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Abstract 

Background:  We hypothesized that as CARDS may present different pathophysiological features than classic ARDS, 
the application of high levels of end-expiratory pressure is questionable. Our first aim was to investigate the effects of 
5–15 cmH2O of PEEP on partitioned respiratory mechanics, gas exchange and dead space; secondly, we investigated 
whether respiratory system compliance and severity of hypoxemia could affect the response to PEEP on partitioned 
respiratory mechanics, gas exchange and dead space, dividing the population according to the median value of res-
piratory system compliance and oxygenation. Thirdly, we explored the effects of an additional PEEP selected accord-
ing to the Empirical PEEP-FiO2 table of the EPVent-2 study on partitioned respiratory mechanics and gas exchange in 
a subgroup of patients.

Methods:  Sixty-one paralyzed mechanically ventilated patients with a confirmed diagnosis of SARS-CoV-2 were 
enrolled (age 60 [54–67] years, PaO2/FiO2 113 [79–158] mmHg and PEEP 10 [10–10] cmH2O). Keeping constant tidal 
volume, respiratory rate and oxygen fraction, two PEEP levels (5 and 15 cmH2O) were selected. In a subgroup of 
patients an additional PEEP level was applied according to an Empirical PEEP-FiO2 table (empirical PEEP). At each PEEP 
level gas exchange, partitioned lung mechanics and hemodynamic were collected.

Results:  At 15 cmH2O of PEEP the lung elastance, lung stress and mechanical power were higher compared to 
5 cmH2O. The PaO2/FiO2, arterial carbon dioxide and ventilatory ratio increased at 15 cmH2O of PEEP. The arterial–
venous oxygen difference and central venous saturation were higher at 15 cmH2O of PEEP. Both the mechanics and 
gas exchange variables significantly increased although with high heterogeneity. By increasing the PEEP from 5 to 15 
cmH2O, the changes in partitioned respiratory mechanics and mechanical power were not related to hypoxemia or 
respiratory compliance. The empirical PEEP was 18 ± 1 cmH2O. The empirical PEEP significantly increased the PaO2/
FiO2 but also driving pressure, lung elastance, lung stress and mechanical power compared to 15 cmH2O of PEEP.

Conclusions:  In COVID-19 ARDS during the early phase the effects of raising PEEP are highly variable and cannot eas-
ily be predicted by respiratory system characteristics, because of the heterogeneity of the disease.
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Background
The infection with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is characterized by an acute 
hypoxemic respiratory failure ranging from a mild to a 
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severe form requiring intensive care admission and inva-
sive mechanical ventilation in up of 30% of the severe 
forms of the disease [1, 2]. Based on the available body 
of evidence in order to limit the ventilator induced lung 
injury (VILI), not-related-to-COVID-19-ARDS patients 
are currently managed by applying low tidal volume 
without overcoming an inspiratory plateau pressure of 30 
cmH2O and moderate–high PEEP levels in the moder-
ate–severe forms [3–5]. However, it has also been shown 
that among ARDS patients similar PEEP levels should 
not be used, but an individualization is required because 
the response to PEEP differs according to the respiratory 
mechanics, hemodynamic, lung recruitability and shunt. 
Inappropriately too high PEEP levels might promote lung 
overstress, increase in alveolar dead space and hemody-
namic impairment amplifying the VILI [6, 7].

At the present time, no randomized clinical trials which 
examined the effect of PEEP in COVID-19 ARDS patients 
(CARDS) have been published [8]. The surviving sepsis 
campaign on the management of CARDS recommended 
a higher PEEP strategy rather than lower PEEP strategy 
[9]. A subsequent consensus of an international panel of 
experts did not reach any agreement on the PEEP level, 
suggesting that PEEP should be titrated according to a 
PEEP/FiO2 table or to obtain the best respiratory compli-
ance or the lowest driving pressure [10].  In a large exten-
sive review of the literature the mean applied PEEP level 
was between 10 and 16 cmH2O [8]. However, CARDS 
patients may present different characteristics from the 
ARDS, especially in the early phase [11]. CARDS patients 
may show a discrepancy between a relatively high respir-
atory system compliance, higher amount of lung gas vol-
ume and severity of hypoxemia [11–13]. Lung autopsy in 
patients who died from CARDS showed a diffuse alveolar 
damage with significant endotheliitis and microthrombi 
in the pulmonary vessels [13–16]. In particular, the 
alteration of perfusion into the lung could be due to an 
alteration in the hypoxic vasoconstriction (hyperperfu-
sion in the poorly ventilated lung regions) and to a lower 
perfusion in the aerated lung regions rather than a lung 
collapse [16]. Consequently, if the vascular derangement 
is the major mechanism related to hypoxemia, the use of 
moderate–high PEEP levels is questionable.

