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Abstract 

Background  Pulse pressure variation (PPV) has been widely used in hemodynamic assessment. Nevertheless, PPV is 
limited in low tidal volume ventilation. We conducted this systematic review and meta-analysis to evaluate whether 
the tidal volume challenge (TVC) could improve the feasibility of PPV in patients ventilated at low tidal volumes.

Methods  PubMed, Embase and Cochrane Library inception to October 2022 were screened for diagnostic researches 
relevant to the predictability of PPV change after TVC in low tidal volume ventilatory patients. Summary receiving 
operating characteristic curve (SROC), pooled sensitivity and specificity were calculated. Subgroup analyses were 
conducted for possible influential factors of TVC.

Results  Ten studies with a total of 429 patients and 457 measurements were included for analysis. The predictive 
performance of PPV was significantly lower than PPV change after TVC in low tidal volume, with mean area under the 
receiving operating characteristic curve (AUROC) of 0.69 ± 0.13 versus 0.89 ± 0.10. The SROC of PPV change yielded 
an area under the curve of 0.96 (95% CI 0.94, 0.97), with overall pooled sensitivity and specificity of 0.92 (95% CI 0.83, 
0.96) and 0.88 (95% CI 0.76, 0.94). Mean and median cutoff value of the absolute change of PPV (△PPV) were 2.4% 
and 2%, and that of the percentage change of PPV (△PPV%) were 25% and 22.5%. SROC of PPV change in ICU group, 
supine or semi-recumbent position group, lung compliance less than 30 cm H2O group, moderate positive end-
expiratory pressure (PEEP) group and measurements devices without transpulmonary thermodilution group yielded 
0.95 (95%0.93, 0.97), 0.95 (95% CI 0.92, 0.96), 0.96 (95% CI 0.94, 0.97), 0.95 (95% CI 0.93, 0.97) and 0.94 (95% CI 0.92, 0.96) 
separately. The lowest AUROCs of PPV change were 0.59 (95% CI 0.31, 0.88) in prone position and 0.73 (95% CI 0.60, 
0.84) in patients with spontaneous breathing activity.

Conclusions  TVC is capable to help PPV overcome limitations in low tidal volume ventilation, wherever in ICU or 
surgery. The accuracy of TVC is not influenced by reduced lung compliance, moderate PEEP and measurement tools, 
but TVC should be cautious applied in prone position and patients with spontaneous breathing activity.

Trial registration PROSPERO (CRD42022368496). Registered on 30 October 2022.
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Introduction
Fluid administration remains the first-line therapy wher-
ever in ICU or operation room (OR). Both fluid overload 
and insufficient could cause deleterious effects, such as 
pulmonary edema, tissue hypoperfusion [1, 2]. However, 
only half of the patients are fluid responsiveness in clini-
cal work [3].

Dynamic indices derived from arterial wave change, 
based on heart–lung interaction during mechanical ven-
tilation, such as pulse pressure variation (PPV) or stroke 
volume variation (SVV), are proven to be superior than 
static indices [4, 5]. Among these indices, PPV is more 
reliable, quickly accessible from bedside and more exten-
sively studied, and has been widely used in critically ill 
patients [4, 6]. However, since mechanical ventilation 
can trigger cardiac preload change in periodicity, in the 
condition of no arrhythmias and closed thoracic cavity, 
low tidal volumes are insufficient to produce significant 
change in thoracic pressure, so is the preload. This would 
add false negative results in fluid responsive patients, 
making PPV and other dynamic hemodynamic indices 
inaccurate [7–9]. It has been reported that PPV is reli-
able when tidal volume at least 8  ml/kg predicted body 
weight (PBW) [7]. But nowadays, low tidal volume ven-
tilatory strategy (usually 6  ml/kg), improving outcomes 
and reducing pulmonary complications, has been widely 
used in ICU or general anesthesia surgery patients [10–
12], which further restricts the application of PPV.

