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Abstract 

Background Identifying patterns within ICU medication regimens may help artificial intelligence algorithms to 
better predict patient outcomes; however, machine learning methods incorporating medications require further 
development, including standardized terminology. The Common Data Model for Intensive Care Unit (ICU) Medica-
tions (CDM-ICURx) may provide important infrastructure to clinicians and researchers to support artificial intelligence 
analysis of medication-related outcomes and healthcare costs. Using an unsupervised cluster analysis approach in 
combination with this common data model, the objective of this evaluation was to identify novel patterns of medi-
cation clusters (termed ‘pharmacophenotypes’) correlated with ICU adverse events (e.g., fluid overload) and patient-
centered outcomes (e.g., mortality).

Methods This was a retrospective, observational cohort study of 991 critically ill adults. To identify pharmacopheno-
types, unsupervised machine learning analysis with automated feature learning using restricted Boltzmann machine 
and hierarchical clustering was performed on the medication administration records of each patient during the first 
24 h of their ICU stay. Hierarchical agglomerative clustering was applied to identify unique patient clusters. Distribu-
tions of medications across pharmacophenotypes were described, and differences among patient clusters were 
compared using signed rank tests and Fisher’s exact tests, as appropriate.

Results A total of 30,550 medication orders for the 991 patients were analyzed; five unique patient clusters and 
six unique pharmacophenotypes were identified. For patient outcomes, compared to patients in Clusters 1 and 3, 
patients in Cluster 5 had a significantly shorter duration of mechanical ventilation and ICU length of stay (p < 0.05); for 
medications, Cluster 5 had a higher distribution of Pharmacophenotype 1 and a smaller distribution of Pharmacoph-
enotype 2, compared to Clusters 1 and 3. For outcomes, patients in Cluster 2, despite having the highest severity of 
illness and greatest medication regimen complexity, had the lowest overall mortality; for medications, Cluster 2 also 
had a comparably higher distribution of Pharmacophenotype 6.

Conclusion The results of this evaluation suggest that patterns among patient clusters and medication regimens 
may be observed using empiric methods of unsupervised machine learning in combination with a common data 
model. These results have potential because while phenotyping approaches have been used to classify heterogenous 
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syndromes in critical illness to better define treatment response, the entire medication administration record has not 
been incorporated in those analyses. Applying knowledge of these patterns at the bedside requires further algorithm 
development and clinical application but may have the future potential to be leveraged in guiding medication-
related decision making to improve treatment outcomes.

Keywords Machine learning, Unsupervised learning, Cluster analysis, Intensive care unit, Critical care, Medications, 
Outcomes

Introduction
With over 20,000 Federal Food and Drug Administra-
tion-approved medication products that can be ordered 
and administered in a myriad of different ways, the medi-
cation regimens of critically ill patients have a nearly infi-
nite number of permutations [1, 2]. Because adverse drug 
events occur more frequently in intensive care unit (ICU) 
than non-ICU patients and confer significantly increased 
mortality risks in the form of ICU complications, man-
agement of these complex medication regimens is essen-
tial to optimizing ICU patient safety and outcomes [3, 4].

Efforts to characterize the heterogeneous nature of ICU 
medication regimens and how these medications act in 
concert with each other and in the context of critical ill-
ness have only just begun [5–9]. Medication regimen het-
erogeneity parallels the challenging disease heterogeneity 
of critical illness [10, 11]. Phenotyping is a novel concept 
starting to be used to characterize between-patient het-
erogeneity for common ICU conditions like sepsis/shock 
and acute respiratory distress syndrome (ARDS) [12–19]. 
Phenotyping using machine learning has demonstrated 
the potential to be a powerful methodology to handle 
Big Data generated by critically ill patients for phenotype 
delineation and prediction of adverse events [12–19], and 
identifying these sub-patterns within well-known (but 
often poorly mechanized) disease states has shown treat-
ment specific responses patterns not previously appreci-
ated in large-scale studies using traditional methodology 
[20–23]. The application of a phenotypic approach to 
ICU medication use may reveal novel response patterns 
that can be applied to improve medication safety and effi-
cacy: for example, while certain combinations of medi-
cations are widely recognized to be associated with ICU 
complications (e.g., opioids and benzodiazepines with 
mechanical ventilation duration), a possibility exists that 
combinations of medications not commonly recognized 
by the clinical eye have a similar risk profile. However, 
the associated methodology and common data model 
infrastructure have not been previously developed for 
this type of exploration.

