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Abstract 

Background  Acute respiratory distress syndrome (ARDS) is etiologically and clinically a heterogeneous disease. Its 
diagnostic characteristics and subtype classification, and the application of these features to treatment, have been of 
considerable interest. Metabolomics is becoming important for identifying ARDS biology and distinguishing its sub‑
types. This study aimed to identify metabolites that could distinguish sepsis-induced ARDS patients from non-ARDS 
controls, using a targeted metabolomics approach, and to identify whether sepsis-induced direct and sepsis-induced 
indirect ARDS are metabolically distinct groups, and if so, confirm their metabolites and associated pathways.

Methods  This study retrospectively analyzed 54 samples of ARDS patients from a sepsis registry that was prospec‑
tively collected from March 2011 to February 2018, along with 30 non-ARDS controls. The cohort was divided into 
direct and indirect ARDS. Metabolite concentrations of five analyte classes (energy metabolism, free fatty acids, amino 
acids, phospholipids, sphingolipids) were measured using liquid chromatography–tandem mass spectrometry and 
gas chromatography–mass spectrometry by targeted metabolomics.

Results  In total, 186 metabolites were detected. Among them, 102 metabolites could differentiate sepsis-induced 
ARDS patients from the non-ARDS controls, while 14 metabolites could discriminate sepsis-induced ARDS sub‑
phenotypes. Using partial least-squares discriminant analysis, we showed that sepsis-induced ARDS patients were 
metabolically distinct from the non-ARDS controls. The main distinguishing metabolites were lysophosphatidyletha‑
nolamine (lysoPE) plasmalogen, PE plasmalogens, and phosphatidylcholines (PCs). Sepsis-induced direct and indirect 
ARDS were also metabolically distinct subgroups, with differences in lysoPCs. Glycerophospholipid and sphingolipid 
metabolism were the most significant metabolic pathways involved in sepsis-induced ARDS biology and in sepsis-
induced direct/indirect ARDS, respectively.

Conclusion  Our study demonstrated a marked difference in metabolic patterns between sepsis-induced ARDS 
patients and non-ARDS controls, and between sepsis-induced direct and indirect ARDS subpheonotypes. The identi‑
fied metabolites and pathways can provide clues relevant to the diagnosis and treatment of individuals with ARDS.
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Introduction
The mortality associated with acute respiratory distress 
syndrome (ARDS) remains above 40% despite many 
advances in intensive care [1]. Many clinical trials have 
evaluated the efficacy of certain drugs in ARDS, but these 
have mostly failed to improve the clinical course [2]. In 
clinical practice, it is important to screen patients at risk 
of developing ARDS and to modify risk factors as much 
as possible. The Lung Injury Prediction Score (LIPS) is a 
scoring system used to screen for patients at high risk of 
developing ARDS [3, 4]. However, it has some limitations 
as a predictive scoring system, because it has a high sen-
sitivity but a low specificity.

In addition, since ARDS is a heterogeneous disease in 
terms of its causes and clinical aspects, intensivists have 
been interested in classifying subtypes and applying dif-
ferent treatments to these. ARDS subphenotypes have 
typically been divided into direct (pulmonary) ARDS 
and indirect (extrapulmonary) ARDS, according to the 
etiology. In direct ARDS, alveolar collapse, fibrin depo-
sition, and pulmonic edema are more common in terms 
of pathological findings [5, 6]. Ground glass opacities 
and consolidations are relatively asymmetrical in the 
radiological findings in direct ARDS [7]. On the other 
hand, indirect ARDS shows relatively bilateral ground 
glass opacities, rather than asymmetrical consolidations, 
and with compliance, it responds better to positive end-
expiratory pressure than does direct ARDS [6–8]. These 
clinical differences result from the differences in the main 
pathophysiology between direct ARDS (epithelial injury) 
and indirect ARDS (endothelial damage and systemic 
inflammation). Because these subphenotypes present 
different clinical courses and treatment responses, they 
may be helpful for distinguishing the ARDS phenotype. 
Although biological discrimination of the two groups 
is not easy due to overlapping etiologies related to lung 
damage, several recent studies using metabolomics have 
shown that there are differences in metabolic fingerprints 
between these two groups [9, 10].

Metabolomics is a new, rapidly expanding field of sys-
tems biology with the ability to measure all small mole-
cules, chemicals, and metabolites that can be identified in 
a given sample comprehensively [11, 12]. Metabolomics 
is based on high-throughput approaches, which separate 
the population of unknown small molecules for subse-
quent quantification and identification, rather than quan-
tifying a molecule of known identity [13]. The resolution 
of compounds using gas chromatography (GC) and liquid 
chromatography (LC) has provided significant benefits 
as compared with two-dimensional gel electrophore-
sis [13]. Mass spectrometry (MS) and nuclear magnetic 
resonance (NMR) spectroscopy have promoted accuracy 
and sensitivity for identifying unknown metabolites [14]. 

Such an untargeted approach allows acquisition of the 
global metabolite profile in a biological compartment, 
without any prior hypothesis, facilitated by a blind com-
parison between cases and controls [15]. Nevertheless, 
limitations in quantitative measurements and metabolite 
annotations remain problematic in untargeted metabo-
lomics [16]. On the other hand, a targeted metabolomics 
approach measures and analyzes metabolites in known 
or predicted metabolic pathways. Analytical methods 
for targeted metabolomics can be optimized and their 
quantitative results should be more reliable than those of 
untargeted metabolomics [16].