The concept of tidal volume challenge (TVC) was pro-
posed to solve the dilemma for PPV in a concise man-
ner [13]. The procedure of TVC is to adjust volume tidal 
from 6 (PBW) to 8 ml/kg (PBW) and obtains the increas-
ing preload dependence of right ventricle and decreases 
the venous return, which cause patients more fluid 
responsive [13]. Many recent studies reported the change 
of PPV after TVC, including the absolute or percentage 
change of PPV (△PPV or △PPV%), in the assessment 
of fluid responsiveness in low tidal volume ventilation 
patients [14–23]. However, the results were conflict-
ing and a recent meta-analysis of TVC only included 3 
original studies in the early years [8]. Besides, except low 
tidal volume, some factors that would possibly influence 
intrathoracic pressure were existed in these study set-
tings, such as position [24], lung compliance [25] or posi-
tive end-expiratory pressure (PEEP) [26].

We conducted this systematic review and meta-analy-
sis to assess the ability of TVC to help PPV overcome the 
limitation in low tidal volume ventilation patients, and 
explore whether the factors influencing intra-thoracic 
pressure or other factors could possibly influence the 
accuracy of TVC.

Material and methods
This meta-analysis was conducted according to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses guidelines [27].

Registration and protocol
This meta-analysis was registered on PROSPERO 
(CRD42022368496).

Search strategy
Two authors independently searched relevant studies 
up to October 2022 in PubMed, Embase and Cochrane 
Library with the following terms and their combina-
tion: “tidal volume challenge” AND “pulse pressure vari-
ation” AND (“low tidal” OR” low tidal ventilation” OR 
“protective ventilation”) AND (“fluid responsiveness” OR 
“volume responsiveness”). All scanned abstracts, stud-
ies and citations were reviewed. If discrepancy existed, it 
was solved by the third arbitration. Moreover, references 
of the retrieved manuscripts were also manually cross-
searched for further relevant publications.

Selection criteria
The inclusion criteria were as follows (according to 
PICO):

S (study design): diagnostic experiments of TVC in 
fluid responsive assessment in low tidal volume ventila-
tion patients.

P (patients): adult patients under low tidal volume ven-
tilation in ICU or OR.

I (interventions):change of PPV after TVC; TVC in the 
studies was defined as adjusting tidal volume from 6 to 
8 ml/kg, and the measurements are performed one min-
ute after TVC; △PPV defined as PPVvt8-PPVvt6 and 
△PPV% defined as (PPVvt8-PPVvt6)/ PPVvt6. The con-
cepts of TVC and PPV change are presented in Fig. 1.

C (controls): fluid responsiveness assessment was per-
formed with fluid challenge or response to PLR or its 
surrogates.

O (outcomes): the ability of TVC to improve the feasi-
bility of PPV in low tidal volume ventilation.

(6) Others: studies published with full-text in any lan-
guage; studies providing sufficient data for constructing 
2-by-2 tables, including true positive (TP), false positive 
(FP), true negative (TN) and false negative (FN) [28].

We excluded those studies as follows: (1) studies with 
patients under normal or high tidal volume ventilation; 
(2) studies that used the same population or overlapping 
database; (3) studies without mechanically ventilation or 
spontaneously breathing patients; (4) animal studies; (5) 
studies on ventilated children.
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Date extraction and quality assessment
Two authors independently browsed the research indi-
cators of the included studies. Extracted data included 
three parts: (1) basic information about the research such 
as the number of patients, study year and places, study 
indicators, measurement tools and ventilation settings; 
(2) the statistical results, including sensitivity, specificity, 
AUROC of the change of PPV and cutoff value; (3) dis-
crepancies among studies that could be the heterogene-
ity or potential factors that could influence the degree of 
preload change caused by TVC, such as patients, posi-
tion, lung compliance, ventilator settings, measurement 
tools.

Two investigators independently assessed the included 
studies by Diagnostic Accuracy Studies-2 (QUADAS-2) 
recommended by the Cochrane Handbook [29]. The 
QUADAS-2 tool consists of four domains: patient selec-
tion, index test, reference standard and flow and timing. 
All domains were evaluated in terms of risk of bias and 
would be answered as “yes,” “no” and “unclear.” “Unclear” 
was defined if the original study failed to provide ade-
quate information that the authors had difficulty to judge. 
The risk could be defined as low under the circumstance 
of a consistency of “yes.” Quality assessment was per-
formed by RevMan software 5.3.