A significant challenge facing the use of artificial intel-
ligence to explore ICU medication use is the lack of 
common data models to both standardize ontology and 
assist machines in interpreting medication orders and the 

nuances of this therapy. Existing common data models 
oversimplify the complex, high-risk nature of ICU medi-
cations that results in potentially life-threatening adverse 
drug events affecting 1.5 million critically ill adults in the 
USA annually [4, 24, 25]. The absence of a specific com-
mon data model for ICU medications prohibits the ability 
to interrogate electronic health records (EHRs) to predict 
and prevent such adverse drug events. For example, the 
antibiotic cefepime might be ordered as cefepime 2  g 
every 12 h or cefepime 1 g every 24 h. While these dosing 
schema are different, the adverse effect profile (includ-
ing allergy risk) is likely the same for both. Moreover, 
renal function plays an important role for interpreting 
ICU drug dose and frequency. While cefepime is typi-
cally dosed at 2 g every 12 h, in renal failure it is dosed 
1 g every 24 h unless renal failure is being support with 
continuous renal replacement therapy (CRRT) when the 
usual cefepime dose increases to 2 g every 8 h. Without 
knowing a patient’s renal function and use of CRRT, it 
is not possible to know if cefepime 1 g every 24 h regi-
men is appropriate or an underdose in the magnitude of 
4-to-6-fold, which could result in a potentially fatal con-
dition of under-treated sepsis. Notably, this type of error 
would be difficult to catch with traditional dose-checking 
software, as both are acceptable dosing schema by drug 
library standards.

The objective of this study was to explore the pres-
ence of novel medication patterns (termed ‘pharma-
cophenotypes’) correlated with ICU adverse events and 
patient-centered outcomes in critically ill adults using an 
unsupervised learning approach that employed an ICU 
medication focused common data model.

Methods
Study sample
The study cohort included patients ≥ 18  years old who 
were admitted ≥ 24 h to a medical, surgical, neuroscience, 
cardiac, or burn ICU at the University of North Carolina 
Health System between October 2015 and October 2020. 
Only a patient’s index ICU admission was used for the 
analysis, and patients with restrictions to care (e.g., com-
fort care) in the first 24 h were excluded. Study patients 
were identified through the University of North Carolina 
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Health System EHR system (Epic Systems, Verona, WI). 
All de-identified patient information was extracted from 
the Carolina Data Warehouse by a trained in-house data 
analyst. The institutional review board at The University 
of Georgia approved this study and included a waiver of 
consent (PROJECT00002652).

The EHR was queried for patient demographics, medi-
cation administration record (MAR) information, and 
patient outcomes, including common ICU complica-
tions. Patient demographics consisted of age, sex, admis-
sion diagnosis, ICU type, Acute Physiology and Chronic 
Health Evaluation II (APACHE II) score at 24  h, and 
medication regimen complexity-intensive care unit 
(MRC-ICU) score at 24 h. MRC-ICU is a previously vali-
dated score that quantifies the complexity of prescribed 
medications in the ICU and was included in this analysis 
as a means of summarizing high-risk, narrow therapeu-
tic index medications commonly associated with need for 
increased monitoring as well as ICU complications [1, 6–
8, 26–31]. MAR information included drug, dose, route, 
duration, and timing of administration in the first 24  h 
of the ICU stay. Patient outcomes included mortality, 
hospital length of stay, delirium occurrence (defined by 
Confusion Assessment Method for the ICU [CAM-ICU] 
positive score), duration of mechanical ventilation, dura-
tion of vasopressor use, and acute kidney injury (defined 
by the presence of renal replacement therapy or a serum 
creatinine greater than 1.5 times baseline).  For each 
patient, a binary value of 1 was assigned to indicate that 
the patient received a particular drug order, which con-
sisted of drug, dose, strength, and formulation/route. For 
patient outcomes, the labels for categorical features were 
relabeled as numeric values. In the cases of unknown or 
missing entities, they were counted as absences.

Unsupervised learning approach
Medication clustering
To identify medication clusters (or pharmacopheno-
types), principal component analysis was first performed 
on the processed, high-dimensional, binary medication 
dataset. Principal component analysis is a dimensional-
ity-reduction technique that transforms high-dimension 
datasets into lower-dimension while retaining their prop-
erties [32]. Principal component analysis can increase the 
interpretability of the data by creating new variables to 
maximize variance. Every 600 unique medications were 
considered an independent variable, and the optimal 
number of principal components was chosen after visual-
izing the explained variance against principal component 
numbers. In this regard, 150 was selected for the number 
of principal components to maintain a sufficient amount 
of variance (more than 70%) in the data while reducing 
the dimensionality by a quarter.

