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associations between immune and cancer cells.

hospitals.

Introduction: Abundance of immune cells has been shown to have prognostic and predictive significance in many
tumor types. Beyond abundance, the spatial organization of immune cells in relation to cancer cells may also have
significant functional and clinical implications. However there is a lack of systematic methods to quantify spatial

Methods: We applied ecological measures of species interactions to digital pathology images for investigating the
spatial associations of immune and cancer cells in breast cancer. We used the Morisita-Horn similarity index, an
ecological measure of community structure and predator—prey interactions, to quantify the extent to which cancer
cells and immune cells colocalize in whole-tumor histology sections. We related this index to disease-specific
survival of 486 women with breast cancer and validated our findings in a set of 516 patients from different

Results: Colocalization of immune cells with cancer cells was significantly associated with a disease-specific survival
benefit for all breast cancers combined. In HER2-positive subtypes, the prognostic value of immune-cancer cell
colocalization was highly significant and exceeded those of known clinical variables. Furthermore, colocalization
was a significant predictive factor for long-term outcome following chemotherapy and radiotherapy in HER2 and
Luminal A subtypes, independent of and stronger than all known clinical variables.

Conclusions: Our study demonstrates how ecological methods applied to the tumor microenvironment using
routine histology can provide reproducible, quantitative biomarkers for identifying high-risk breast cancer patients.
We found that the clinical value of immune-cancer interaction patterns is highly subtype-specific but substantial
and independent to known clinicopathologic variables that mostly focused on cancer itself. Our approach can be
developed into computer-assisted prediction based on histology samples that are already routinely collected.

Introduction

In recent years, the recognition that cancer is an evolu-
tionary process has penetrated much of cancer biology
and evolutionary biology [1, 2], and a variety of evolutionary
approaches have been adapted for use in cancer biology
(e.g., diversity measures for predicting progression) [3-7].
However, cancer is more than just an evolutionary process;
it is also an ecological process [8]. Cancer cells utilize
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resources and construct habitats within the tissues of
the body just as organisms do in the natural world. The
ecology of cancer is therefore critical for our under-
standing of the natural forces that shape cancer devel-
opment, yet has rarely been systematically investigated
in tumors. This parallel between organismal ecology
and the tumor microenvironment means that there are
unrealized opportunities for adopting measures from
ecology for understanding the dynamics and selective
pressures on a tumor, which may lead to improved cancer
prognosis, prediction, risk stratification and therapeutics.
Immune cell infiltration is one of the most important
aspects of the ecology of neoplastic cells [9-11]. An array
of studies has shown that the spatial location of immune
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cells relative to cancer cells is clinically important in many
different cancer types [9, 12—15]. However, the spatial pat-
terns of associations between cancer cells and immune
cells are rarely quantified, and the evolutionary and eco-
logical processes underlying the role of immune infiltra-
tion in human tumors are poorly understood. Recently,
we discovered that dense concentrations (“hotspots”)
formed by both immune and cancer cells, rather than
those formed by one cell type alone, are associated with
good prognosis in estrogen receptor (ER)-negative breast
cancer [16]. This highlights the importance of investigat-
ing how cancer and immune cells are spatially related and
raises the question: can we characterize the spatial as-
sociation between cancer and immune cells and thereby
elucidate the ecological dynamics that could ultimately
influence tumor progression and response to treatment?

Evolution and ecology can provide a framework for un-
derstanding these complex dynamics and predicting clinical
outcomes [2]. The Morisita-Horn index [17], a measure
that has been used to study community structure in
ecology [18, 19], can be adapted for quantifying spatial
colocalization of immune and cancer cells. The rela-
tionship between colocalization (as measured by the
Morisita-Horn index) and patient survival can further
reveal whether the immune cells are having a pro- or
anti-tumor effect and so provide information about the
types of ecological interaction occurring in the tumor.
Thus, the aims of this study were 1) to use ecological
measures for quantifying spatial associations between
cancer cells and immune cells, 2) perform a compre-
hensive evaluation of the spatial parameters involved
in that quantification and 3) to investigate the implica-
tions of immune cell colocalization with cancer cells
on cancer progression across all subtypes of breast cancer
in a large patient cohort.