Statistical analysis
The bivariate mixed-effects regression model was per-
formed in data synthesis to incorporate the negative cor-
relation, which might arise between the sensitivity and 
specificity [30, 31]. We estimated overall pooling of sen-
sitivity, specificity and diagnostic odds ratio (DOR) with 
95% confidence interval (CI) using a bivariate random-
effects model. Summary receiver operating characteristic 
curve (SROC) was potted and the area under the sum-
mary receiver operating characteristic curve (AUSROC) 
was calculated by Rutter and Gatsonis test [32]. Opera-
tive performance quality was graduated according to 
Fisher et al [33]. Diagnostic power was outstanding if the 
AUROC was more than 0.9 and was poor if the AUROC 
was less than 0.7 [34].The cutoff values of PPV change 

were performed in the scatter plot to observe the distri-
bution, dispersion, central tendency and extremum.

Heterogeneity between studies was quantitatively 
assessed by the Chi-square test and Cochran’s Q test. P 
value for Q test < 0.1 or I2 > 50% was considered exist-
ing significant heterogeneity. Heterogeneity caused by 
the threshold effect in the diagnostic test was calculated 
in the Spearman correlation coefficient, which was esti-
mated by the Moses–Shapiro–Littenberg [35]. If corre-
lation coefficient was 1, which means the proportion of 
heterogeneity likely due to threshold effect was 100%, 
meta-regression was unnecessary [36]. Other methods, 
such as rule out one single study one by one to find het-
erogeneity sources, were also conducted.

Subgroup analysis was conducted according to factors 
which could possibly affecting intrathoracic pressure and 
the predictability of TVC. Since patients in ICU are more 
complicated, and the results of TVC in ICU were contra-
dictory, we conducted ICU groups. We also conducted 
subgroup analysis including supine or semi-recumbent 
group, lung compliance < 30 cm H2O group, moder-
ate PEEP group (5 cm H2O ≤ PEEP ≤ 15 cm H2O) and 
measurement tools without TPTD group. Spontaneous 
breathing subgroup was also observed. Since some stud-
ies included both △PPV and △PPV%, the primary and 
more accurate indicator was calculated when in analysis. 
Diagnostic accuracy parameters between groups were 
compared using the likelihood ratio Chi-square test if 
necessary.

Public bias was estimated by Deek’s funnel plot asym-
metry test, with P < 0.1 indicating statistical significance 
[37].

The description of data was expressed as mean (95% 
CI) or as mean ± standard deviation. Meta-analysis was 
performed by Stata 15. 0 (StataCorp, College Station, TX) 
with the Midas module. A two-tailed P < 0.05 was consid-
ered statistically significant.

Fig. 1  Concept of TVC and PPV change. TVC tidal volume challenge, △PPV absolute change of pulse pressure variation, △PPV% percentage 
change of pulse pressure variation, Vt tidal volume, T1 measurement time point before TVC, T2 measurement time point after the TVC 
start, PBW predicted body weight
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Results
Characteristics of included studies
Our meta-analysis yielded 834 primary studies after ini-
tially screened; 735 studies were excluded because of 
obviously irrelevant and duplicates. In the remaining 99 
studies, full-text manuscripts were screened and 88 full-
text articles were excluded because of tidal volume more 
than 6 ml/kg or spontaneous breath, without the analy-
sis of the variation in PPV after TVC, and review or not 
diagnostic research. Further screening the remaining 11 
full articles, one was excluded because of ROC analysis 
missing. Finally, 10 studies with a total of 429 patients 

and 457 measurements were included in the meta-anal-
ysis, presented in Fig.  2. QUADAS-2 was presented in 
Fig. 3.

Characteristics of the included studied were summa-
rized in Table  1. A total of 215 measurements (47.7%) 
were fluid responsive in the overall studies. 7 studies 
were conducted in ICU, while the left in OR. The posi-
tion was varied, 6 studies were in supine or semi-recum-
bent position, while 3 studies were in prone position and 
1 in Trendelenburg position. The mean lung compliance 
ranged from 16.8 to 83  ml/cm H2O. Except one study 
missing data, the mean PEEP ranged from 5 to 14 cm 
H2O. In the overall 10 studies, 5 studies acquired PPV 

Fig. 2  Flow of studies selection
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with transpulmonary thermodilution (TPTD) and 5 stud-
ies with others.