The restricted Boltzmann machine was then employed 
to enrich the latent feature space using a hierarchical 
clustering algorithm input to generate automated fea-
tures, which can support pharmacophenotype evalu-
ation.  Restricted Boltzmann machine is a generative 
two-layered neural network with one hidden layer and 
one visible layer [33]. This undirected model aims to 
discover the joint probability distribution, which can 
maximize the log-likelihood function to learn the com-
plex internal representations of input variables [34]. For 
pharmacophenotype identification, restricted Boltzmann 
machine was used to learn the principal component 
analysis results’ unsupervised feature abstractions (or 
latent factors). In this way, restricted Boltzmann machine 
aimed to discover the relational nature of medication 
assignments based on each patient’s medication co-
occurrence. Using 5000 training epochs, restricted Boltz-
mann machine learned the activation pattern of every 
single hidden unit for clustering. Of note, every medi-
cation is considered an independent node in the visible 
layer, and connections activated to the hidden layer rep-
resent the pharmacophenotype assignment. For instance, 
if the connection of ‘Acyclovir 500  mg IVPB in 250  ml’ 
medication (from the visible layer) and Pharmacopheno-
type 2 (from the hidden layer) was activated, ‘Acyclovir 
500  mg IVPB in 250  ml’ medication would be assigned 
to Pharmacophenotype 2. After assigning medications 
(visible layer) to each pharmacophenotype (hidden layer), 
medications that were not assigned to any of the five 
pharmacophenotype (never activated to one of the five 
hidden neurons) were grouped as Pharmacophenotype 6.

Patient clustering
To cluster patients, principal component analysis was 
applied on the processed, high-dimensional, binary med-
ication dataset followed by normalization and agglom-
erative clustering.

Normalized medication cluster distribution
Since a single patient may be exposed to multiple medica-
tions over the course of their ICU stay, a frequency table 
was constructed to enumerate the count of each observa-
tion over time. This frequency table was normalized so 
that it considered the total number of medications that 
were administered to each patient and therefore generate 
a normalized pharmacophenotype distribution for each 
patient. The resulting normalized pharmacophenotype 
was used as a derived feature for the clustering of the 
patients.

Hierarchical agglomerative clustering
Hierarchical agglomerative clustering is a bottom-up 
clustering approach in which each observation is initially 
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considered a single cluster that was used for patient clus-
tering [35]. Two clusters with the highest similarity then 
merge into a new bigger cluster, and this process is iter-
ated until all observations are a member of one single 
cluster. To cluster patients using hierarchical agglomera-
tive clustering, the normalized table of pharmacopheno-
types from the previous step was used. The number of 
clusters (n = 5) was optimized through the visual inspec-
tion of the dendrogram, which illustrates the hierarchical 
relationship of the observations. Figure 1 summarizes the 
pharmacophenotype derivation workflow. Python 3.8.8 
and scikit-learn 1.1.3 library were used for the implemen-
tation of all methods.

Similarity analysis of patient clusters
After performing patient clustering with the optimal 
number of clusters, we analyzed the clusters to reveal if 
the comparison of patient outcomes with medication 
data could distinguish clinically relevant characteristics. 
Two statistical tests were performed for different char-
acteristics, Wilcoxon rank sum and signed rank tests for 
continuous characteristics and Fisher’s exact tests for cat-
egorical characteristics. Holm’s approach for adjustment 

of p values was also considered to control the familywise 
error rates for the comparisons within each outcome, and 
the significance level was assessed at p value < 0.05.

Results
The demographic features of the 991 patients included 
in the study are summarized in Table  1. The aver-
age APACHE II score was 14.3 ± 6.4, average age was 
61.2 ± 17.6, and average MRC-ICU score at 24  h was 
10.3 ± 7.7. The medical ICU (40.8%) was the most com-
mon ICU setting, and a total of 9.8% (97) died in the ICU. 
Figure 2 compares the continuous outcomes between the 
five patient clusters, and Fig.  3 compares the dichoto-
mous outcome between the five clusters.