Consequently, we hypothesized that as CARDS may 
present different pathophysiological features than clas-
sic ARDS, the application of high levels of end-expiratory 
pressure is questionable.

Our first aim was to investigate the effects of 5–15 
cmH2O of PEEP on partitioned respiratory mechanics, 
gas exchange and dead space; secondly, we investigated 
whether respiratory system compliance and severity of 
hypoxemia could affect the response to PEEP on parti-
tioned respiratory mechanics, gas exchange and dead 

space, dividing the population according to the median 
value of respiratory system compliance and oxygenation. 
Thirdly, we explored the effects of an additional PEEP 
selected according to the Empirical PEEP-FiO2 table of 
the EPVent-2 study on partitioned respiratory mechanics 
and gas exchange in a subgroup of patients.

Methods
Study population
Sixty-one mechanically ventilated patients with a con-
firmed diagnosis of SARS-CoV-2 admitted to the gen-
eral intensive care of the ASST Santi Paolo Carlo, Milan, 
Italy, were enrolled. Inclusion criteria were a laboratory 
confirmation of SARS-CoV-2 infection based on positive 
reverse transcriptase–polymerase chain reaction (RT-
PCR) assay and diagnosis of ARDS, the day of the study. 
Exclusion criteria were the presence of barotrauma, the 
history of severe chronic obstructive pulmonary disease 
and the hemodynamic instability.

The study was approved by the local ethical commit-
tee (Comitato Etico Milano Area I; 2020/ST/095) and 
informed consent was obtained according to Italian 
regulations.

Study protocol
This was an observational study in which two levels of 
PEEP were tested.

A lung CT scan was performed during an end-expira-
tory pressure at 5 cmH2O of PEEP.

All patients deeply sedated and paralyzed were venti-
lated in volume control with a tidal volume of 6–8 ml/kg 
of predicted body weight. Respiratory rate and inspira-
tory oxygen fraction were selected to maintain a pH and 
an arterial saturation between 7.34 and 7.44 and 88 and 
95%, respectively. A PEEP level of 10 cmH2O was clini-
cally set at the beginning in all the patients during the 
stabilization period (60 min).

Subsequently, a recruitment maneuver was applied in 
pressure control ventilation with a PEEP of 5 cmH2O to 
reach 45 cmH2O of inspiratory plateau pressure with a 
respiratory rate of 10 for two minutes [17]. Keeping con-
stant the tidal volume, respiratory rate and oxygen frac-
tion, two PEEP levels (5 and 15 cmH2O) were selected. 
Measurements are collected after 20 min of stabilization. 
The patients underwent the PEEP test in stable hemo-
dynamic conditions. In addition, in a subgroup of 29 
patients, the PEEP was adjusted according to the table 
named Empirical PEEP-FiO2 of the EPVent-2 study [18]. 
The selected PEEP was called the “Empirical PEEP,” and 
for safety reason it was titrated to limit a maximum of 
35 cmH2O of inspiratory plateau airway pressure (Addi-
tional file 1: Fig. 1S).
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Data collection
Twenty minutes after the application of the selected 
PEEP arterial/venous blood gas, lung mechanics and 
hemodynamic were collected. An end-inspiratory and 
end-expiratory pause were performed to measure the 
airway and esophageal pressure changes.

Gas exchange, respiratory mechanics and lung CT data
In order to measure the esophageal pressure, a radio-
opaque balloon catheter (SmartCath Bicore, USA) was 
positioned in the lowest part of the esophagus and con-
nected to a pressure transducer. The esophageal cath-
eter was inflated of air with 1.5  mL and introduced 
transorally to reach the stomach at a depth between 
50 and 55  cm from the mouth [19]. The intragastric 
position was confirmed by a rise in intra-abdominal 
pressure following external manual epigastric compres-
sion. Then, it was retracted into the esophagus (i.e., 
confirmed by the presence of cardiac artifacts in the 
pressure tracing and by the difference in the absolute 
pressure) at a distance between 35 and 40 cm from the 
mouth [19].