The aim of this study was to find diagnostic metabo-
lites that distinguish sepsis-induced ARDS patients from 
non-ARDS controls using this targeted metabolomics 
approach, and to identify metabolites and related path-
ways that can differentiate sepsis-induced direct and 
indirect ARDS. A targeted metabolomics strategy, focus-
ing on energy metabolism, free fatty acids, amino acids, 
sphingolipids, and phospholipids were chosen because 
it has been reported that these metabolites might have 
some connection to metabolic alterations in ARDS 
[17–22].

Methods
Study design and patient selection
This study retrospectively analyzed the samples of the 
ASAN sepsis registry obtained from March 2011 to 
February 2018, along with the non-ARDS controls. This 
study was approved by the Asan Institutional Review 
Board (IRB No. 2019–1017). The need for obtaining 
informed consent was waived because the study used an 
existing cohort sample.

The inclusion criteria for the cohort were as follows: 
adult patients aged > 18  years, patients admitted to the 
medical intensive care unit (ICU) and clinically diag-
nosed with sepsis according to the Sepsis-2 definition 
[23], who were enrolled within 48  h of ICU admission. 
The patients’ serum samples were collected at the time of 
sepsis cohort enrollment. The non-ARDS control group 
was enrolled from the registry of individuals who vis-
ited the Health Screening and Promotion Center at Asan 
Medical Center for a health screening. Among them, 
those without acute diseases such as infection and no 
obvious abnormalities on chest radiography and similar 
age and sex to the ARDS patients were selected as the 
control group. At the time of blood collection, they were 
in good health and had no special symptoms or signs, 
and even if there was an underlying disease, the condi-
tion was well controlled.

The definition of ARDS followed the Berlin definition 
based on PaO2/FiO2[24]. The diagnosis of direct ARDS 
and indirect ARDS was made through the consensus in 
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blinded review by two intensivists. The following ARDS 
patients were excluded: (1) patients who underwent 
chemotherapy within the last month, (2) patients who 
were administered immunosuppressants after organ 
transplantation, (3) patients who had drug-induced 
pneumonitis, (4) patients in an immunocompromised 
state, and (5) patients whose diagnosis of ARDS could 
not be agreed upon by the two intensivists. Since the 
eligible ARDS patients belonged to the sepsis cohort, 
the direct ARDS group included pulmonary ARDS 
patients with pneumonia-induced sepsis, and the indi-
rect ARDS included extrapulmonary ARDS patients 
with non-pneumonia-induced sepsis.

Data collection
Comprehensive clinical data were collected on the 
first day of admission to ICU, including severity of ill-
ness scores, such as the Acute Physiology and Chronic 
Health Evaluation II (APACHE II) and Sequential 
Organ Failure Assessment (SOFA), co-morbidities, 
laboratory values, and source of infection. Thereaf-
ter, clinical outcomes were collected, including 28-day 
mortality data.

Targeted metabolomics approach
Samples of the patients with sepsis-induced direct ARDS 
and indirect ARDS as well as those of the non-ARDS 
controls were analyzed and quantified using targeted 
metabolomics. Metabolites involved in energy metabo-
lism (glycolysis, citric acid cycle, and the pentose phos-
phate pathway) as well as those in free fatty acid, amino 
acid, phospholipid, and sphingolipid metabolism were 
measured. Laboratory analysis was conducted using 
LC–tandem MS (LC–MS/MS) and GC–MS systems. Six 
batches were used for this study, and the same number 
of samples from each group were allocated across the 
batches. Pooled human plasma samples (Sigma-Aldrich) 
were used for quality control (QC), and two QC runs 
were included in each batch. The analysis order was 
randomized among the samples in a batch. Several runs 
with blank samples, standard solutions, and QC samples 
were performed to check the robustness of the analytical 
method before study sample analysis. Metabolic features 
with CV < 20% in QC samples were considered accept-
able. Principal component analysis (PCA) score plot 
for serum metabolome data including QC samples was 
shown in Additional file  1: Fig. S1. A detailed descrip-
tion of the methodology is presented separately in the 
Supplemental Materials. Target metabolome data are 
publicly available at Metabolomics Workbench (StudyID: 
ST002550, ST002702).

Data processing
Data were further processed with normalization, scal-
ing, filtering (removing metabolic features with 50% 
missing values), and statistical analysis using Meta-
boAnalyst 5.0 (www.​metab​oanal​yst.​ca), a web server 
designed for comprehensive analysis of metabolomics 
data for visualization and interpretation. Datasets were 
normalized, log-transformed, and auto-scaled to gen-
erate more comparable individual features prior to the 
statistical analyses. Missing values were estimated by 
replacement with small values (half of the minimum 
positive value in the original data).