Methods

Clinical samples and histology analysis

Hematoxylin and eosin (H&E)-stained section images
representing 1002 consenting patients in the METABRIC
study, under ethical approval by relevant review boards as
reported in our previous publication [20], were analyzed
using our tool CRImage [21]. More details on the sample
set can be found in Additional file 1. The principle of our
image analysis tool is to identify immune cells on H&E
images based on their typical morphology of small, round
and homogeneously basophilic nuclei, which differentiates
them from other leukocytes such as neutrophils with more
pleomorphic nuclei [2, 3, 12]. Cancer cells typically have
nuclei of large size and greater variability in texture and
shape. They can be differentiated from the generally more
elongated nuclei of fibroblasts and endothelial cells. H&E
images have previously been used for evaluating immune
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infiltration in breast cancer [12, 14, 22, 23]. We have per-
formed three experiments to test the accuracy of our
image analysis tool: 1) comparison with visual scoring of
tumor cellularity and immune infiltrate (Additional file 2:
Figure S1, Jonckheere-Terpstra (JT) trend test p <0.0001);
2) 10-fold cross-validation within the training set (90.1 %
accuracy) [21]; 3) 10,000 single-cell annotation by an ex-
pert pathologist in random samples (correlation R* = 0.98;
specifically for lymphocyte R*=0.99) [21]. On average
three sections from different tumor locations were ob-
tained for each tumor to increase our ability to capture
intra-tumor spatial heterogeneity. The patients were split
into a discovery cohort (486 samples, 475 with survival
data) and a validation cohort (516 samples, 514 with sur-
vival data), thus obtaining two cohorts of similar size. In-
formation on chemotherapy (CT), radiotherapy (RT) and
hormone therapy (HT) was available for all patients.

Immune infiltrate scores

Visual scores for immune abundance is available for 675
samples provided by three pathologists in the METABRIC
consortium in three categories: absent, mild and severe.
The automated score for immune abundance is defined as
the percentage of immune cells identified by image analysis,
and was highly correlated with the visual score (p <0.0001,
JT trend test). We used a cutoff of 8 % as reported in our
previous study for estrogen receptor-negative (ER-) cancer
[21]. An optimal cutoff search did not yield a more signifi-
cant result for survival analysis in human epidermal growth
factor receptor 2-positive (Her2+) tumors. The visual score
for immune-cancer cell colocalization was obtained semi-
quantitatively for 40 randomly selected cases on the same
digital images, which were subjected to automated image
analysis by a pathologist blinded to the results of the auto-
mated scoring, using a four-tiered scale comprising the fol-
lowing intratumoral distribution patterns (modified after
the previous publication [24]): focal (disperse circumscribed
immune cell aggregates), low (mild immune cell infiltrate
irregularly distributed and spatially unassociated with the
invasive tumor epithelia), moderate (immune cell infiltrate
displaying some spatial association with the invasive tumor
epithelia) and marked (dense immune cell infiltrate closely
associated with the invasive tumor epithelia).

Other statistical methods

Monotone trend between a continuous variable and a
categorical variable was tested using the JT trend test
[25]. Association with clinicopathologic variables was
tested using the Kruskal-Wallis test [26] or Fisher’s test
in the discovery and validation cohorts. Survival ana-
lysis was performed with breast cancer-specific 10-year
survival data. The Kaplan-Meier estimator was used for
patient stratification and the log-rank test was used for
testing for differences among groups. The Cox proportional
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hazards regression model was fitted to the survival data,
and hazard ratios (HR) and 95 % confidence intervals were
computed to determine the correlation with disease-
specific survival, where the log-rank test with p <0.05 was
considered significant. Optimal cutoft searching for dichot-
omizing the proposed indices was carried out by
searching stepwise in the discovery cohort from 20 to
80 percentiles at an interval of 1.5. The cutoffs that
displayed the highest prognostic significance with the
log-rank test were selected and used for the validation
cohort. Tests using a decreasing amount of tissue were
performed by dividing slides into areas containing
75 %, 50 % and 25 % of square polygons that were
used to compute the Morisita index (Additional file 1).
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R code and data for reproducing all our results are pro-
vided (Additional file 3: Sweave file).

Results

Immune-cancer cell colocalization was independent of
known parameters of breast cancer

H&E-stained tumor section images representing 1002 pri-
mary breast tumors were analyzed using our image ana-
lysis tool to identify cancer cells and immune cells based
on their morphology (Fig. 1a-b, Table 1, Additional file 1).
To study the spatial distribution of cancer cells and im-
mune cells, each H&E image was virtually divided into
non-overlapping squares of 250 pm x 250 um based on
the effective cell — cell communication distance [27].
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Fig. 1 Measuring spatial colocalization of immune and cancer cells through image analysis and spatial statistics. a Example H&E image of a breast
tumor. Three sections obtained from different locations of the tumor were stained with H&E. b Automated image analysis was used to identify
cell types (cancer, immune and stromal cells including fibroblasts and endothelial cells) in this image. ¢ Density of cancer cells and immune cells
per square after applying a square tessellation to this image; squares with less than a predefined amount of tissue would be excluded from analysis. d and
e Schematic over an arbitrary spatial plane demonstrating how colocalization statistics can discriminate a highly segregated cell pattern from
a highly colocalized cell pattern. f Significant correlation between the Morisita index and visual scoring for immune-cancer colocalization in 40
randomly selected samples (JT-test p = 0.0084); focal (disperse immune cell aggregates), low (mild infiltrate unassociated with cancer), moderate (some
spatial association with cancer) and marked (dense infiltrate closely associated with cancer)