During an end-expiratory occlusion by compress-
ing the thorax, the concordant changes of airway and 
esophageal pressure were verified to check the cor-
rect position of the balloon. The amount of gas in 
the balloon was periodically checked throughout the 
experiment.

The ventilatory ratio and the estimated physiologi-
cal dead space were computed according to classic 
equations (See Additional File 1). The right-to-left 
intrapulmonary shunt was calculated accordingly to the 
venous admixture equation, using the blood gas values 
obtained from the central venous catheter as a surro-
gate of the mixed venous blood values [20].

The respiratory system, lung, chest wall elastance and 
lung stress were computed according to the standard 
formulas (see Additional File 1).

The mechanical power was calculated based on a 
mathematical simplification of the original mechanical 
power for volume control-ventilated patients [21]:

The mechanical power was normalized to the respira-
tory system compliance [22].

The total lung weight, gas volume and the propor-
tions of the different compartments (not inflated, 
poorly inflated, well inflated and overinflated) were 
computed with dedicated software (Maluna) [17].

MP = 0.098∗ Respiratory rate ∗ tidal volume [Peak airway Pressure−
(

Plateau airway Pressure−PEEP
)

/2]

Statistical analysis
Continuous data are presented as mean and standard 
deviation or median and interquartile range, as appro-
priate, while categorical data are reported as frequen-
cies and percentage. A One-way ANOVA or Friedman 
test for repeated measure among the levels of PEEP 
was used to account for the repeated measures design; 
in case of statistical significance, Holm–Sidak test or 
Tukey’s test were used, respectively. Characteristics 
of the patients as well as the differences in respiratory 
mechanics, gas exchange between the two groups “high 
PaO2/FiO2” and “low PaO2/FiO2” or between “high 
Compliance” or “low Compliance” were compared by 
the Student’s t-test or Wilcoxon–Mann–Whitney rank 
sum test, as appropriate. The chi-square test or Fisher’ ́s 
exact test of independence to analyze for frequency 
count. A p value of 0.05 or less was considered statisti-
cally significant. The statistical analysis was performed 
with SigmaPlot 11.0 (Systat Software, San Jose, CA) 
and RStudio (R Foundation for Statistical Computing, 
Vienna, Austria).

Results
The main characteristics of the patients are presented in 
Additional file  1: Table  1S. The days between the onset 
of symptoms and hospital admission were 6 [5–8]. The 
median PaO2/FiO2 at baseline was 113 [79–158] mmHg 
(15.1 [10.5–21.1] kPa). Thirty-eight patients (62%) 
and 19 patients (31%) presented a severe and moder-
ate form of CARDS. The mean lung gas volume and 
weight were 1441 [923–2235] mL and 1348 [946–1647] 
g, respectively; the amount of not aerated tissue was 10.7 
[3.1–19.1] % of the total lung weight (Additional file  1: 
Table 1S).

Response to 5–15 cmH2O of PEEP on partitioned respiratory 
mechanics, gas exchange and dead space
In Table 1 the data of the respiratory mechanics and gas 
exchange at 5 and 15 cmH2O of PEEP are presented. At 
15 cmH2O of PEEP the lung elastance, lung stress and 
mechanical power were significantly higher compared 
to 5 cmH2O. Although the airway plateau pressure was 

significantly higher at 15 cmH2O, the driving pressure 
and elastance of respiratory system increased but did 
not reach statistical significance (Fig. 1; Additional file 1: 
Fig. 2S).

Concerning gas exchange, the PaO2/FiO2, arterial car-
bon dioxide and ventilatory ratio significantly increased 
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at 15 cmH2O of PEEP. The arterial–venous oxygen dif-
ference and central venous saturation were significantly 
higher at 15 cmH2O of PEEP. The shunt significantly 
decreased at 15 cmH2O of PEEP. Increasing PEEP from 
5 to 15 cmH2O the mechanics and gas exchange variables 
that significantly increased showed high heterogeneity.

Response to 5–15 cmH2O of PEEP according to the 
compliance of respiratory system and severity of hypoxemia
Considering the median of respiratory compliance of the 
whole population (44 ml/cmH2O) to separate the popula-
tion in a high and a low compliance group, the first group 
had a higher lung gas volume and well inflated lung tis-
sue (Additional file 1: Table 2S; Fig. 3S). The oxygenation 
and ventilatory ratio were not different (Additional file 1: 
Table 2S).