Performance of TVC improve the accuracy of PPV in low 
tidal volume ventilation
The predictive performance of PPV was significantly 
lower than PPV change in low tidal volume, with mean 
AUROC of 0.69 ± 0.13 versus 0.89 ± 0.10, P < 0.01, pre-
sented in Table  2. SROC of the PPV change yielded an 

area under the curve of 0.96 (95% CI 0.94, 0.97) with 
overall I2 of 76% (95%47, 100), presented in Fig.  4 The 
pooled sensitivity and specificity of the change of PPV 
were 0.92 (95% CI 0.83, 0.96) and 0.88 (95% CI 0.76, 0.94) 
with I2 of 79% (95%67, 92) and 86% (95%78, 93) sepa-
rately, presented in Fig. 5. DOR of the change of PPV was 
81 (95% CI 23, 284) with I2 of 67% (95% CI 0, 86).

Fig. 3  Risk of bias and applicability concerns for the studies included in the meta-analysis. a Risk of bias graph. b Risk of bias summary
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Heterogeneity investigation
Significant heterogeneity in the 10 studies was observed 
with an overall Q = 8.3, I2 = 76%, P < 0.01. The Spearman 
correlation coefficient was 0.09; however, significant 
heterogeneity was not found in the latter meta-regres-
sion analysis (presented in Additional file  1: Fig. S1). 
We attempted to remove the study of Yonis et al. [15] in 
the analysis. The overall heterogeneity was significant 
decreased to I2 = 42% and Q = 3.605, P = 0.09. Spear-
man correlation coefficient was 1, whereas the value of I2 
and Q test changed insignificantly when we removed any 
other study in the analysis (presented in Additional file 2: 
Table S1 and Additional files 3, 4: Figs. S2, S3).

Subgroup analysis
In ICU groups, TVC has good predictability in ICU 
with SROC yielding 0.95 (95%0.93, 0.97), pooled sen-
sitivity of 0.91 (95%0.77, 0.97) and pooled specificity of 
0.88 (95%0.69, 0.96), presented in Additional file  5: Fig. 
S4. The change of PPV after TVC in supine or semi-
recumbent group, lung compliance < 30 cm H2O group, 
moderate PEEP group and measurement tools with-
out TPTD group all performed good prediction of fluid 
responsiveness with SROC yielded the area of 0.95 (95% 
CI 0.92, 0.96), 0.96 (95% CI 0.94, 0.97), 0.95 (95% CI 0.93, 
0.97) and 0.94 (95% CI 0.92, 0.96) separately (presented 
in Additional file  6: Fig. S5 and Table  3). However, the 

lowest AUROC of PPV change was 0.59 (95% CI 0.31–
0.88) in prone position and 0.73 (95% CI 0.60–0.84) in 
patients with spontaneous breathing activity.

The comparison of △PPV and △PPV%
In groups comparison, there is no difference in AUC > 0.9 
rate, △PPV versus △PPV%, p = 0.31. But interestingly, 
in the same study, △PPV always perform slightly better 
than △PPV%(presented in Table 2). The SROC of △PPV 
and △PPV% yielded the area of 0.94 (95% CI 0.92, 0.96) 
and 0.96 (95% CI 0.94, 0.97), with I2 of 19% (95% CI 0, 
100) and 78% (95% CI 52, 100), presented in Additional 
file  7: Fig. S6. The mean and median cutoff values of 
△PPV were 2.4% and 2%, ranged from 1 to 3.5%, and that 
of △PPV% were 25% and 22.5%, ranged from 12 to 48%, 
presented in Fig. 6.

Public bias
The Deek’s funnel plot asymmetry test of the meta-anal-
ysis is shown in Fig. 7, and no significant public bias was 
found in our meta-analysis (P = 0.27).