Statistical analysis
When comparing clinical and baseline characteristics 
between groups, continuous variables are reported as 
medians (interquartile range, 25–75%), and categori-
cal variables are reported as numbers (percentages). 
Data were compared for continuous variables using 
Wilcoxon’s rank-sum test when comparing the medi-
ans of two groups. Pearson’s χ2 test or Fisher’s exact 
test were used to compare categorical variables. Pear-
son’s correlation analysis or Spearman’s correlation 
analysis was used for normally distributed and non-
normally distributed data, when checking the correla-
tion between patient demographics and metabolites. 
Significance was defined by p < 0.05. For all analyses, a 
two-tailed p-value < 0.05 was considered statistically 
significant. Statistical analysis was performed using 
IBM SPSS version 25.0 (IBM Corp., Armonk, NY, 
USA). To identify differentially expressed metabolites 
among the compared groups (e.g., ARDS vs. controls; 
direct vs. indirect ARDS), principal component analy-
sis (PCA), partial least-squares discriminant analysis 
(PLS-DA) were performed using MetaboAnalyst 5.0. 
We also performed analysis of covariance for each sig-
nificant metabolite to adjust demographical character-
istics such as age, gender and body mass index (BMI), 
and comorbidities such as chronic liver disease, chronic 
kidney disease or malignant disease. Metabolic path-
way analysis was performed using the pathway analysis 
program in the MetaboAnalyst 5.0 to recognize impor-
tant biological pathways in sepsis-induced ARDS and 
subphenotypes. Each metabolite term was converted to 
a known human matabolome database (HMDB) ID via 
HMDB identifier. Then, quantitative pathway analysis 
was performed by grouping differently with the con-
centration data of all metabolites as follows: i) ARDS vs 
non-ARDS controls, ii) Direct ARDS vs indirect ARDS, 
iii) non-ARDS controls vs direct ARDS, and iv) non-
ARDS controls vs indirect ARDS. Pathways with the 

http://www.metaboanalyst.ca
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false discovery rate (FDR) p-value of less than 0.05 were 
considered significant.

Results
Patients’ characteristics
Eighty-four patients were included, of which 54 were 
patients with sepsis-induced ARDS and 30 were non-
ARDS controls. The sepsis-induced ARDS patients 
consisted of 27 patients each with direct and indirect 
subphenotypes. The baseline characteristics of all ARDS 
patients and non-ARDS controls are provided in Table 1. 
The proportions of co-morbidities such as chronic liver 
disease, solid tumor malignancy, and neurologic disease 
were significantly different between the two groups. A 
comparison of the baseline and clinical characteristics 
of direct ARDS and indirect ARDS groups is presented 
in Table 2. Patients with direct ARDS were significantly 
older than those with indirect ARDS. A BMI was signifi-
cantly higher in the patients with indirect ARDS. There 
were no statistically significant difference in co-morbidi-
ties between the two groups although respiratory disease 
was more common in direct ARDS. Initial APACHE II 
score was similar between the groups, whereas patients 
with indirect ARDS had a significantly higher SOFA 
score, along with a higher rate of bacteremia and higher 
lactate levels, than did those with direct ARDS.

ARDS vs controls
A total of 186 metabolites, including 16 metabolites 
involved in energy metabolism, 8 involved in free fatty 

Table 1  Baseline characteristics of sepsis-induced ARDS patients 
at ICU admission compared with non-ARDS controls

Characteristics ARDS patients Non-ARDS controls p-value

Number of patients 54 30

Male (n, %) 36 (67) 20 (67) 1.000

Age 68 [57–76] 63 [62–64] 0.546

BMI (kg/m2) 23.6 [20.8–26.2] 23.8 [22.3–25.5] 0.079

Co-morbidities

 Respiratory disease 8 (15) 1 (4) 0.483

 Cardiovascular 
disease

3 (6) 1 (3) 1.000

 Neurological 
disease

7 (13) 0 (0) 0.047

 Chronic kidney 
disease

2 (4) 0 (0) 0.535

 Chronic liver 
disease

12 (22) 0 (0) 0.003

 Diabetes 10 (19) 5 (17) 0.832

Malignancy

 Solid tumor 22 (41) 0 (0)  < 0.001

 Hematologic 1 (2) 0 (0) 1.000

Table 2  Patient clinical and baseline characteristics at ICU 
admission according to sepsis-induced ARDS subphenotype

Direct ARDS = Pneumonia sepsis-induced ARDS, Indirect ARDS = Non-
pneumonia sepsis-induced ARDS, MV = Mechanical Ventilation, APACHE 
II = Acute Physiology and Chronic Health Evaluation-II, P/F ratio = PaO2/FiO2 
ratio, SOFA = Sequential Organ Failure Assessment

Characteristics Direct ARDS Indirect ARDS p-value

Number of patients 27 27

Male (n, %) 19 (70) 17 (63) 0.564

Age 74 [64–79] 64 [55–71] 0.004

BMI (kg/m2) 22.3 [20.0–24.9] 26.1 [22.0–28.3]  < 0.001

Co-morbidities

 Respiratory disease 7 (26) 1 (4) 0.050

 Cardiovascular 
disease

3 (11) 0 (0) 0.236

 Neurological disease 6 (22) 1 (4) 0.100

 Chronic kidney 
disease

0 (0) 2 (7) 0.491

 Chronic liver disease 5 (19) 7 (26) 0.513

 Diabetes 4 (15) 6 (22) 0.484

 Malignancy

  Solid tumor 10 (37) 12 (44) 0.580

  Hematologic 0 (0) 1 (4) 1.000

Source of infection  < 0.001

 Pneumonia 27 (100) 0 (0)