In total, the patients received 30,550 medications dur-
ing their first 24  h in the ICU. When drug name, dose, 
strength, and formulation (e.g., amoxicillin/clavulanate 
875/125 mg tablet) were applied to this list, 543 different 
medications were used. Restricted Boltzmann machine 
assigned 152 medications to five pharmacophenotypes 
(Additional file  1: Table  S1) with a sixth pharmacoph-
enotype consisting of 391 unassigned medications (Addi-
tional file  1: Table  S2). Table  2 provides a descriptive 

Fig. 1 Pharmacophenotype derivation workflow. a Medication administration records (including drug name, dose, formulation, route, and time) 
as well as other relevant patient data are recorded in the electronic health record (EHR) system. b The MAR data was processed to indicate 0 for not 
receiving that medication and 1 for receiving that medication for each patient. c Using restricted Boltzmann machine, six pharmacophenotypes 
were generated. If the medication from the visible layer was not assigned to a hidden layer, that medication was grouped in the sixth or unassigned 
cluster. d The pharmacophenotypes are displayed in a Venn diagram describing the degree of overlap between the clusters and how the 
medications are distributed among the clusters. e The frequency of every pharmacophenotype is counted and normalized by considering the total 
medications taken by every patient during their stay. f The resulting normalized pharmacophenotype distribution of every patient was used as a 
feature in the agglomerative hierarchical clustering method to develop novel pharmacophenotypes of critically ill patients. g The Uniform Manifold 
Approximation and Projection (UMAP) for Dimension Reduction of the five patient clusters was performed. h These novel pharmacophenotypes 
were associated with unique patterns of patient outcomes. MRC-ICU – medication regimen complexity in the intensive care unit
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characterization of the six pharmacophenotypes identi-
fied. Medications in all six pharmacophenotypes were 
highly represented by presence in the MRC-ICU Score 
(range of 95.7% to 100%). The MRC-ICU Score incor-
porates a weighted system with drugs requiring more 
monitoring or oversight due to narrow therapeutic index 
having higher weights. More highly weighted drugs per 
the MRC-ICU score were present in Pharmacopheno-
type 2 with the lowest representation of higher weights in 
Pharmacophenotype 1. Generally, the medications given 
in the first 24  h of the ICU stay were associated with 
critical illness and/or an intravenous route and the use 
of a more invasive medication administration route (e.g., 
intravenous instead of oral).

Table 3 summarizes the various pair-wise comparison 
of patient outcomes by each patient cluster. Patient Clus-
ters 1, 2, and 3 had significantly different lengths of stay 
compared to Cluster 5 (with Cluster 5 having the lowest 
overall ICU length of stay). Cluster 5 also had the short-
est duration of mechanical ventilation, which was sig-
nificantly different compared to Clusters 1, 3, and 4. The 
MRC-ICU was not significantly different among any of 
the patient clusters. Mortality was lowest in Patient Clus-
ter 2 despite patients in this cluster having the highest 
relative APACHE II and MRC-ICU scores in comparison 
and a longer duration of ICU stay.

Despite similar severity of illness and medication regi-
men complexity (as measured by the APACHE II and 

Table 1 Demographic characteristics by patient cluster

Data are presented as n (%) or mean ± standard deviation (SD) unless otherwise stated

ICU intensive care unit, APACHE Acute Physiology and Chronic Health Evaluation, MRC-ICU medication regimen complexity in the ICU

Cluster (patient number) 1 (N = 304) 2 (N = 191) 3 (N = 229) 4 (N = 144) 5 (N = 123) Total (N = 991)

Age (years) 59.7 ± 17.5 63.2 ± 16.5 61.4 ± 18.3 61.1 ± 18.1 61.9 ± 17.3 61.2 ± 17.6

Sex (female) 136 (44.7) 80 (41.9) 96 (41.9) 69 (47.9) 47 (38.2) 428 (43.2)

ICU type

 Medical 111 (36.5) 70 (36.6) 104 (45.4) 54 (37.5) 65 (52.8) 404 (40.8)

 Cardiac 67 (22.0) 79 (41.4) 70 (34.5) 40 (27.8) 40 (32.5) 296 (29.9)

 Surgical 27 (8.9) 19 (9.9) 29 (12.7) 13 (9.0) 9 (7.3) 97 (9.8)

 Neurosciences 45 (14.8) 9 (4.7) 12 (5.2) 26 (18.1) 1 (0.8) 93 (9.4)

 Burn 47 (15.5) 7 (3.7) 3 (1.3) 11 (7.6) 2 (1.6) 70 (7.1)

 Other 7 (2.3) 7 (3.7) 11 (4.8) 0 (0.0) 6 (4.9) 31 (3.1)

Admission diagnosis

 Cardiovascular 63 (20.7) 71 (37.2) 47 (20.5) 32 (22.2) 31 (25.2) 244 (24.6)

 Neurology 41 (13.5) 22 (11.5) 22 (9.6) 27 (18.8) 9 (7.3) 121 (12.2)

 Pulmonary 22 (7.2) 15 (7.9) 27 (11.8) 10 (6.9) 14 (11.4) 88 (8.9)

 Sepsis/infection 17 (5.6) 8 (4.2) 26 (11.4) 8 (5.6) 16 (13.0) 75 (7.6)