By increasing the PEEP from 5 to 15 cmH2O, the 
changes in the partitioned respiratory system elastance 
and gas exchange were similar between the two groups 
(Table 2, Additional file 1: Fig. 5S).

Furthermore, we also divided the whole population 
according to the median of the PaO2/FiO2 (81.8  mmHg 
or 10.9 kPa), in high and low PaO2/FiO2 groups. The two 
groups presented similar lung gas volume, not inflated 
tissue and partitioned respiratory mechanics (Additional 
file 1: Table 3S; Fig. 4S). By increasing the PEEP from 5 
to 15 cmH2O, the changes in partitioned respiratory 

mechanics and mechanical power were similar (Table 3, 
Additional file 1: Fig. 6S).

Response to Empirical PEEP on partitioned respiratory 
mechanics, gas exchange and dead space
In a subgroup of 29 patients the Empirical PEEP has been 
selected according to the PEEP/FIO2 table. The Empiri-
cal PEEP was 18 ± 1 cmH2O. The Empirical PEEP sig-
nificantly increased the driving pressure, elastance, lung 
stress and mechanical power compared to 15 cmH2O of 
PEEP (Additional file 1: Table 4S; Fig. 7S). At the Empiri-
cal PEEP the PaO2/FiO2 was higher compared to 15 
cmH2O of PEEP, while carbon dioxide and ventilatory 
ratio were similar.

Discussion
The main findings of this study evaluating different PEEP 
levels, with constant tidal volume, were: (1) 15 cmH2O of 
PEEP significantly increased the ventilatory ratio, lung 
elastance and mechanical power although with hetero-
geneous responses, (2) the arterial oxygenation increased 
by increasing the PEEP, (3) the compliance of the respira-
tory system and the level of hypoxemia at baseline did 
not affect the PEEP response and (4) the PEEP suggested 
by the PEEP/FiO2 table was higher than 15 cmH2O.

Most mechanically ventilated CARDS patients ful-
fill the criteria of ARDS according to the Berlin defini-
tion [23, 24]. Typically, ARDS is characterized by an 

Table 1  Respiratory mechanics and gas exchange within 5 and 15 cmH2O of PEEP

Paired T-test or Wilcoxon–Mann–Whitney test for repeated measures were performed, as appropriate. Tidal volume and respiratory rate were unchanged between the 
two PEEP levels. Ca-vO2: arterial–venous oxygen content difference; Compliancers: respiratory system compliance; ScvO2 central oxygen venous saturation; PvO2 mixed 
venous oxygen tension

Variables PEEP 5
61 patients

PEEP 15
61 patients

p

Plateau pressure, cmH2O 17 ± 3 28 ± 3 < 0.001
Driving pressure, cmH2O 12 ± 3 13 ± 3 0.071

Respiratory system elastance, cmH2O/L 23 [19–27] 24 [21–31] 0.093

Lung elastance, cmH2O/L 18 [15–22] 19 [17–25] 0.049
Chest wall elastance, cmH2O/L 5 [3–6] 4 [3–6] 0.845

Lung stress, cmH2O 13.1 ± 3.1 22.3 ± 4.0  < 0.001
Mechanical power, J/min 16.7 ± 5.7 26.1 ± 6.4  < 0.001
Mechanical Power_Compliancers, J/min/(mL/cmH2O) 0.36 [0.27–0.50] 0.61 [0.51–0.77]  < 0.001
PaO2, mmHg 63 [55–76] 84 [74–99]  < 0.001
PaO2/FiO2, mmHg 82 [66–138] 127 [90–184]  < 0.001
Right-to-left shunt, % 47 ± 15 35 ± 12  < 0.001
PvO2, mmHg 42 ± 7 47 ± 7  < 0.001
ScvO2, % 74 ± 8 79 ± 6  < 0.001
Ca-vO2, mL 2.8 [2.3–3.2] 3.0 [2.4–3.4] 0.024
PaCO2, mmHg 48 ± 9 50 ± 9  < 0.001
Ventilatory ratio 1.66 ± 0.39 1.74 ± 0.37 0.002
Estimated physiological dead space 0.50 [0.43–0.58] 0.52 [0.42–0.60]  < 0.001
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inflammatory pulmonary edema, shunt related hypox-
emia and reduction both in lung gas volume and in the 
respiratory compliance [6]. Higher PEEP levels, recruit-
ment maneuvers and prone positioning are suggested to 
recruit the lung [4, 7]. However, COVID-19 is a systemic 
disease which besides affecting mainly the lung, can also 
damage the vascular endothelium [13, 17]. It has been 
reported an activation of the coagulation cascade with 
an associated micro–macro thrombosis in the lung. It 
has also been found the presence of vessels enlargement 
in the ground glass opacities, suggesting the presence of 
a thrombotic inflammatory process [16]. The available 
data clearly indicate that CARDS can present heteroge-
neous characteristics with a relatively high respiratory 