 Intraabdominal 0 (0) 12 (44)

 Soft tissue 0 (0) 5 (19)

 Urinary tract 0 (0) 4 (15)

 Others 0 (0) 6 (22)

Presence of bacteremia 7 (26) 21 (78)  < 0.001

Identification of 
pathogen

17 (63) 22 (82) 0.129

 Bacteria 16 (89) 22 (100) 0.436

 Virus 1 (6) 0 (0)

 APACHE II score 25 [22–29] 27 [23–29] 0.205

SOFA score 10 [9–12] 14 [11-17]  < 0.001

Severity of ARDS 0.355

 Mild 5 (19) 6 (22)

 Moderate 10 (37) 14 (52)

 Severe 12 (44) 7 (26)

Invasive MV 26 (96) 24 (89) 0.610

Laboratory findings

 P/F ratio at diag. of 
ARDS

109 [72–148] 128 [85–202] 0.197

 Lactate 3.5 [2.0–6.8] 6.4 [2.9–11.0] 0.025

 WBC (103/mm3) 8.9 [5.1–12.2] 21.2 [6.4–24.9] 0.013

 Platelet (103/mm3) 144 [104–190] 45 [12–109]  < 0.001

 BUN (mg/dL) 29 [17-46] 39 [24-27] 0.170

 CRP (mg/dL) 18.4 [11.7–33.5] 20.3 [7.8–25.6] 0.504

 Procalcitonin (ng/
mL)

1.70 [0.26–17.04] 28.77 [6.70–192.99] 0.011

28-day mortality 11 (41) 15 (56) 0.276
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acid, 32 involved in amino acid, 115 involved in phos-
pholipid (including 8 plasmalogens), and 15 involved in 
sphingolipid metabolism were identified by LC–MS/
MS or GC–MS in the 84 subjects. On comparing the 
overall sepsis-induced ARDS patient group (n = 54) 

with the non-ARDS control group (n = 30), marked dif-
ferences were observed in 102 compounds in all meas-
ured metabolite classes (Additional file 1: Table S1). We 
chose 5 components which was achieved by cross vali-
dation method of PLS-DA with R2 = 0.96, Q2 = 0.91, and 

Fig. 1  Statistical analysis of the data obtained for acute respiratory distress syndrome (ARDS) patients and non-ARDS controls. A Partial least squares 
discriminant analysis (PLS-DA) showing the separation of sepsis-induced ARDS patients (green) from non-ARDS controls (red). B Permutation test 
statistics using separation distance based on sum of squares between and sum of squares within (B/W) ratio. This test indicates PLS-DA between 
ARDS patients and non-ARDS controls was statistically significant (p < 0.01). C Variable importance in projection (VIP) score. The metabolites 
responsible for discrimination between ARDS patients and non-ARDS controls are shown. Metabolites with high VIP scores are more important in 
class separation. D Concentrations of significant metabolites for the discrimination of sepsis-induced ARDS and non-ARDS controls
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accuracy of 1.0 (Fig.  1C and Additional file  1: Fig. S2). 
Then, we selected top 5 components based on a variable 
important in projection (VIP) score (> 1.0) as metabolites 
distinguishing sepsis-induced ARDS from non-ARDS 
controls, which were from lysophosphatidylethanola-
mine (lysoPE) plasmalogen (C18 (Plasm) lysoPE), phos-
phatidylethanolamine plasmalogen (C18(Plasm) 20:4 

PE, C18(Plasm) 22:6 PE), and phosphatidylcholine (PC 
(33:6), PC (32:0)) metabolism. These 5 most significant 
metabolites were derived from phospholipid metabo-
lism, and among them, three PE plasmalogens showed a 
significantly lower concentration in the sepsis-induced 
ARDS group than in the non-ARDS control group. On 
the other hand, the two PCs were significantly higher in 

Fig. 1  continued
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the sepsis-induced ARDS than in the non-ARDS control 
group (Fig. 1D). These metabolites were still significant in 
distinguishing ARDS vs non-ARDS controls after adjust-
ing the effect of other factors such as age, gender, BMI, 
and the presence of chronic liver disease, chronic kidney 
disease or malignant disease.

Metabolic pathway analysis for distinguishing ARDS 
from controls
The top-10 pathways significantly associated with 
sepsis-induced ARDS were 1) glycerophospholipid 
metabolism (FDR = 8.44 × 10–20), 2) glycolysis/gluconeo-
genesis (FDR = 1.52 × 10–18), 3) glycosylphosphatidylino-
sitol (GPI)-anchor biosynthesis (FDR = 1.52 × 10–18), 4) 
tryptophan metabolism (FDR = 2.48 × 10–18), 5) ether 
lipid metabolism (FDR = 2.01 × 10–13), 6) sphingolipid 
metabolism (FDR = 9.65 × 10–13), 7) arachidonic acid 
metabolism (FDR = 1.89 × 10–12), 8) biosynthesis of 
unsaturated fatty acids (FDR = 3.80 × 10–9), 9) cysteine 
and methionine metabolism (FDR = 2.23 × 10–5), and 10) 
pyruvate metabolism (FDR = 2.52 × 10–5) (Fig.  2, Addi-
tional file 1: Table S2).