Discussion
This systematic review and meta-analysis mainly revealed 
that: (1) The change of PPV that caused by TVC is a good 
fluid responsiveness predictor in low tidal volume venti-
lation; (2) TVC is reliable in both ICU and OR, and the 

Table 2  Predictive performance of PPV change after TVC in low tidal mechanically ventilated patients

PPV pulse pressure variation, △PPV absolute change of pulse pressure variation, △PPV% percentage change of pulse pressure variation, Sen sensitivity, Spec 
specificity, AUROC area under the receiver operator characteristics curve, TP true positive, FP false positive, FN false negative, TN truth negative

*The studies including both △PPV and △PPV%. Data were presented with 95% confidence interval or mean ± standard deviation if possible

Study/year predictor Subjective 
numbers could 
be calculated

Threshold (%) Sensitivity Specificity AUROC of PPV change AUROC of PPV

TP FP FN TN

Myatra2017 [14]* △PPV 16 0 1 14 3.5 0.94 1.00 0.99 (0.98, 1.00) 0.69

△PPV% 16 0 1 14 48 0.94 1.00 0.97 (0.92, 1.00)

Yonis 2017 [15] △PPV% 9 15 0 10 29 1.00 (0.66, 1.00) 0.40 (0.1, 0.7) 0.59 (0.31, 0.88) 0.49 (0.21, 0.77)

Jun2019 [16]* △PPV 24 2 2 14 1 0.92 (0.73, 0.99) 0.86 (0.57, 0.98) 0.95 (0.83, 0.99) 0.69 (0.52, 0.83)

△PPV% 24 4 5 14 25 0.83 ((0.63, 0.95) 0.79 (0.49, 0.95) 0.87 (0.72, 0.96)

Messina2019 [17] △PPV% 21 5 1 19 13.3 0.95 (0.74, 1.00) 0.76 (0.53, 0.92) 0.94 (0.82, 0.99) 0.68 (0.50, 0.85)

Messina2020 [18] △PPV% 19 1 1 21 12.2 0.95 0.95 0.96 (0.87, 1.00) 0.69

Elsayed2021 [19] △PPV 16 2 1 30 3.5 0.94 0.94 0.96 0.85

Taccheri2021 [20]* △PPV 15 0 1 15 1 0.93 (0.68, 1.00) 1.00 (0.78, 1.00) 0.98 ± 0.02 0.66

△PPV% 15 2 1 15 20 0.93 (0.68, 1) 0.87 (0.59, 0.98) 0.94 ± 0.04

Hamzaoui2021 [21] △PPV 22 10 10 32 2 0.69 0.76 0.73 (0.60, 0.84) 0.61 (0.48, 0.75)

Shi2022 [22] △PPV 42 7 1 42 3.5 0.98 (0.89, 0.99) 0.86 (0.75, 0.79) 0.94 (0.88, 0.99) 0.85 (0.77, 0.92)

Xu2022 [23] △PPV 31 9 14 45 2 0.84 0.84 0.90 (0.81, 0.96) 0.69 (0.57, 0.79)
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accuracy would not be affected by low lung compliance, 
moderate PEEP and the measurement devices of PPV; (3) 
But, TVC should be cautious applied in prone position 
and patients with spontaneous breathing activity. The 
exact research string of the whole study is presented in 
Fig. 8.

A recent meta-analysis showed PPV performed moder-
ately in tidal volume less than 8 ml/kg due to not enough 
preload change triggered by mechanical ventilation [38]. 
Previous research observed PPV obviously increased 
4.8% meanly in patients even 5 min after adjusting tidal 
volume from 6 to 8  ml/kg [39]; this challenge could 
help augmenting preload change when evaluating fluid 
responsiveness; soon after that, TVC was proposed [13]. 
As expected, in our meta-analysis, PPV change after 
TVC performed significantly better than PPV in low tidal 
volume ventilation, with SROC more than 0.9.

In subgroup analysis, patients in ICU are more compli-
cated with shock, organ failure or other critically ill state, 
and the results were contradictory. But in statistical anal-
ysis, TVC is still highly reliable in ICU patients, with sim-
ilar SROC to the overall data. Theoretically, the reduced 
lung compliance could enhance the transmission of air-
way pressure to the pericardium and the vena cava, thus, 

weaken the effect of SV change caused by ventilation [40, 
41]. PPV was reported low predictability in lung com-
pliance less than 30 cm H2O [25]. Fortunately, we found 
PPV change after TVC was less affected by reduced lung 
compliance, this could be relevant to the preload change 
weakened by low lung compliance is limited, and that 
was supplemented by TVC. Moderate PEEP could sup-
ply pressure on the end expiratory, enlarge cyclic car-
diac output change caused by ventilation [26] and thus 
strength the effect of TVC. As a result, we found TVC 
performed well in patients with moderate PEEP. Except 
from the widely used and standard method TPTD, pulse 
contour analysis technique or noninvasive monitor which 
also acquires PPV is more convenient and noninvasive 
but more susceptible of interferences [5]. However, we 
observed that TVC was not influenced by measurement 
tools.