Table 1 Distribution of the clinicopathological characteristics of all samples or Her2-amplified samples split into discovery and validation cohorts according to the Morisita index

Characteristics

All subtypes (discovery)

All subtypes (validation)

Her2+ (discovery)

HER2+ (validation)

Morisita high ~ Morisita low P Morisita high  Morisita low P Morisita high  Morisita low P Morisita high  Morisita low P
Number 316 170 377 139 42 34 37 20
Follow 117.7 (49-120) 1103 (4.2-120) 64.8 (03-120) 505 (1.9-120) 1081 (212-120) 61.5 (6.8-120) 623 (1.8-120) 363 (10-884)
up (months)

Age, years 598 (276-86.1) 593 (21.9-834) 038 60.8 (30-92.1) 609 (264-963) 0.81 57 (284-806) 542 (219-71) 023 574 (336-87) 559 (359-87.2) 0.65
Death No 246 (778 %) 113 (665 %)  0.0074* 334 (886 %) 115(827 %) 0.1 25 (59.5 %) 14 (41.2%) 0097 35(946 %) 13 (65 %) 0.0063*
Yes 64 (20.3 %) 53 (31.2 %) 43 (114 %) 24 (17.3 %) 14 (33.3 %) 19 (55.9 %) 2 (54 %) 7 (35 %)

Size <2.cm 122 (386 %) 66 (38.8 %) 0.88 120 318 %) 41 (29.5 %) 027 9214 %) 13(382%)  0.15 9 (243 %) 9 (45 %) 0.056
>2.cm, 177 (56 %) 97 (57.1 %) 226 (599 %) 80 (57.6 %) 30 (714 %) 17 (50 %) 24 (649 %) 7 (35 %)
<5cm
>5cm 17 (54 %) 7 (4.1 %) 29 (7.7 %) 17 (12.2 %) 3(7.1 %) 4(11.8 %) 3 (8.1 %) 4 (20 %)

Node Neg (pNO) 153 (484 %) 84 (494 %) 0.85 180 (47.7 %) 57 (41 %) 0.19 19 (45.2 %) 10 (294 %) 023 15 (405 %) 9 (45 %) 0.78
Pos 163 (51.6 %) 86 (50.6 %) 193 (51.2 %) 80 (57.6 %) 23 (54.8 %) 24 (70.6 %) 22 (59.5 %) 11 (55 %)
(PN1-pN3)

Grade 1 37 (11.7 %) 18 (10.6 %) 0.39 42 (11.1 %) 9 (6.5 %) 0.069 124 %) 0 (0 %) 1 2 (54 %) 0 (0 %) 0.86
2 120 (38 %) 56 (32.9 %) 123 (326 %) 59 (424 %) 8 (19 %) 7 (20.6 %) 6 (16.2 %) 3 (15 %)
3 149 (472 %) 92 (54.1 %) 192 (509 %) 64 (46 %) 32 (76.2 %) 27 (794 %) 26 (703 %) 15 (75 %)

ER Neg 76 (24.1 %) 54 (31.8 %) 0.069 82 (21.8 %) 39 (28.1 %) 0.16 22 (524 %) 19 (559%) 082 14 (37.8 %) 14 (70 %) 0.028*
Pos 240 (759 %) 116 (682 %) 295 (782 %) 100 (71.9 %) 20 (47.6 %) 15 (44.1 %) 23 (622 %) 630 %)

Her2 Not 271 (858 %) 139 (81.8%) 029 335(889 %) 123 (885%) 087 42 (100 %) 34 (100 %)  NA 37 (100 %) 20 (100 %) NA
amplified
Amplified 45 (14.2 %) 31 (182 %) 41 (109 %) 16 (11.5 %) 20 (47.6 %) 14 (41.2 %) 24 (649 %) 6 (30 %)

TP53 WT 224 (709 %) 110 (647 %) 0076 252 (668 %) 94 (67.6 %) 1 20 (47.6 %) 20 (588 %) 049 7 (189 %) 10 (50 %) 0.011*
Mutated 83 (26.3 %) 59 (34.7 %) 94 (24.9 %) 35 (25.2 %) 9 (214 %) 28 (824 %) 7 (189 %) 14 (70 %)

A Low 89 (282 %) 148 (87.1%)  1.1x107* 71 (188%) 111 (799%)  1.5x107°"* 33 (786 %) 6(17.6%)  16x107* 30(81.1%)  6(30%) 0.00036*
High 227 (71.8 %) 22 (129 %) 306 (81.2 %) 28 (20.1 %) 4 (9.5 %) 4(11.8 %) 5(13.5 %) 2 (10 %)