Direct ARDS vs indirect ARDS as ARDS subphenotypes
When analyzing the sepsis-induced direct and indirect 
ARDS groups using PLS-DA, 3-dimensional score plot-
ting showed that the two groups were distinguished by 
metabolic profiles (Fig.  3A). We chose 3 components 
which was achieved by cross validation method of PLS-
DA with R2 = 0.66, Q2 = 0.3, and accuracy of 0.84. Then, 
we selected 3 metabolites to discriminate sepsis-induced 
direct and indirect ARDS, which were lysoPC (17:6), 
lysoPC (18:0), and lysoPC (16:0) among 14 significantly 
different metabolites shown in Table  3. Higher concen-
trations of lysoPC (16:0), lysoPC (17:6), and lysoPC (18:0) 
were observed in the direct ARDS group as compared 
to the indirect ARDS group (Fig.  3C). A heatmap using 
Pearson’s correlation and Ward’s linkage shows the intui-
tive visualization of discriminant metabolites between 
the sepsis-induced direct and indirect ARDS subgroups 
(Fig. 3D). These three lysoPCs were still significant after 
adjusting for age, gender, BMI, and the presence of 
chronic liver disease, chronic kidney disease or malignant 
disease.

Glycerophospholipid metabolism

Tryptophan metabolism

Glycolysis / Gluconeogenesis

Glycosylphosphatidylinositol (GPI)-anchor biosynthesis

Cysteine and methionine metabolism

Ether lipid metabolism

Sphingolipid metabolism

Arachidonic acid metabolism

Biosynthesis of unsaturated fatty acids

Pyruvate metabolism

Taurine and hypotaurine 
metabolism

Linoleic acid metabolism 

Phenylalanine, tyrosine and 
tryptophan biosynthesis

Fig. 2  Pathways affected in sepsis-induced ARDS biology. *Color gradient and circle size indicate the significance of the pathway ranked by p-value 
(yellow: higher p-value, red: lower p-value) and pathway impact score (larger circle indicates higher impact score)
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Fig. 3  Statistical analysis of the data obtained for 54 patients with 27 direct ARDS and 27 indirect ARDS. A PLS-DA 3D score plot for the 
discrimination of patients with sepsis-induced direct ARDS (P-ARDS) and indirect ARDS (E-ARDS) (left) and permutation test (right) indicating that 
the PLS-DA between ARDS patients and non-ARDS controls was statistically significant (p = 0.01). B Important metabolites discriminating the two 
groups. Variable importance in projection (VIP) score: the metabolites are responsible for discrimination between direct ARDS and indirect ARDS. 
Metabolites with high VIP scores are more important in class separation. C Concentrations of significant metabolites for the discrimination of 
sepsis-induced direct ARDS and indirect ARDS. D Hierarchical heatmap for top-15 discriminating metabolites between sepsis-induced direct ARDS 
and indirect ARDS (red bar: direct ARDS, green bar: indirect ARDS)
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Metabolic pathways discriminating between direct ARDS 
and indirect ARDS
Pathway analysis of serum metabolites was performed 
in sepsis-induced ARDS subphenotypes. The pathways 
most involved in direct and indirect ARDS were different. 
Compared to non-ARDS controls, the top-5 pathways 
associated with sepsis-induced direct ARDS were 1) GPI-
anchor biosynthesis (FDR = 7.17 × 10–16) 2) glycerophos-
pholipid metabolism (FDR = 1.13 × 10–16), 3) tryptophan 
metabolism (FDR = 2.77 × 10–14), 4) sphingolipid metab-
olism (FDR = 1.1 × 10–13), and 5) biosynthesis of unsatu-
rated fatty acids (FDR = 2.6 × 10–10) (Additional file  1: 

Fig. S3A). Also, compared to non-ARDS controls, the 
top-5 pathways affected in sepsis-induced indirect ARDS 
were (1) sphingolipid metabolism (FDR = 6.3 × 10–16), 
(2) glycerophospholipid metabolism (FDR = 8.0 × 10–16), 
(3) tryptophan metabolism (FDR = 2.7 × 10–13), (4) GPI-
anchor biosynthesis (FDR = 7.8 × 10–13), and (5) ether 
lipid metabolism (FDR = 9.9 × 10–13) (Additional file  1: 
Fig. S3B). Among the top 10 pathways of each ARDS 
subphenotype, the common or exclusive pathways were 
analyzed. Direct ARDS was more related to fatty acid 
metabolisms such as biosynthesis of unsaturated fatty 
acids and fatty acid degradation, while indirect ARDS 

Fig. 3  continued
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was more related to energy metabolisms such as glyco-
lysis/gluconeogenesis and pyruvate metabolism (Addi-
tional file 1: Fig. S3C).

Significant pathways discriminating sepsis-induced 
direct ARDS and indirect ARDS are presented in Fig. 4. 
The top distinguishing pathways were (1) sphingolipid 
metabolism (FDR = 1.15 × 10–3), (2) glycerophospholipid 
metabolism (FDR = 8.83 × 10–3), (3) arginine and proline 
metabolism (FDR = 2.7 × 10–2), (4) fatty acid biosynthesis 
(FDR = 2.7 × 10–2), 5) phenylalanine, tyrosine, and tryp-
tophan biosynthesis (FDR = 2.7 × 10–2), and 6) phenylala-
nine metabolism (FDR = 2.7 × 10–2).