 Gastrointestinal 16 (5.3) 12 (6.3) 25 (10.9) 9 (6.3) 10 (8.1) 72 (7.3)

 Neoplasm 20 (6.6) 6 (3.1) 13 (5.7) 8 (5.6) 2 (1.6) 49 (4.9)

 Trauma 15 (4.9) 10 (5.2) 14 (6.1) 6 (4.2) 4 (3.3) 49 (4.9)

 Renal 5 (1.6) 2 (1) 9 (3.9) 6 (4.2) 3 (2.4) 25 (2.5)

 Endocrine 8 (2.6) 4 (2.1) 5 (2.2) 4 (2.8) 3 (2.4) 24 (2.4)

 Other 97 (31.9) 41 (21.5) 41 (17.9) 34 (23.6) 31 (25.2) 244 (24.6)

APACHE II at 24 h 13.5 ± 6.4 15.7 ± 6.4 14.6 ± 5.9 13.3 ± 5.9 14.7 ± 7.0 14.3 ± 6.4

MRC-ICU at 24 h 9.4 ± 6.5 11.6 ± 9.4 10 ± 7.2 10.1 ± 7.0 11.2 ± 8.3 10.3 ± 7.7

Mortality 30 (9.9) 11 (5.8) 27 (11.8) 19 (13.2) 10 (8.1) 97 (9.8)

Hospital length of stay (days) 12.3 ± 20.3 14.3 ± 30.5 11.4 ± 16.2 8.6 ± 8.8 8.3 ± 7.9 11.5 ± 19.7

ICU length of stay (days) 6.2 ± 12.1 5.6 ± 9.9 4.7 ± 9.1 4.3 ± 6.3 3.6 ± 3.2 6.3 ± 14.3

Presence of delirium n (%, total) 96 (35.6, 270) 54 (29.8, 181) 78 (35.9, 217) 30 (23.8, 126) 35 (31.0, 113) 293 (32.6, 907)

Acute kidney injury n (%, total) 52 (17.2, 303) 22 (11.5, 191) 40 (17.5, 229) 26 (18.1, 144) 14 (11.5, 122) 154 (15.6, 989)

Duration of vasopressors support (days) 2.1 ± 2.1 1.4 ± 1.1 1.5 ± 0.8 2.1 ± 1.7 1.2 ± 0.5 1.7 ± 1.4

Presence of mechanical ventilation 91 (29.9) 83 (43.5) 60 (26.2) 37 (25.7) 41 (33.3) 312 (31.5)

Duration of mechanical ventilation (days) 9.1 ± 19.3 5.1 ± 11.5 3.4 ± 4.6 5.8 ± 10.2 2.1 ± 3.1 5.6 ± 12.9

Presence of fluid overload (%, total) 47 (17.9, 262) 26 (15.0, 173) 37 (18.9, 197) 19 (15.3, 124) 23 (22.1, 104) 158 (18.4, 860)
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MRC-ICU, respectively), patient outcomes varied among 
the pharmacophenotypes. These are depicted in the radar 
plot of Fig. 4, which organizes both pharmacophenotypes 
and patient outcomes by each patient cluster. Patient 
Cluster 4 has a well-rounded distribution of all pharma-
cophenotypes compared to other patient clusters. In con-
trast, Patient Cluster 2 has a notably high distribution in 
Pharmacophenotype 6. Patient Cluster 5 had about half 

the ICU length of stay of Patient Cluster 1: here, Patient 
Cluster 1 had nearly double the distributions of Pharma-
cophenotypes 1 and 3, and Patient Cluster 5 had more 
exposure to Pharmacophenotype 5. Patient Clusters 1 
and 2 had similar distributions of Pharmacophenotype 6 
but less of Pharmacophenotypes 2 and 4 comparatively, 
with a significantly lower duration of mechanical ventila-
tion compared to other clusters.

Fig. 2 Boxplots of different patient outcomes for patient clusters. a MRC-ICU score evaluated 24 h after ICU admission. b APACHE II score evaluated 
24 h after ICU admission. c Total days of vasopressor support. d Total days of mechanical ventilation. e Total days of ICU admission. For panels d and 
e, outlier records were omitted to improve the visibility of the distribution. ICU—intensive care unit; APACHE—Acute Physiology and Chronic Health 
Evaluation; MRC-ICU—medication regimen complexity in the ICU
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Discussion
In the first unsupervised machine learning analysis of 
the entire medication administration record in the first 
24  h of an ICU stay, six pharmacophenotypes were 
identified that had varying distributions across five 
unique patient clusters. These patient clusters had sig-
nificantly different patterns in terms of patient-centered 
outcomes and ICU-related complications. This study 
is the first to apply artificial intelligence to complete 
medication administration data enhanced with a ICU 
medication-specific common data model; these meth-
ods demonstrated the ability to categorize patients by 
outcomes and may serve as a foundation for the future 
use of artificial intelligence in the ICU.

