications on tumor side, mean (SD) 1 (15.3) 26 (13.1) 40x 1072
Number of microcalcifications on nontumor side, mean (SD) 4(13.0 26(12.2) 0.03
Tumor vs. nontumor side, microcalcifications 7 (17.9) - 19%x 1073
Number of masses on tumor side, mean (SD) 0.77 (0.92) 0.56 (0.76) 84x107°
Number of masses on nontumor side, mean (SD) 051 (0.75) 0.55(0.78) 039
Tumor vs. nontumor side, masses 0.26 (1.1) - 92x107°
Individual absolute difference between breasts®

Percentage mammographic density, mean (SD) 38 (4.0) 3137) 17%x107°

Microcalcifications, mean (SD) 29 (6.1) 16 (5.7) 40x107'°

Number of masses, mean (SD) 033 (042) 0.28 (0.40) 0.02

p Values of median values were calculated with Wilcoxon rank-sum test. p Values of means were calculated with Student’s t test. Mediolateral oblique and cranio-
caudal view mammograms are used. The individual microcalcifications are within calcification cluster(s)
PAbsolute difference between the two breasts was calculated as the standard deviation SD of density of the left and right breasts for each woman

future cancer in situ than invasive cancers (p =0.03 for
number of microcalcifications and p = 0.01 for absolute dif-
ference in microcalcifications between breast sides). When
stratifying on mode of detection (i.e., screening-detected
[n =275] vs. interval [n = 158] breast cancers), we observed
that all mammographic features, including the abso-
lute differences between the breasts, were more likely
to identify interval cancers than screening-detected can-
cers (Additional file 1: Table S2). Women with a cBIRADS
score of 4, microcalcifications in category 3 or higher, and
three or more masses had a nearly ninefold higher risk of
breast cancer than women with a ¢cBIRADS score of 1 and
no microcalcifications or masses (Table 4).

The final model including the selected risk factors,
stratified by menopausal status, is provided in Additional
file 1: Table S3 and was used for calculating absolute risks.
We plotted the frequency distribution of the predicted ab-
solute risk of breast cancer using the generated relative
risks and prevalence of risk factors in 570 incident breast
cancer cases and 60,237 healthy women in the KARMA
cohort (Fig. 1). This was done after exclusion of women
with previous breast cancers and/or lack of mammograms
(Additional file 1: Supplementary methods 3).

To conform to the National Institute for Health and
Care Excellence guidelines [15], we divided the 10-year
risk cutoffs (general, moderate, high) by 5 to get 2-year

Table 3 Relative risks of breast cancer within 3 years of a negative mammographic screening result in relation to use of hormone
replacement therapy, family history of breast cancer, and mammographic features

Study participant and mammographic features

HR? (95% ClI) HRP (95% Cl)

Current use of HRT (same-year user vs. previous or nonuser)
Family history of breast cancer
Percentage mammographic density (cBIRADS 4 vs. 1)
Percentage mammographic density (per SD)
Number of microcalcifications® (category 4 vs. 0)
Number of masses (4 vs. 0)
Individual absolute difference between breasts®
Percentage mammographic density
Number of microcalcifications

Number of masses

4(09-2.1) 13 (0.9-2.0)
3(1.1-1.7) 13 (1.0-1.7)
9 (2.8-86) 48 (26-88)
6 (14-1.8) 16 (14-18)
0(13-3.1) 20(13-32)
7 (0.8-3.5) 1.7 (0.8-3.5)
34(22-52) 19 (1.2-3.0)
25 (1.9-3.1) 28 (18-45)
14 (09-22) 1(06-19)

HRT Hormone replacement therapy
?Adjusted for age, body mass index

PAdjusted for age, body mass index, mammographic density, microcalcifications, masses, breast cancer in family, menopausal status, and current use of HRT
“Category 0 means 0 microcalcifications, and 1 is 1-10 microcalcifications. The corresponding numbers for 2, 3, and 4 are 11-20, 21-40, and >40

microcalcifications, respectively

4Absolute difference between right and left breasts was calculated as the standard deviation SD of the breasts for each mammographic feature
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Table 4 Relative risk of developing breast cancer in relation to the combined effect of mammographic density, number of

microcalcifications, and number of masses

Mammographic features combined

HR? (95% Cl) HR® (95% Cl)

1. cBIRADS 1, microcalcification category 0%, 0 masses, reference
2. cBIRADS 2, microcalcification category 1, 1 masses
3. cBIRADS 3, microcalcification category 2, 2 masses

4. cBIRADS 4, microcalcification category 23, 23 masses

1.0 1.0

4.2 (25-7.1) 4.3 (24-7.5)
79 (43-144) 79 (4.2-15.2)
80 (45-14.3) 8.7 (47-16.0)

cBIRADS Computer-generated Breast Imaging Reporting and Data System score
?Adjusted for age, body mass index

PAdjusted for age, body mass index, family history of breast cancer, menopausal status, and current use of hormone replacement therapy
“Category 0 means 0 microcalcifications, and 1 is 1-10 microcalcifications. The corresponding numbers for 2, 3, and 4 are 11-20, 21-40, and >40

microcalcifications, respectively

risk cutoffs (i.e., <0.6%, 0.6% to <1.6%, and >1.6%). Be-
cause the <0.6% risk group included 75% of the women,
the group was further divided into a low-risk group
(<0.15% 2-year risk). The mean absolute 2-year risks of
breast cancer in the different risk categories were 0.12%,
0.33%, 0.82%, and 1.95%, equivalent to a 16-fold difference
comparing the highest- with the lowest-risk groups (Fig. 1).