Sphingolipid metabolism as a key pathway discriminating 
between direct and indirect ARDS
Sphingolipid metabolism was the most significant path-
way for differentiating between sepsis-induced direct and 
indirect ARDS. Among the related metabolites, sphin-
gosine-1-phosphate (S1P) and sphingosine were distinc-
tive. S1P was markedly lower in both sepsis-induced 
ARDS groups as compared with the non-ARDS control 
group (Fig. 5), and was also lower in the indirect ARDS 

Table 3  Significantly different serum metabolites between 
sepsis-induced direct ARDS and indirect ARDS

FDR = false discovery rate, LysoPC = lysophosphatidylcholine, 
PC = phosphatidylcholine, PE = phosphatidylethanolamine

Metabolites t.stat p.value − log10(p) FDR

LysoPC 17:6 5.0578 5.62E−06 5.2499 0.0009843

LysoPC 18:0 4.7275 1.77E−05 4.7513 0.0013795

LysoPC 16:0 4.6435 2.36E−05 4.6262 0.0013795

LysoPC 19:6 4.3284 6.85E−05 4.1641 0.0029982

Stearic acid −3.9689 0.000223 3.6527 0.0077874

Asymmetric dimethylar‑
ginine

−3.8218 0.000356 3.449 0.010373

Sphingosine −3.7214 0.000487 3.312 0.012187

Trans-4-hydroxy-L-proline −3.5918 0.000728 3.1377 0.01593

PC 33:6 −3.4088 0.001268 2.8969 0.024654

Palmitic acid −3.2729 0.001895 2.7224 0.033165

PE 36:1 −3.0885 0.003225 2.4915 0.048624

Methionine sulfoxide −3.0768 0.003334 2.477 0.048624

LysoPC 18:1 3.0328 0.003775 2.4231 0.048903

Oxoglutaric acid −3.02 0.003912 2.4076 0.048903

Sphingolipid metabolism

Glycerophospholipid metabolism

Phenylalanine, tyrosine and
tryptophan biosynthesis

Alanine, aspartate and glutamate metabolism
Arginine biosynthesis

D-Glutamine and 
D-glutamate metabolism

Arginine and proline metabolism
Phenylalanine metabolism

Fatty acid degradation

Fatty acid biosynthesis

Linoleic acid metabolism

Fig. 4  Metabolic pathway analysis significantly discriminating between direct acute respiratory distress syndrome (ARDS) and indirect ARDS. *Color 
gradient and circle size indicate the significance of the pathway ranked by p-value (yellow: higher p-value, red: lower p-value) and pathway impact 
score (larger circle indicates higher impact score)
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than in the direct ARDS group, although this was not sta-
tistically significant. Sphingosine showed considerably 
different concentrations between the two groups, with 
significantly higher levels in indirect ARDS than in direct 
ARDS patients.

Discussion
In this study, we investigated the differences in the 
metabolome and related pathways between sepsis-
induced ARDS and non-ARDS controls, and between 
sepsis patients with direct and with indirect ARDS as a 
subphenotype, using LC–MS/MS and GC–MS for tar-
geted metabolomics. Among 186 metabolites detected, 
102 metabolites could differentiate sepsis-induced 

ARDS patients from the non-ARDS controls, and 14 
metabolites could discriminate between the direct and 
indirect ARDS subphenotypes. In PLS-DA, we found 
that sepsis-induced ARDS was metabolically distinct 
from the non-ARDS controls, and that sepsis-induced 
direct and indirect ARDS were also metabolically dif-
ferent subgroups.

We identified significant differences in sepsis-induced 
ARDS patients and non-ARDS controls in terms of 
metabolites related to ARDS biology. The main sub-
stances involved were PE plasmalogens, including 
C18(Plasm) lysoPE, C18(Plasm) 20:4 PE, and C18(Plasm) 
22:6, which were decreased in patients as compared to 

Fig. 5  Sphingolipid metabolic pathway involving acute respiratory distress syndrome (ARDS) subphenotypes. *Sepsis-induced direct ARDS 
(P-ARDS) vs. sepsis-induced indirect ARDS (E-ARDS)
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controls. Plasmalogens are plasma-borne antioxidant 
phospholipid species that provide protection as cellular 
lipid components during cellular oxidative stress [25]. 
According to a previous human study, plasmalogens were 
decreased in the bronchoalveolar lavage (BAL) fluid of an 
ARDS patient [26]. In a recent study that evaluated the 
serum lipid profile of COVID-19 patients, it was con-
firmed that PE plasmalogens were significantly decreased 
as the P/F ratio decreased [27]. In sepsis patients, plasm-
alogens also decreased, which suggested that these mole-
cules may be a marker of oxidative stress [28]. Recently, it 
was found that PE plasmalogens were decreased further 
in moderate to severe COVID-19 disease, and among the 
relevant metabolites, the decrease in PE (P-18:0/20:4) 
and PE (P-18:0/22:6) was consistent with our results [29].