Pam50 Basal 54 (17.1 %) 43 (25.3 %) 0.15 57 (15.1 %) 21 (15.1 %) 045 25 (59.5 %) 16 (47.1 %) 083 13 (35.1 %) 9 (45 %) 046
HER2 50 (15.8 %) 18 (10.6 %) 30 (8 %) 12 (86 %) 5(11.9 %) 4(11.8 %) 7 (189 %) 1(5 %)
LumA 106 (33.5 %) 49 (28.8 %) 129 (342 %) 50 (36 %) 6 (143 %) 7 (20.6 %) 9 (24.3 %) 4 (20 %)
LumB 86 (27.2 %) 48 (282 %) 103 (273 %) 28 (20.1 %) 2 (4.8 %) 3 (8.8 %) 3 (8.1 %) 4 (20 %)
Normal 19 (6 %) 1165 %) 58 (154 %) 28 (20.1 %) 42 34 37 20

Results are presented as number (%) or median (range). P-values are for Kruskal-Wallis test or Fisher’s exact test; *statistically significant. Samples with missing data are not shown. Death breast cancer-specific death,
Size tumor size, Node lymph node status, Grade tumor grade, ER estrogen receptor expression status defined by gene expression data, Her2 human epidermal growth factor receptor 2 status defined by SNP6 copy
number data, TP53 TP53 mutation status, WT wild type, /A immune abundance, Pam50 intrinsic subtypes, Pos positive, Neg negative, LumA luminal A, Lum B luminal B
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The number of cancer cells and immune cells within each
square was counted (Fig. 1c). To calculate colocalization
using cell counts, we then applied two statistics to the data:
Morisita-Horn’s similarity index and Pearson correlation
(Additional file 1). The value of the Morisita-Horn similar-
ity index ranges from 0, indicating no similarity between
two community structures, to 1, when the two structures
are the same (an equal number of immune cells and cancer
cells in each tessellation square), indicating that the
two species are highly colocalized (Fig. 1d and e). We
observed a good correlation between visual scoring by
an expert pathologist and image analysis scores for
immune-cancer colocalization in a subset of samples
that were randomly selected (p = 0.008, Fig. 1f, “Methods”).
Furthermore, the Morisita index was not correlated with
clinical and molecular variables including grade, node, size,
ER and Her2 status or PAM50 gene set expression
subtypes [28] (p >0.05 in at least one cohort).

Immune-cancer cell colocalization measured by the
Morisita-Horn ecological index is associated with good
prognosis in unselected breast cancer

We then examined these measures and their association
with 10-year breast cancer disease-specific survival. The
optimal cutoff for dichotomizing each measure was se-
lected using the discovery cohort (n=475) and then
tested in the independent validation cohort (n=514,
“Methods”). For both measures, a higher score was asso-
ciated with significantly better disease-specific survival
in the discovery cohort (Morisita-Horn index p = 0.0052,
HR=0.6, 95 % CI=0.42-0.86; Pearson correlation
p =0.00096, HR = 0.55, 95 % CI=0.38 - 0.79; Fig. 2a),
suggesting that a high degree of immune-cancer colocali-
zation is associated with good prognosis. While this asso-
ciation for the Morisita-Horn index was confirmed in the
validation cohort (p = 0.00067, HR = 0.41, 95 % CI=0.25
- 0.7), Pearson correlation was not statistically significant
in the validation cohort (p = 0.099; Fig. 2b). We further in-
vestigated different spatial parameters used for the calcula-
tion of the two measures, including a Voronoi vs square
tilling/tessellation and different polygon sizes (Additional
file 1, Additional file 2: Figure S2-S5). We found that the
combination of the Morisita-Horn index with square
tessellation is robust to polygon size and the most
prognostic, although Voronoi tessellation yielded scores
with a higher correlation with visual scoring of colocali-
zation (Pearson correlation p=5.6x 107°), indicating
that the visual estimation of colocalization by the
pathological criteria used in this study integrates an ad-
justment for cell density somewhat similar to the Voronoi
tessellation. In summary, our data suggest that colocaliza-
tion of cancer cells and immune cells, as indicated by high
scores of the Morisita-Horn index (henceforth referred to
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as the Morisita index), predicts favorable prognosis in
breast cancer.

Immune-cancer cell colocalization is associated with a
good prognosis in Her2+ and luminal A tumors

We investigated the association between colocalization
with the intrinsic molecular subtypes defined by the
PAMS50 gene set. Using an optimal threshold derived from
the same subtype in the discovery cohort (Additional file 2:
Figure S6), we found a significant association with favorable
prognosis in the Her2 subtype for both cohorts (dis-
covery p=0.00017, HR=0.29, 95 % CI=0.15-0.57;
validation p =0.0022, HR=0.12, 95 % CI=0.02 - 0.61;
Table 2; Fig. 3) and a significant association with favor-
able prognosis in the discovery and a borderline effect
in the validation cohort for the luminal A subtype (discov-
ery p=0.0014, HR = 0.13, 95 % CI: 0.04—0.45; Validation
p=0.059, HR =0.29, CI: 0.07-1.14; Table 2). In basal or
luminal B subtypes, there was no association with progno-
sis in the discovery or validation cohort (Additional file 2:
Table S2).