The AUCs measured were 0.63 (95% CI 0.60-0.65)
using mammographic density adjusted for BMI and age

at mammography, 0.64 (95% CI 0.62—0.67) when adding
family history of breast cancer and HRT use, and 0.71
(95% CI 0.69-0.73) after adding microcalcifications and
masses (Table 5).

There was a significant linear trend in the association
between increasing 2-year absolute baseline risk and lar-
ger proportion of cancers diagnosed during the study
follow-up. For each quintile of 2-year baseline risk, 56.7
more cases were found to be diagnosed (p =0.04). The

Proportion of women
b

0.5 -
0.0 —_
0 0.6 1.6 2 4 a
2-year risk
Cases Controls
Absolute 2-year risk! (risk group) Percent Mean absolute  Stratified
women atrisk  2-year risk? 2-year risk
0-0.15 (low) 10.3 0.12 1.0 (reference)
0.15-<0.6 (general) 64.8 0.33 2.75
0.6-<1.6 (moderate) 229 0.82 6.83
>1.6 (high) 2.0 1.95 16.2

Fig. 1 Frequency distribution of 2-year absolute risks for developing breast cancer in cases and control subjects in the KARMA cohort. 'cut-offs
for the general, moderate, and high-risk groups are based on the NICE guidelines for 10-year risk in age group 40 - 50 (<3%, 3-8%, >8%) divided
by 5. We added a fourth low risk group with the absolute risk cut-off 0.15. %calculation based on relative risks from the case — control dataset, the
KARMA cohort prevalence of risk factors and competing risks
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Table 5 Discrimination performance of final model and sub models in comparison to established risk models
Model AUC® 95% C| LR®
1. Percentage mammaographic density, age at mammography, BMI 063 0.60-0.65 109.2
2. Model 1 + family history of breast cancer, HRT use 0.64 0.62-0.67 1220
3. Model 2 + absolute differences for calcifications, masses, density 0.70 0.68-0.72 193.7
4. Model 3 + interaction between percentage density and masses 0.71 0.69-0.73 2336
Established risk models for comparison
Tyrer-Cuzick® 063 0.60-0.65 882
Gail? 0.56 0.53-0.58 349

BMI Body mass index, HRT Hormone replacement therapy, LR Likelihood ratio
#AUC was evaluated for the absolute risks of stated models
PChi-square test of =0

“Tyrer-Cuzick model included risk factors of age, age at menarche, age at first child, menopause, length, weight, HRT, hyperplasia, atypical hyperplasia, lobular
cancer in situ, and first-/second-degree family history of breast cancer. Data coding was done according to the Tyrer-Cuzick protocol
9Gail model included risk factors of age, age at menarche, age at first live birth, number of previous breast biopsies, atypical hyperplasia, and first-degree family

history of breast cancer. Data coding was done according to the Gail protocol

corresponding numbers for the Tyrer-Cuzick and Gail
models were 35.3 cases (p=0.01) and 15.1 cases (p =0.14),
respectively (Additional file 1: Table S4).

Discussion

Using the KARMA cohort, including 570 patients
with breast cancer and 60,237 healthy control sub-
jects, we generated a comparatively simple breast can-
cer risk prediction model for clinical use. Exploiting three
fully automatically measured mammographic features en-
abled identification of women at an approximately nine-
fold greater risk of developing breast cancer when we
compared the high- and low-risk groups (Table 4). In the
full model, taking HRT use, family history of breast can-
cer, and menopausal status into consideration, the AUC
reached 0.71 (Table 5).

Several studies have shown mammographic density to be
an excellent predictor of breast cancer risk where women
with high breast density have a four to six times higher risk
than women with low breast density [16]. Reassuringly, we
observed a relative risk of 4.8 (95% CI 2.6—-8.8) when we
compared the highest with the lowest ¢cBIRADS scores
(Table 3). Comparing the highest with the lowest numbers
of microcalcifications and masses each gave significant
relative risks of approximately 2 (Table 3). In addition, the
difference in number of microcalcifications between the
breasts gave a risk of 2.8 (95% CI 1.8-4.5).