We found TVC would limit in some circumstances. In 
a patient with spontaneous breathing activity, the TVC 
may fail because of asynchronism between the increased 
Vt and the breathing pattern of the patient. This may 
cause a contrast between the patient and ventilator, 
affecting the right ventricle afterload and, hence, the 
changes in right ventricle stroke volume. As expected, 
TVC performs obviously bad with AUROC of only 0.73 
in patients with spontaneous breathing activity [21], 
which is much lower than that in totally mechanical ven-
tilation studies. The results of TVC were also contradic-
tory in prone position [15, 18, 22]. Physiologically, the 
venous return could be impeded when intra-abdominal 
pressure is more than right atrial pressure because the 
abdominal inferior vena cava collapses and a vascular 
waterfall develops at the level of the diaphragm [24]; this 
could cause TVC fail to decrease preload. Different clini-
cal settings were also accountable, but we disagreed with 
Shi et  al. [22] who accounted the contradictory results 
to lung compliance since we found TVC was unaffected 
by reduced lung compliance. Besides, recent meta-anal-
ysis of EEO, the similar theory of heart–lung interaction 
functional test to TVC, was also proved to be limited in 
prone position [42].

The cutoff values of PPV change were varied in our 
study. In fact, this is the common phenomenon caused 
by different preload state before TVC. The extreme cutoff 
value of △PPV% was 48% in Mytra’ study [14]; this could 
be related to the fact that the selected people were cir-
culatory failure patients, who were sensitive to preload 
change. In the study of Jun [16], the included patients 
were normal hemodynamic state but with extremely 
reduced lung compliance of 16.8 cm H2O. However, low 
lung compliance induces insignificant preload change 

Fig. 4  Summary receiver operating characteristic curve for the 
change of pulse pressure variation after tidal volume challenge 
predicting fluid responsiveness in low tidal volume ventilation. The 
diamond is the summary point representing the average sensitivity 
and specificity estimates. AUC​ area under the curve, SENS sensitivity, 
SPEC specificity, SROC summary receiver operating characteristics. The 
ellipses around this summary point are the 95% confidence region 
(dashed line) and the 95% prediction region (dotted line)
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due to more obstruction stress from chess or pulmo-
nary to cardiac or vena, and consequently, the final cut-
off value of △PPV was only 1%. Besides, some ventilation 
settings that could increase cyclic changes of intratho-
racic pressure, such as PEEP [26] and larger tidal volume 
[7], as a result, acquire larger cutoff value.

To a certain extent, △PPV% is a surrogate of △PPV 
and they possessed the same tendency of predictabil-
ity, whereas we found △PPV% was less practical and 
reliable than △PPV, which was in the agreement with 
Myatra [14]. Initially, heterogeneity of △PPV% group 
was significant and larger than △PPV group. Secondly, 
the AUSROC of △PPV% performed a slighter lower than 
△PPV when in the same studies [14, 16, 20]. Moreover, 
the cutoff values of △PPV were more central between 1 
and 3.5%, while that of △PPV% were more dispersed in 
the scatter plot, which could cause more threshold effect 
heterogeneity and difficult to assess fluid responsive-
ness accurately. Last but not the least, the calculation of 

△PPV% is more complicated and not suitable for beside 
or emergency.