It had not previously been clear how PC levels change 
in ARDS. The concentrations of PC (33:6) and PC (32:0) 
were increased in sepsis-induced ARDS patients as com-
pared to non-ARDS controls. However, according to a 
recent study, plasma PC concentrations, mainly in the PC 
(18:2) series, were significantly lower in ARDS patients 
than in normal controls, which was thought to be due to 
abnormal changes in PC synthesis in the liver of ARDS 
patients [30]. However, in our results, PC (33:6) and PC 
(32:0) levels were higher in sepsis-induced ARDS patients 
than in the controls, suggesting that the direction of 
increase or decrease may be different for each PC series. 
While several studies have found an increase in PC lev-
els in sepsis patients [31–33], other studies have shown 
a decrease in these patients as compared to normal con-
trols [31, 32, 34, 35]. In one study, the PC (34:3) level was 
significantly lower in patients with pneumonia as a pri-
mary focus of sepsis than in patients with other primary 
foci, such as intra-abdominal, urinary tract, or blood 
stream infections. On the other hand, a high PC (34:1) 
level was shown to be a prognostic marker suggestive of 
septic shock in a pneumonia group [31]. These results 
suggest that PC species containing long-chain fatty acids 
can be important metabolites in sepsis-induced lung 
injury or ARDS.

We confirmed that the metabolites that showed the 
most significant difference between sepsis-induced 
direct and indirect ARDS were lysoPCs, including lysoPC 
(17:6), lysoPC (18:0), and lysoPC (16:0). The concentra-
tions of lysoPC in the sepsis-induced ARDS groups were 
significantly decreased as compared with the non-ARDS 
control group, while the direct ARDS group showed 
higher levels than did the indirect ARDS group. LysoPC 
is a lipid mediator derived from membrane PC, which 
has been suggested to regulate immune responses. PC is 
hydrolyzed by phospholipase A2 (PLA2), resulting in the 
production of lysoPC [36]. LysoPC is known to contrib-
ute to inflammation by increasing chemokine production 

and activating endothelium, neutrophils, monocytes, 
macrophages, and lymphocytes [37]. However, the role 
of lysoPCs in ARDS has not yet been clearly elucidated. 
Although there were differences in the change in lysoPC 
levels in each study, the enzymes involved in this process 
have been suggested to be biomarkers for ARDS or acute 
lung injury [38]. In a preclinical study on the activity of 
type II PLA2, the concentration of lysoPC in BAL fluid 
was higher than that of controls with a higher activity of 
type II PLA2 [39]. In clinical studies, PLA2 activity in BAL 
fluid and plasma of patients were also increased as com-
pared to controls [40, 41]. Additionally, when compar-
ing direct and indirect ARDS, PLA2 activity was higher 
in direct ARDS cases [40]. On the other hand, studies 
of sepsis patients showed the opposite results. In sepsis 
patients, serum lysoPC levels were lower than those in 
controls, and among them, lysoPC (16:0) and (18:0) were 
decreased [42]. Lower concentrations of serum or plasma 
lysoPC predicted worse outcomes [43], and the ratio of 
lysoPC/PC was lower in sepsis patients than in healthy 
controls [42]. In our study, the decrease in serum lysoPCs 
was similar to that seen in sepsis. However, higher con-
centrations in direct than in indirect ARDS patients 
were consistent with previous studies showing increased 
results of lysoPC (16:0) and lysoPC (18:0) in lung diseases 
with epithelial damage [44]. That is, our results appear 
to be primarily based on biological changes in sepsis 
because our study patients had ARDS based on sepsis. 
But, since they showed metabolic differences following 
direct or indirect lung injury, the corresponding lysoPCs 
could be important markers for differentiating between 
the two subphenotypes of ARDS.

We identified that sphingolipid metabolism is an 
important pathway for distinguishing between sep-
sis-induced direct and indirect ARDS patients, and 
confirmed that there was a difference in S1P. S1P is a 
naturally occurring bioactive sphingolipid generated by 
sphingomyelin metabolism [45]. It is generated by the 
phosphorylation of sphingosine, catalyzed by sphingo-
sine kinases (SphKs) 1 and 2, and is catabolized by lipid 
phosphate phosphatases, S1P phosphatases, and S1P 
lyase [45]. S1P plays an important role in the vascular 
and immune systems [46]. In acute lung injury, S1P has 
been recognized as a potent angiogenic factor enhancing 
lung endothelial integrity and inhibiting vascular perme-
ability [45, 47]. Previous studies showed different results, 
depending on whether it was a preclinical or clinical 
study [48–52]. Preclinical studies showed upregulation 
of S1P in lung tissues, BAL fluid, and plasma in cases 
with acute lung injury [48–50], whereas a clinical study 
showed lower serum S1P levels in ARDS patients [52], 
which was consistent with our results. In addition, we 
observed a distinct pattern between direct and indirect 
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ARDS at the level of sphingosine. In indirect ARDS 
patients, sphingosine was upregulated as compared to 
non-ARDS controls or direct ARDS patients. This result 
suggested that the following three mechanisms can be a 
clue to distinguishing between indirect and direct ARDS: 
1) activation of S1P phosphatases, which are rate limit-
ing enzymes for reversing S1P into sphingosine; 2) inac-
tivation of SphKs, which convert sphingosine to S1P; or 
3) upregulation of the S1P receptor. However, this will 
require further research, as we could not confirm the 
activity of these enzymes in each group.