It should be underlined that our model identifies
women at short-term risk of being diagnosed with breast
cancer. These women are in their later progression but
earlier stage, have a negative screening mammogram re-
sult, and are within 2 years of being diagnosed with either
an interval cancer or a cancer at the next screening visit.
The interval cancers were also shown to be at the highest
risk (Additional file 1: Table S2). There are studies pre-
senting extremely high relative risks of mammographic
density (OR 17.8) for interval cancer [17]. We would have

got similar results if we had not considered that interval
cancers should be compared with control subjects also
having clinical examinations and not with control subjects
having an ordinary scheduled screening mammogram.

Adding the clinical observation that differences in dens-
ity, microcalcifications, and masses between the breasts
are indicators of malignancy developed our model further.
It has long been known that breast asymmetry is a risk
factor for breast cancer [18]. In our model, the influence
on risk from breast asymmetry was as strong as that from
the total number of microcalcifications and masses
(Table 3). This means that the risk association with the
total number of microcalcifications was driven mainly by
the increase of microcalcifications in one of the breasts.
This indicates that the difference in calcifications between
the breasts was the important risk marker for malignancy,
although a dose-response relationship with the total num-
ber of microcalcifications might be seen with multifocal
tumors. The risk from breast asymmetry was also signifi-
cantly higher in interval cancers than in screening-
detected cancers (Additional file 1: Table S2).

The biology behind microcalcifications is not well
understood. One hypothesis is that epithelial cells ac-
quire mesenchymal characteristics and, as a sign of car-
cinogenic transformation, become capable of producing
breast microcalcifications [19]. Because we found micro-
calcifications to be more abundant on the tumor side
and that density was almost doubled in cases versus con-
trol subjects, it could be argued that microcalcifications
are signs of a precursor lesion, whereas density is a gen-
eral sign of increased breast cancer risk. In our full
model including mammographic density, microcalcifica-
tions, and masses, the AUC reached 0.71, as compared
with the Tyrer-Cuzick and Gail models, with AUCs 0.63
and 0.56, respectively (Table 5) [1, 20]. We thus found
that our model added substantial discriminatory effect.
More than half (N =284) of the total number of patients
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with breast cancer (n =570) who developed breast cancer
during the study follow-up were predicted at baseline in
the highest quintile of the 2-year absolute risk score (Add-
itional file 1: Table S4). It should also be noted that the
relative risks of cancer in situ were significantly higher than
invasive cancer when we compared women with and with-
out microcalcifications (Additional file 1: Table S2), al-
though the model predominantly identified increased
number of invasive cancers at higher risk levels compared
with the Tyrer-Cuzick and Gail models (Additional file 1:
Table S4). All models showed the same tendency with in-
creased numbers of invasive and in situ cases by increased
levels of risk.

In Sweden, approximately 6 of 1000 women are diag-
nosed with breast cancer at each round of biannual
screening [21]. We managed to identify a low-risk group
of approximately 10% of all women in which 1 woman
in 1000 will be diagnosed with breast cancer. In contrast,
in the highest risk category, 20 of 1000 women will have
cancer detected within 2 years (Fig. 1).

The individualized screening protocol requires informa-
tion on mammographic features, age, BMI, family history
of breast cancer, use of HRT, and menopausal status of
the woman. The mammographic measures are fully auto-
mated and require approximately 120 seconds of compu-
tation time to be generated. The remaining risk factors are
easily collected through an online questionnaire at the
time of the mammography visit. External validations of
the result are needed to verify the performance of our risk
model. It will be of utmost importance to understand
which types of tumors the model predicts. Most estab-
lished models target receptor-positive and highly differen-
tiated tumors (i.e, tumors seen as less aggressive). In
future studies, it will also be of importance to understand
the relationship between the localization of the mammo-
graphic features and subsequent tumors and how different
cut-off points for defining interval cancer will influence
the risk estimates.

The KARMA cohort is large, but the follow-up time is
just some few years. The obvious weakness of our study is
the low number of breast cancer cases. For women with
missing data on a risk factor, imputation was performed
according to the protocol established with each risk
model. We calculated a ¢cBIRADS score that mimics the
established BI-RADS score to help clinical implementa-
tion, but we do not know how the true BI-RADS score
would influence our model. As a unique strength, we built
our model on one of the few existing population-based
prospective screening cohorts with detailed information
on factors that possibly influence the risk of breast cancer.

Conclusions
Our model includes three mammographic features that
could easily be derived from raw mammograms. By
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adding information on some few established risk factors,
it has the potential to individualize screening and im-
prove clinical care by identifying women in need of add-
itional examination procedures. At the same time, there
may be a substantial proportion of women who will have
very little benefit from mammography screening, owing
to their low risk of breast cancer.

Additional file

Additional file 1: Table S1. Relative risk of developing breast cancer in
relation to mammographic density, number microcalcifications and
number masses. Table S2. Relative risks on developing breast cancer in
relation to tumor invasiveness and mode of detection. Table S3. Final
model including main effects of risk factors, beta coefficients, standard
errors and p-values. Table S4. Number of breast cancer cases diagnosed
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