Immune-cancer cell colocalization outperforms other
scores of immune infiltrate in Her2+ cancer

To further examine the prognostic value of immune-cancer
colocalization for Her2+ tumors, we compared the Morisita
index with visual and automated scores of immune abun-
dance in the Her2+ subtype defined using PAM50 gene
expression-based subtyping or using Her2 amplification
status from SNP6 copy number data (both cohorts com-
bined, Fig. 4a-b). The Morisita index appeared to be super-
ior to visual and automated scoring of immune abundance
for patient stratification, highlighting the importance of
investigating spatial patterns beyond cell abundance. In
addition, two automated scores of immune response,
namely intra-tumor lymphocyte ratio [29] and hotspots
[16] were not found to be prognostic in these Her2+
subtypes (p >0.05 in the validation cohort). For both
definitions of Her2+ cancer, the subtype-specific cutoffs
for dichotomizing the Morisita index were the same
(0.71). High Morisita index was again significantly cor-
related with good prognosis in the Her2-amplified sam-
ples (univariate analysis discovery: p = 0.039, HR = 0.49,
95 % CI = 0.25 — 0.98; validation: p =9 x 107>, HR = 0.05,
95 % CI=0.01 - 0.4; Table 2).

Immune-cancer colocalization is an independent
prognostic factor in Her2+ cancer

Next, we examined the Morisita index with multivariate
analyses for each cohort separately in Her2+ tumors. For
both definitions of the Her2+ subtype, multivariate ana-
lysis showed prognostic value of the Morisita index inde-
pendent of and stronger than those of node, size and
grade in both cohorts (Her2-amplified discovery: p = 0.027,
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HR=0.44, 95 % CI: 0.21-0.91; validation: p =0.0031,
HR=0.03, 95 % CI=0-0.3; Table 2). Multivariate
analysis revealed additional prognostic value of the
Morisita index given any of the clinicopathologic variables
tested including grade, node size, ER status, immune abun-
dance and TP53 mutation (Additional file 2: Figure S7).
Moreover, this association was consistently observed when
using bootstrap analysis to test robustness due to small
sample sizes in some of the comparisons (Additional file 1,
Additional file 2: Figure S8). In another test using decreas-
ing amounts of tissue, the Morisita index remained prog-
nostic in Her2+ cancer with as little as 50 % of tissue
(Additional file 1, Additional file 2: Figure S9-10).

Immune-cancer cell colocalization predicts long-term
outcome after chemotherapy and radiotherapy in

Her2+ cancer

We investigated the influence of treatment options in-
cluding CT, RT and HT on the Her2-amplified subtype
and whether outcomes from these treatments were dif-
ferent according to the Morisita index. Patients did not

receive anti-Her2 therapies. We found that effect of patient
stratification by Morisita was independent of treatments
given to these patients (multivariate analysis with Morisita,
CT, RT and HT: Morisita p = 1.3 x 10™*, HR =0.28, 95 %
CI=0.15 - 0.54; Additional file 2: Table S3). Subsequently,
we examined outcome differences separately for each type
of treatment given the Morisita index. Patients with late-
stage disease were more likely to be given aggressive treat-
ments such as CT and RT, and this was shown in their
long-term prognosis (Fig. 5a-c). Nevertheless, CT-treated
patients with a high Morisita index had a 65 % survival
probability 10 years after diagnosis, significantly better
than the 19 % survival probability for patients with a
low Morisita index (Fig. 5d, solid red versus dashed red
curve, p=0.00065, HR=0.26, 95 % CI=0.11-0.59).
Furthermore, the Morisita index further stratified pa-
tients who had not received CT (chemo-naive) (solid
blue versus dashed blue curve; p=0.033, HR=0.34,
95 % CI=0.12-0.96) and had a 10-year survival prob-
ability of 80 % (solid black curve, Fig. 5d), an outlook rare
for this subtype before the availability of Her2-inhibitors.
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Table 2 Prognostic value of immune-cancer cell colocalization measures using univariate (white background) and multivariate (gray
background) Cox regression in the discovery and validation cohorts for all breast cancers and Her2+ cancer defined by PAM50 and by SNP6

Hazard ratio (95 % Cl) P value Conc Hazard ratio (95 % Cl) P value Conc

All breast cancers Discovery cohort (475 samples) Validation cohort (514 samples)
Morisita 0.6 (0.42-0.86) 0.0052 0.56 1(0.25-0.7) 0.00067 0.75
Lymphnode 236 (1.62-3.46) 9.4x107° 0.607 3.55 (1.92-6.56) 54x107° 073
Size 226 (163-3.13) 89x1077 0612 242 (1.57-3.73) 6.5x107 074
Grade 2.18 (1.59-3.01) 18x107° 0.627 2.76 (1.66-4.59) 96x10° 0.619
Morisita 0.59 (0.41-0.85) 0.005 0.699 04 (0.24-0.69) 0.00085 09
Lymphnode 1.78 (1.19-2.65) 0.0046 22 (1.16-4.17) 0.015
Size 1.89 (1.34-2.68) 0.00033 1.88 (1.17-3.03) 0.0096
Grade 1.82 (1.31-2.53) 0.00035 258 (1.53-4.34) 0.00038