Critically ill patients are known for their diagnostic and 
medical complexity, which directly results in the use of 
more complex medication regimens. Computating these 
complex, heterogenous ICU medication regimens that 
can guide clinical-decision making has notable paral-
lels to the management of heterogenous syndromes like 
ARDS and sepsis [12–19]. The concept of phenotyping 
and using artificial intelligence methods to drive that 
phenotyping process has gained traction for its ability 
to parse this heterogeneity into more meaningful sub-
groups (i.e., phenotypes) that appear to have unique pat-
terns in treatment response [20–23]. Indeed, previously 
‘negative’ ARDS trials have shown that one phenotype 
did have mortality benefit [20, 21]. Our methodology 

Fig. 3 Stacked bar plots of different categorical patient outcomes for patient clusters. a Death proportion. b Acute kidney injury (AKI) presence 
proportion c Delirium presence proportion. d Mechanical ventilation presence proportion. Patients with unreported or unknown outcomes were 
omitted from the analysis
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applied an unsupervised feature learning approach with 
restricted Boltzmann machine, in combination with a 
common data model, to identify six pharmacopheno-
types. The distribution patterns among these pharma-
cophenotypes were different across the identified patient 

clusters. Notably, in this analysis of the first 24 h of the 
medication regimens, almost every medication in the 
pharmacophenotypes identified is captured by the MRC-
ICU Scoring Tool, a clinician designed tool intended to 
capture complex, high-risk medications that require 

Table 3 Descriptive characterization of pharmacophenotypes by medication class

Data are displayed as n (%) or mean (SD) unless otherwise stated

MRC-ICU medical regimen complexity in the intensive care unit, COPD chronic obstructive pulmonary disease, TPN total parenteral nutrition

1 2 3 4 5 6

MRC-ICU drugs 36 (97.3) 33 (100.0) 45 (95.7) 35 (100.0) 44 (95.7) 391 (97.3)

Average weight value of MRC-ICU drugs 1.2 (0.6) 1.4 (0.7) 1.3 (0.7) 1.4 (0.7) 1.2 (0.6) 1.3 (0.7)

MRC-ICU weight of 1 29 (78.4) 22 (66.7) 32 (68.1) 25 (71.4) 33 (71.7) 288 (71.6)

MRC-ICU weight of 2 3 (8.11) 7 (21.2) 9 (19.1) 5 (14.3) 7 (15.2) 61 (15.2)

MRC-ICU weight of 3 3 (8.1) 3 (9.1) 4 (8.5) 5 (14.3) 2 (4.3) 36 (9.0)

Analgesic 5 (13.5) 4 (12.1) 6 (12.8) 4 (11.4) 4 (8.7) 49 (12.2)

Antiarrhythmics 1 (2.7) 2 (6.1) 2 (4.2) 1 (2.9) 0 (0) 18 (4.5)

Antibiotic 9 (24.3) 4 (12.1) 11 (23.4) 9 (25.7) 13 (28.3) 98 (24.3)

Anticoagulant 3 (8.1) 0 (0) 3 (6.4) 2 (5.7) 2 (4.3) 36 (8.9)

Anticonvulsants 0 (0) 0 (0) 1 (2.1) 3 (8.6) 1 (2.2) 8 (2.0)

Antidotes/rescue 2 (5.4) 0 (0) 0 (0) 0 (0) 0 (0) 4 (1.0)

Antifungal agents 0 (0) 1 (3.0) 1 (2.1) 1 (2.9) 2 (4.3) 7 (1.7)

Antihypertensive 2 (5.4) 2 (6.1) 0 (0) 1 (2.9) 2 (4.3) 7 (1.7)

Antiplatelet 0 (0) 0 (0) 0 (0) 0 (0) 1 (2.2) 1 (0.2)

Antiprotozoal agent 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (0.5)

Antipsychotic 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.2)

Antiviral agent 0 (0) 2 (6.1) 1 (2.1) 0 (0) 0 (0) 12 (3.0)

COPD/asthma 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (0.5)

Chemotherapy 2 (5.4) 1 (3.0) 0 (0) 0 (0) 0 (0) 2 (0.5)