Some limitations in our meta-analysis should be 
acknowledged. Firstly, ten number of diagnostic studies 
was included with significant heterogeneity in the overall 
analysis representing a limitation of this study. Although 
the study of Yonis et al. [15] could be the heterogeneity of 
this meta-analysis, other potential heterogeneity should 
be considered. Secondly, due to some included researches 
missing data of sensitivity and specificity of PPV, we 
failed to calculate the SROC of PPV in low tidal volume 
ventilation in comparison. Instead, we statistically com-
pare the AUROCs of PPV and PPV change in low tidal 
volume ventilation patients with original data. Thirdly, 
we did not perform the comparison of the opposite sub-
groups, such as low versus high lung compliance and 
prone versus supine, because, on the one hand, our main 
intention is to observe whether TVC is still reliable in 
some circumstance, like low lung compliance, some posi-
tion, moderate PEEP and irregular measurement tools, 

Fig. 5  Sensitivity and specificity of the change of pulse pressure variation after tidal volume challenge predicting fluid responsiveness in low tidal 
volume ventilation for all data. Each solid square represents an individual study. Error bars represent 95% CI
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rather than comparing the differences between the oppo-
site two groups. After all, these conditions exit commonly 
in patients need lung protective strategies and probably 
influence TVC. On the other hand, some opposite groups 
only contained 2 or 3, or even 1 study, and small num-
ber subgroup is less convincing for comparison and has 
larger risk of statistical error. Fourthly, some other valu-
able target subgroups that could influence TVC were 
failed to analyze because of current studies restriction. 
Higher level of PEEP results in greater cyclic changes in 
preload [26], making patients more fluid responsive [43], 
while PEEP of 15 to 20 cm H2O could decrease cardiac 
output [44]. However, we failed to analyze PEEP more 
than 15 cm H2O group because all included studies used 
moderate PEEP. Spontaneous breathing activity during 
mechanical ventilation is common in ICU and TVC could 
fail in this condition, but currently, only one study proved 
that, and we failed to make summary statistical analysis. 
Fifthly, not all included studies used fluid challenge as 

golden standard preload challenge; this could bring more 
interferences to assess TVC. Actually, the essence of fluid 
responsiveness assessment is detecting preload change, 
apart from classic fluid challenge; other surrogates or 
called functional tests, such as PLR, mini-fluid challenge, 
EEO or Trendelenburg, could also trigger the same effect, 
and some even perform advantages over classic method 
[45].Thus, these studies with surrogates of fluid challenge 
are also vital and valuable. Finally, the current studies 
in our meta-analysis all used standard TVC (6 to 8  ml/
kg Vt, 1 min). As we all know, TVC is the supplement of 
preload change; hence, change size of Vt or performance 
time could influence the SV change caused by TVC. Sim-
ilar study of fluid challenge reported 100 ml and 250 ml 
crystalloid had the same effect in preload [46], but that 
decreased when performed over 30  min [47]. Overall, 
more researches are warrant in the future about TVC.

Fig. 6  Scatter plot of cutoff value of △PPV and △PPV% in included studies. The purple black dots represent absolute change of pulse pressure 
variation (△PPV). The black diamond squares represent percentage change of pulse pressure variation (△PPV%). The cutoff values of △PPV are as 
follows: (1) Myatra 2017 [14], 3.5%; (2) Jun 2019 [16], 1%; (3) Elsayed 2021 [19], 3.5%; (4) Taccheri 2021 [20], 1%; Hamzaoui2021 [21]; (5) Shi 2022 [22], 
3.5%; (6) Xu 2022 [23], 2%. The cutoff values of △PPV% are as follows: (1) Myatra 2017 [14], 48%; (2)Yonis 2017 [15], 29%; (3) Jun 2019 [16], 25%; (4) 
Messina 2019 [17], 13.3%; (5) Messina 2020 [18], 12%; (6) Taccheri 2021 [20], 20%;
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Fig. 7  Deeks’ funnel plot with superimposed regression line. P value for slope coefficient is 0.27, which is greater than 0.05, suggesting the 
symmetry of the studies and the low likelihood of publication bias

Fig. 8  Study research string. TVC tidal volume challenge, △PPV absolute change of pulse pressure variation, △PPV% percentage change of pulse 
pressure variation, TPTD transpulmonary thermodilution, PEEP positive end-expiratory pressure
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Conclusion
TVC could improve the feasibility of PPV in patients 
mechanically ventilated at low tidal volumes by calcu-
lating PPV change after TVC. Both △PPV and △PPV 
% have good predictability, but △PPV is recommended 
first. TVC performs well wherever in ICU or OR and 
would not be influenced by low lung compliance, mod-
erate PEEP and measurement devices. But TVC should 
be cautious applied in prone position and patients with 
spontaneous breathing activity.
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