Luminal A Discovery cohort (150 samples) Validation cohort (178 samples)
Morisita 0.13 (0.04-045) 0.00014 0.715 0.29 (0.07-1.14) 0.059 0618
Lymphnode 143 (046-442) 0.54 0.552 1.93 (0.5-747) 0.33 0576
Size 438 (146-13.14) 0.0067 0.692 3 (0.69-6.62) 0.19 0.58
Grade 1.84 (0.83-4.1) 0.13 0619 247 (09-6.79) 0.071 0.62
Morisita 0.15 (0.04-0.53) 0.003 0.839 0.33 (0.08-1.31) 0.11 0.733
Lymphnode 1.01 (0.3-341) 0.98 8(0.29-4.8) 081
Size 4.17 (0.99-17.56) 0.052 2.09 (0.54-8.1 0.29
Grade 44 (0.61-3.42) 041 247 (0.86-7.13) 0.095

Her2 by PAM50 Discovery cohort (65 samples) Validation cohort (42 samples)
Morisita 0.29 (0.15-0.57) 0.00017 0.65 0.12 (0.02-0.61) 0.0022 0.808
Lymphnode 3.59 (1.55-8.3) 0.0015 0.64 NA 0.0098 0.666
Size 1.74 (0.97-3.12) 0.064 0577 4.83 (148-15.78) 0.0051 0.689
Grade 1.68 (0.78-3.62) 0.18 0.574 0.29 (0.07-1.23) 0.075 0.529
Morisita 038 (0.17-0.84) 0.016 0.734 0.1 (0.01-0.66) 0.017 0.896
Lymphnode 2.2 (0.87-5.57) 0.095 NA 1
Size 147 (0.83-2.61) 0.18 0.78 (0.16-3.83) 0.76
Grade 1.8 (0.81-4.02) 0.15 0.37 (0.08-1.74) 021

Her2+ by SNP6 Discovery cohort (72 samples) Validation cohort (56 samples)
Morisita 049 (0.25-0.98) 0.039 0.597 0.05 (0.01-04) 9.3x107° 0.808
Lymphnode 331 (1.5-731) 0.0017 0.637 1 (0.89-59.98) 0.031 0.666
Size 149 (0.82-2.73) 0.19 0557 3.52 (1-12.36) 0.05 0.689
Grade 1.56 (0.68-3.59) 0.29 0.551 1 (0.36-5.58) 0.62 0.529
Morisita 44 (0.21-091) 0.027 0.722 0.03 (0-0.3) 0.0031 0.896
Lymphnode 3.68 (1.49-9.09) 0.0048 265 (0.28-24.99) 039
Size 2.01 (1-4.04) 0.049 342 (1.1-1064) 0.034
Grade 146 (0.57-3.75) 043 1.86 (0.33-10.42) 048

Multivariate Cox regression includes lymph node status, tumor size, tumor grade, and the colocalization measure; age as a continuous or dichotomized variable
using the optimal cutoff search was not associated with survival in all cancers or any subtype and hence was not considered. Bold text indicates significant p
values for the newly proposed measures. Conc concordance, Her2+ human epidermal growth factor receptor 2-positive

Similarly, for other treatments, a low Morisita index also  Immune-cancer cell colocalization is clinical relevant for
further pinpointed aggressive cancers in the RT-treated long-term treatment outcome in the luminal A subtype
(90 patients) and HT-naive groups (60 patients), after con-  In a similar vein, Morisita was predictive of outcome in pa-
trolling for all these clinicopathologic variables (Fig. 5e  tients with luminal A breast cancer who were chemo-naive
and f, Additional file 2: Table S3). (273 patients, p = 0.0006, HR = 0.14, 95 % CI = 0.05 - 0.44),
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RT-treated (209 patients, p =0.03, HR=0.26, 95 % CI=
0.08-0.89), RT- naive (119 patients, p=0.005, HR =0.13,
95 % CI=0.03-0.54), and HT-treated (273 patients, p =
0.0035, HR=025 95 % CI=0.1-0.64; Fig. 6a-c). In
addition, when all treatments and clinical parameters includ-
ing grade, node, size were considered together, Morisita was
the only variable that was significant in a multivariate model
(»=0.0008, HR =0.22, 95 % CI=0.19-0.53) and was fur-
ther validated with bootstrap analysis (>95 % of the times
Morisita was significant with more than 75 % (n=225) of lu-
minal A patients being randomly taken), (Fig. 6d). We found
a clear advantage of the Morisita index compared with image
analysis-based (Morisita: p=4.2x10"°, HR=0.19, 95% CI=0.08-
047; IA: p=0.0057, HR=0.32, 95% CI=0.14-0.75; Fig. 6e and )
or visual scoring for immune abundance (p >0.1).