Diabetic agent 1 (2.7) 1 (3.0) 0 (0) 1 (2.9) 1 (2.2) 14 (3.5)

Diuretic 0 (0) 0 (0) 0 (0) 0 (0) 1 (2.2) 3 (0.7)

Factor product 0 (0) 0 (0) 1 (2.1) 0 (0) 0 (0) 0 (0)

Fluids 4 (10.8) 1 (3.0) 4 (8.5) 1 (2.9) 0 (0) 21 (5.2)

Gastrointestinal 0 (0) 2 (6.1) 3 (6.4) 1 (2.9) 4 (8.7) 14 (3.5)

Gastric agents 1 (2.7) 1 (3.0) 1 (2.1) 1 (2.9) 1 (2.2) 11 (2.7)

Hypertonic saline 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 4 (1.0)

Immunosuppressant 0 (0) 1 (3.0) 1 (2.1) 0 (0) 4 (8.7) 9 (2.2)

Intropic agent 0 (0) 1 (3.0) 0 (0) 0 (0) 0 (0) 0 (0)

Laxative 0 (0) 0 (0) 1 (2.1) 0 (0) 0 (0) 2 (0.5)

Neuromuscular blocking agent 0 (0) 2 (6.1) 2 (4.2) 0 (0) 0 (0) 11 (2.7)

Opioid reversal 0 (0) 0 (0) 1 (2.1) 1 (2.9) 0 (0) 1 (0.2)

Sedative agents 1 (2.7) 5 (15.1) 4 (8.5) 4 (11.4) 3 (6.5) 27 (6.7)

Somatostatic agents 1 (2.7) 0 (0) 0 (0) 0 (0) 0 (0) 4 (1.0)

TPN 0 (0) 0 (0) 0 (0) 0 (0) 1 (2.2) 3 (0.7)

Vasoactive agent 0 (0) 1 (3.0) 0 (0) 0 (0) 1 (2.2) 2 (0.5)

Vasodilator 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.2)

Vasopressor 5 (13.5) 2 (6.1) 3 (6.4) 5 (14.3) 5 (10.9) 28 (6.9)

Drug indicates critical illness (always) 12 (32.4) 13 (39.4) 7 (14.9) 11 (31.4) 11 (23.9) 91 (22.6)

Drug indicates critical illness (maybe) 17 (45.9) 11 (33.3) 22 (46.8) 17 (48.6) 21 (45.7) 189 (47.0)

Intravenous route 27 (73.0) 22 (66.7) 29 (61.7) 25 (71.4) 30 (65.2) 253 (62.9)

Route escalation 20 (54.1) 17 (51.6) 20 (42.6) 23 (65.7) 12 (26.1) 182 (45.3)
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specialized monitoring and oversight for safe and appro-
priate use [1, 7–9, 36]. Interestingly, Patient Cluster 2 had 
the lowest mortality despite the highest relative severity 
of illness and highest MRC-ICU score. Though causal 
inference is limited by the present study design, a poten-
tial hypothesis is that within the extremes of critical ill-
ness (i.e., high APACHE II scores), there are patients that 
are highly likely to benefit from ‘complex’ medication 
therapy (e.g., multi-drug-resistant septic shock requir-
ing multiple broad-spectrum antibiotics and combina-
tion vasoactive drug therapy) while another category of 
patients either requires non-medication therapy (e.g., 
surgical intervention) or is approaching of end-of-life 
that is beyond the scope of available interventions. As 
such, within the high APACHE II score strata, there are 
patients more and less likely to benefit from high inten-
sity medication therapy. Though these examples are 
potentially visible to the clinician eye without the need 
for artificial intelligence based alerts, subtleties of pres-
entation captured by such a tool may guide a clinician’s 
decision-making.

The novel methodologies in the present study show 
early promise in the ability to cluster illness severity 
(e.g., APACHE II) with required ICU interventions (e.g., 
mechanical ventilation, complex medication regimens), 
and outcomes (e.g., mortality). Though beyond the scope 
of this analysis, these findings may serve as a founda-
tion for prediction of ICU complications that could be 
prevented with timely intervention by incorporating 

medication-related data. While existing software to 
improve medication safety has improved tremendously 
with regard to dose checking and drug-drug interaction 
identification, nuanced analysis of risks and benefits of 
‘reasonable’ drug combinations remains out of the range 
of present day software. For example, the use of hydro-
morphone and midazolam within commonly prescribed 
dosing ranges would not be captured as a ‘medication 
error’ and is often a clinically reasonable combination; 
however, in certain situations based on patient-specific 
factors, this combination may result in a unpalatably high 
risk of oversedation and need for emergent intubation 
that causes the clinician to consider alternative agents. 
Thus, the future of this type of analysis may be alerts 
based on potential risks that support clinical decision-
making as it relates to risk–benefit of each medication-
related decision.