Since there was a difference in the underlying disease 
between the ARDS patients and the non-ARDS controls, 
we analyzed whether the presence of co-morbidities such 
as chronic liver disease and solid tumor affected meta-
bolic differences. Thus, we performed PLS-DA for ARDS 
patients and control individuals without chronic liver 
disease, and found that metabolites such as C18(Plasm) 
LPE, PC(33:6), C18(Plasm) 20:4 PE, and PC(32:0) were 
still included among the top differential metabolites 
between the ARDS patients and the control group. Also, 
when we ran the analysis again by excluding those with 
a solid tumor, the main 4 metabolites that distinguished 
ARDS from non-ARDS controls remained in the top 
metabolites. In the ARDS subphenotype analysis (direct 
vs. indirect), there was no significant difference in the 
co-morbidities between the groups, except for the higher 
BMI in the indirect group. However, we assume that BMI 
would not have significantly affected the distinguishing 
metabolites for two reasons. Firstly, the proportion of 
patients in the indirect ARDS group who were actually 
obese (BMI ≥ 30 kg/m2) was low; secondly, a correlation 
analysis between BMI and distinguishing metabolites 
indicated that the value of the correlation coefficient 
was very small, albeit a significant negative correlation 
between them. However, because the number of patients 
in our study was small, it is necessary to confirm this with 
more patients in the future.

Our study shares similarities with the Metwaly study 
[9], as both compare ARDS and control groups using 
metabolomics, analyze direct and indirect ARDS, and 
present associated metabolic pathways and biomark-
ers. A significant commonality between the two studies 
is that the ARDS group in both cases was sourced from 
the sepsis network. Glycerophospholipid and tryptophan 
metabolism were consistently identified as metabolic 
pathways associated with ARDS in both studies. Addi-
tionally, the finding that the primary pathway of indirect 
ARDS is related to energy metabolism was consistent 
across both studies. However, there were several differ-
ences between the two studies. First, the metabolomics 
methodology varied; the Metwaly study employed an 

untargeted approach using 1H-NMR spectroscopy and 
GC–MS, while our study used a targeted approach with 
LC–MS/MS and GC–MS. Second, the blood sampling 
time differed. In our study, a single blood collection for 
the ARDS group occurred within 48 h after ICU admis-
sion, while the Metwaly study collected samples on ICU 
admission day 1 and tracked them temporally in some 
recovered patients. Third, the study controls were dis-
tinct; the Metwaly study used ICU-ventilated patients 
unrelated to lung diseases as controls, while our study’s 
controls were subjects who visited medical institu-
tions for health checkups without acute disease or chest 
radiography abnormalities. Lastly, the ARDS patient 
characteristics varied. Our study’s patients were older, 
predominantly male, had higher severity at ICU admis-
sion, and experienced higher 28-day mortality than those 
in the Metwaly study. Despite these differences, both 
studies share key findings: ARDS is metabolically distinct 
compared to the control group, and ARDS subpheno-
types exhibit clear differences.

Our results align with a recent study by Alipanah-Lech-
ner et  al. [53], which differentiated ARDS into hyperin-
flammatory and hypoinflammatory subtypes. This study, 
like Metwaly’s [9], focused on sepsis patients with ARDS, 
making its patient group quite similar to ours. The hyper-
inflammatory and hypoinflammatory subtypes in their 
study closely resembled the indirect and direct ARDS 
subphenotypes in our research. Patients with hyperin-
flammatory ARDS exhibited significantly lower plasma 
lipid concentrations and increased levels of glycolytic 
metabolites, such as lactate and pyruvate, compared to 
those with hypoinflammatory ARDS. Similarly, in our 
study, patients with indirect ARDS had lower lipid levels 
(primarily very long-chain fatty acids, lysophosphatidyl-
cholines, and some sphingomyelins) and higher levels of 
glycolytic metabolism. Our findings also revealed that the 
primary metabolic pathways involved in indirect ARDS 
were glycolysis/gluconeogenesis metabolism and pyru-
vate metabolism, which supports this observation. These 
overlaps between the results of the two studies suggest 
that the clinically different ARDS subphenotypes are con-
sistent with metabolically distinct subtypes.

The present study had several limitations. First, we col-
lected a sample only at one time point, at ICU admission. 
The serial change patterns of metabolites are related to 
the prognosis of ARDS [9], but we could not confirm this. 
Second, although blood samples were taken as early as 
possible on the first day of diagnosis, there could be dif-
ferences between the onset of disease and time of diag-
nosis. Thus, some metabolites may have been limited 
in terms of their presence in the serum. Third, since all 
of our study patients had infections, the interpretation 
of our results is limited as to whether these findings are 
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specific to ARDS. Further validation of the identified 
metabolites and pathways is required, and additional 
research on ARDS caused by non-infectious etiologies is 
necessary.

In conclusion, despite these limitations, our study dem-
onstrated a marked difference in the metabolic pattern 
between sepsis-induced ARDS and non-ARDS controls. 
We also identified that direct ARDS and indirect ARDS are 
metabolically distinct subphenotypes. In particular, lysoPC 
(17:6), lysoPC (16:0), and lysoPC (18:0) of glycerophospho-
lipid metabolism and S1P of sphingomyelin metabolism 
demonstrated potential as important markers for subphe-
notype distinction. This study provides a basis for further 
research into the development of theranostics based on 
these metabolites.
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