Discussion

There is a wide diversity of outcomes for breast cancer,
and differential responses to treatments. Reproducible
biomarkers that can identify which patients are likely to
follow a benign course and which would benefit from
chemotherapy or radiotherapy would dramatically im-
prove clinical care. We combined digital pathology with
an ecological measure, the Morisita index, to study the

spatial colocalization of cancer cells and immune cells.
This is analogous to analyzing predator—prey interactions
in an ecosystem. Our study, in 1002 breast cancer patients
using routine histology sections stained with H&E, reveals
that colocalization of cancer cells and immune cells is a
significant indicator of favorable survival, independent of
and stronger than standard clinical variables, particularly
in Her2+ breast cancer. It is a fully reproducible and highly
prognostic measure of immune response. This biomarker
could be developed into computer-assisted prediction tools
for routine pathology and clinical use.

The association between immune-cancer cell colocali-
zation and favorable prognosis is indicative of continued
effectiveness of the immune system to identify and target
cancer cells to limit their survival, proliferation or inva-
sion. Just as prey can evolve complex predator avoidance
adaptations, cancer cells can likewise evolve complex ad-
aptations to evade immune predation [30]. The Morisita
index, which has been used to study predator—prey rela-
tionships in ecology, thus provides a quantitative measure
of immune-cancer colocalization and potential immune
predation in specific breast cancers.

Our ecological measure further revealed clinically
relevant information about long-term benefit of specific
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Fig. 4 Immune-cancer cell colocalization is a strong prognostic factor in the Her2+ subtype, while immune cell abundance is not. Kaplan-Meier
curves to show differences in disease-specific survival stratified by the Morisita index, visual and automated scores of immune abundance in
human epidermal growth factor receptor 2 (Her2) subtype defined by PAM50 (a) and Her2-amplified (b) samples. Automated immune abundance was
estimated as the percentage of cells that are lymphocytes in H&E images using a cutoff of 8 % (“Methods")

treatments in Her2+ breast cancer. Patients with late-
stage disease are more likely to be treated with chemo-
therapy, yet these patients with a high Morisita index
had significantly better outcomes than patients with a
low Morisita index, revealing a strong link between im-
mune predation and long-term benefit from chemother-
apy even in aggressive Her2+ cancer. This is consistent
with evidence that immune-infiltrated Her2+ cancer is
highly sensitive to immune-mediated cytotoxic treatments
such as chemotherapy [31, 32]. Although our automated
scoring of immune-cancer colocalization is conceptually
different from the stromal lymphocytic infiltration reported
to correlate with benefit from chemotherapy in the neoad-
juvant setting [14], our findings support an important role
for immune cells in the success of therapy and provide a
tool for identifying high-risk patients following chemother-
apy for continuous monitoring, and the two types of scores
remain to be compared.

Since these data were collected, the standard of care
for Her2+ patients has changed with the introduction of
Her2-targeted therapies. However, it has been argued
that an active immune response is also critical for Her2-

inibition treatment [33, 34]. Certain Her2 inhibitors such
as trastuzumab are known to mediate their tumor killing
effects through the immune system [35, 36]. Further-
more, promising new treatment paradigms for these
cancers may involve the addition of anti-PD1 or anti-
CD137 immunotherapies to stimulate IFNy-producing
CD8+ T cells and maximize benefits from Her2 inhibitors
such as trastuzumab [34] or other therapies [37, 38]. There-
fore, our proposed ecological measure of immune preda-
tion may be also effective for identifying patients who could
benefit from such therapies to reactivate immune programs
and for monitoring the success of those therapies in stimu-
lating immune predation of the cancer cells.

Our data show a significant difference in prognosis or
long-term benefit of therapies according to immune-cancer
colocalization in Her2+ and luminal A tumors, but not
triple-negative or basal tumors. However, abundance of
lymphocytes has been found to be a prognostic biomarker
in triple-negative breast cancer in multiple studies [39, 40],
including our previous report on the triple-negative subtype
in our cohort [29]. These suggest that there are different
ecological dynamics with immune predation in basal versus
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Fig. 5 Immune-cancer cell colocalization predicts long-term outcome following chemotherapy (CT), radiotherapy (RT) and hormone therapy (HT)
in human epidermal growth factor receptor 2-positive (Her2+) breast cancer. Kaplan-Meier curves show differences in disease-specific survival between
Her2+ patients with or without CT (@), RT (b) and HT (c). The Morisita index significantly stratifies disease-specific survival for both treated and untreated
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Her2+ subtypes, and that our ecological measure reveals a
distinction in a specific pattern of immune response that
was not previously recognized. Our results also highlight
the subtype specificity of immune infiltrate patterns and
warrant a comprehensive future study on this, including
the spatial clustering pattern we recently reported [16],
across all breast cancer subtypes.