Artificial intelligence requires a validated common 
data model to improve outcomes in critically ill patients, 
and thus, a major goal of the data science community 
has been to harmonize and standardize the substantial 
amount of data in the EHR [37, 38]. Machine-readable, 
standardized common data models facilitate reproduc-
ibility and generalizability across datasets, so without 
their incorporation in AI efforts, the reproducibility and 
external validity of these efforts may be limited [39]. The 
importance of common data model development and 
use was internationally-recognized with the publica-
tion of the FAIR Guiding Principles, which are intended 

Fig. 4 Radar charts of pharmacophenotypes and patient outcome distribution. a Radar chart of the mean pharmacophenotype distribution for 
different patient clusters. b Radar chart of the mean clinical outcomes for different patient clusters. The further the mean value toward the edge of 
each axis, the more severe the outcome. Thus, Patient Cluster 5 relatively has the least serious outcomes, while Patient Clusters 1 and 4 have more 
severe outcomes. AKI—acute kidney injury; ICU—intensive care unit; MRC-ICU—medication regimen complexity in the ICU; MV—mechanical 
ventilation
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to steward patient data to be Findable, Accessible, 
Interoperable, and Reusable [40]. Through efforts such 
as the Observational Medical Outcomes Partnership 
(OMOP) Common Data Model and RxNorm, applica-
tion of these principles to vast amounts of data gener-
ated by ICU patients has begun, though ICU medication 
data has remained largely untouched, which is a gap 
given the important relationship between ICU medica-
tions and ICU outcomes [25, 39, 41, 42]. When optimiz-
ing ICU medication management to improve outcomes, 
clinicians apply nuanced ICU medication knowledge 
to balance medication benefits with known risks on a 
patient-specific basis [43]. Key medication features in 
this complex clinical decision-making process include 
synergistic mechanisms of action, additive adverse drug 
event risk (side effect profiles often overlap), and the 
effects of critical illness on pharmacokinetic parameters 
and pharmacodynamic response [43]. Thus, existing drug 
terminology focused only on standardizing drug prod-
ucts across databases are limited by the degree of contex-
tualization that they may provide to learning algorithms. 
Artificial intelligence can improve patient-centered out-
comes by predicting adverse drug event risks and iden-
tifying optimal medication interventions [44]; however, 
current common data models that support artificial intel-
ligence include only basic features (e.g., drug, dose, route) 
and fail to capture many clinically relevant medications 
features necessary for clinician decision-making [24, 45]. 
As such, this analysis marks a significant first step in the 
exploration of the application of common data models 
incorporating clinical features and appropriate contextu-
alization to the ICU medication space.

Our study has several limitations. The present approach 
included a diverse range of ICUs (with their associated 
admission diagnoses); however, medication regimens 
are generally tailored to individual disease states. As 
such, the possibility exists that the granularity of evalu-
ating pharmacophenotypes in specific disease states 
(e.g., ARDS) may reveal more distinct patterns. Future 

analyses may benefit from Charlson Comorbidity Index 
or other comorbidity inclusion, as these have the poten-
tial to influence medication therapy. Despite our assump-
tion of homogeneity across medication regimens, and the 
use of a clustering approach with limited expressiveness, 
such as restricted Boltzmann machine, the reality may 
be that these relationships are highly intricate and have a 
noisy interplay. The learned representations in restricted 
Boltzmann machines are often difficult to interpret, 
which can make it challenging to gain insights into the 
underlying structure of the data [46]. Therefore, we 
seek to use variational autoencoders in future studies to 
increase the ability to capture more complex patterns and 
interoperability of the workflow. Moreover, expanding 
future analysis to include timepoints beyond for medica-
tion therapy beyond 24 h is warranted. Finally, the obser-
vational nature of this study precludes causal inference 
between medications and outcomes, and future analysis 
will be required to biologically link these observations in 
a way that reduces the ‘black box effect’ of artificial intel-
ligence for the end-user. Even with these limitations, this 
analysis marks the first time the complete medication 
profile interpreted via a common data model has been 
conducted for ICU patient outcomes.

Conclusion
The complexity of medication regimens for critically 
ill patients may be better understood by the applica-
tion of pharmacophenotypes. Further exploration of 
the intertwined relationship among disease, medication 
treatment, medical intervention, and patient-centered 
outcomes, the use of unsupervised learning methods, 
particularly via the support of common data models, 
warrants further investigation.
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