A limitation in our study is the lack of immunohisto-
chemistry experiments to identify the types of immune
cells that are infiltrating (or being excluded from) the
tumor. Studying spatial colocalization in the context of
immune subsets including T-regulatory and T-effector
cells aided by multi-color staining will be a powerful
approach for defining the spatial and molecular hetero-
geneity of the tumor microenvironment, and we are cur-
rently pursuing this. In addition, further validation is
needed for stratification based on treatment options. We
observed increasing variability in the Morisita scores with
decreasing amounts of tissue in our test of intra-slide vari-
ability with decreasing amounts of tissue (Additional file 1,
Additional file 2: Figure S9-10). This is not unexpected,

because the Morisita index is a global statistic of colocali-
zation pattern and so loses statistical power as the amount
of tumor material decreases. We recommend using tumor
sections and not needle biopsy or tissue microarrays for
these measures. We found that Morisita remains prognos-
tic with 50 % of tissue (mean 33,826 cells), suggesting that
the Morisita index can be applied as a prognostic marker
when tissue area is sufficiently large (46,230 cells, third
quantile of cell numbers in 50 % tissue).

Conclusions

Taken together, we postulate that immune predation ex-
hibits different spatial patterns under specific contexts,
which should be accounted for during biomarker devel-
opment for a specific cancer subtype. The addition of a
spatial analysis to the evaluation of the types of immune
cells in the microenvironment with immunohistochem-
istry experiments can reveal further details in the eco-
logical interactions between the neoplastic cells and the
immune system. In summary, our study demonstrates
the power of applying quantitative image analysis, spatial
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Fig. 6 Immune-cancer cell colocalization predicts long-term outcome following radiotherapy (RT) and hormone therapy (HT) in luminal A breast
cancer. Kaplan-Meier curves show differences in disease-specific survival stratified by CT treatment and Morisita index (@), RT treatment and Morisita index

(b) and HT treatment and Morisita index (c). (d) Percentage of times where Morisita was statistically significant in univariate and multivariate analysis with
different amounts of patient samples that were selected randomly 1000 times. Comparison of Morisita (e) and automated score of immune abundance

Fraction of samples (%)

(f) based on association with disease-specific survival in luminal A cancer

statistics and ecological theory to the study of tumor mi-
croenvironments and the routine pathological assess-
ment of breast cancer. These approaches can be used
both for clinical benefit and for revealing the ecological
dynamics that are driving any cancer.

Data and software availability

All data have been deposited at the European Genome-
Phenome Archive hosted by the European Bioinformatics
Institute [EGAS00000000083]. R code and the dataset for
performing the proposed methodology and reproducing
reported results are provided as Additional file 3: Sweave
file for full reproducibility.
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Additional file 1: Supplementary methods. Supplementary
information on sample materials and methods. (DOCX 116 kb)

Additional file 2: Figure S1. Supplementary Figures and Tables. This
file contains the following figures and tables: Validation of image analysis

with pathological scores. Figure S2. Comparison of Voronoi and Square
tessellation. Figure S3. Comparing the Morisita-Horn index with Pearson
correlation. Figure S4. Heatmap to show correlation among Pearson
correlation and the Morisita-Horn index computed over different
scales with square (S) or Voronoi (V) tessellation. Figure S5. Association
of immune-cancer correlation with survival according to different
spatial scales. Figure S6. Optimizing the Morisita index cutoff in the
discovery cohort. Figure S7. Immune-cancer colocalization sub-stratifies
clinical parameters and immune abundance, estrogen receptor (ER) status
and TP53 mutation status in human epidermal growth factor receptor 2
(HER2) + subtype. Figure S8. Robustness of prognostic value of Morisita index
in HER2-amplified subtype. Figure S9. Intra-slide score variability. Figure S10.
Kaplan-Meier curves of the Morisita index estimated using decreasing amount
of tissue. Table S1. Prognostic value of immune-cancer colocalization
measures with Voronoi tessellation using univariate and multivariate
Cox regression results in two independent cohorts. Table S2. Univariate
and multivariate Cox regression analysis result with the Morisita index, node,
size and grade in four PAM50 subtypes and HER2-amplified subtype defined
by SNP6 microarray with two cohorts. Table S3. Groups of multivariate Cox
proportional hazard analysis of the Morisita index and treatment,
known clinical or other variables in HER2-amplified, HER2-amplified
and chemotherapy (CT)-treated, and HER2-amplified and radiotherapy
(RT)-treated patients. (DOCX 6725 kb)

Additional file 3: Sweave file. R code used for reproducing all results

presented in the paper. (PDF 600 kb)
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