system compliance [11, 12, 25–27]. Our group proposed 
the presence of two phenotypes in CARDS based on lung 
mechanics properties, type L (low elastance) and type H 
(high elastance) [28, 29]. In the present study our popula-
tion had a median of 2 [2] days of mechanical ventilation 
since intubation and the PEEP trial, presented a median 
compliance of respiratory system of 44 ml/cmH2O. Simi-
lar data were also reported by other groups [25, 30, 31]. 
In a recent review, the compliance values at 1 SD above 
the mean or the 75th percentile > 50  ml/cmH2O were 
reported in 43% of the studies [8]. Similarly, the lung gas 
volume computed by CT was also considerable high, a 
median of 2952 [2038–3617] mL, contrary to previous 

Fig. 1  Respiratory system, chest wall and lung elastance at 5 and 15 cmH2O of PEEP of the whole population. *p < 0.05; ns: not significant
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Table 2  Changes in respiratory mechanics and gas exchange at 5 and 15 cmH2O of PEEP between high and low respiratory system 
compliance group

T-test or Wilcoxon–Mann–Whitney test were performed, as appropriate. Δ15-5: difference between 15 and 5 cmH2O of PEEP; Ca-vO2: arterial–venous oxygen content 
difference; Compliancers: respiratory system compliance; ScvO2 central oxygen venous saturation; PvO2 mixed venous oxygen tension

Variables Low Crs
 < 44 mL/cmH2O
30 patients

High Crs
≥ 44 mL/cmH2O
31 patients

p

Δ15-5 Plateau pressure, cmH2O 10 [7–12] 11 [10–13] 0.042
Δ15-5 Driving pressure, cmH2O 0 [− 3 to 2] 1 [0–3] 0.042
Δ15-5 Respiratory system elastance, cmH2O/L − 1 [− 5 to 4] 2 [0–6] 0.057

Δ15-5 Lung elastance, cmH2O/L 2 [− 2 to 5] 2 [0–5] 0.286

Δ15-5 Chest wall elastance, cmH2O/L 0 [− 2 to 2] 0 [− 1 to 0] 0.305

Δ15-5 Lung stress, cmH2O 9 [6–11] 9 [8–12] 0.256

Δ15-5 Mechanical power, J/min 9 [8–12] 9 [8–11] 0.866

Δ15-5 Mechanical Power_Compliancers, J/min/(mL/cmH2O) 0.26 [0.12–0.40] 0.23 [0.16–0.35] 0.656

Δ15-5 PaO2, mmHg 20 [13–38] 20 [6–30] 0.336

Δ15-5 PaO2/FiO2, mmHg 28 [16–51] 30 [10–50] 0.657

Δ15-5 Right-to-left shunt, % − 12 [− 23 to − 1] − 9 [− 18 to − 5] 0.710

Δ15-5 PvO2, mmHg 4.0 [2.3–8.8] 2.0 [1.0–8.1] 0.219

Δ15-5 ScvO2, % 5.5 [1.0–10.8] 2.5 [0.0–8.1] 0.184

Δ15-5 Ca-vO2, mL 1.0 [0.3–1.7] 0.6 [0.2–1.3] 0.331

Δ15-5 PaCO2, mmHg 1 [− 1 to 3] 2 [1–4] 0.226

Δ15-5 Ventilatory ratio 0.04 [− 0.10 to 0.10] 0.08 [0.02–0.20] 0.119

Δ15-5 Estimated physiological dead space 0.01 [− 0.01 to 0.03] 0.02 [0.01–0.05] 0.119

Table 3  Changes in respiratory mechanics and gas exchange at 5 and 15 cmH2O of PEEP between high and low PaO2/FiO2 group

T-test or Wilcoxon–Mann–Whitney test were performed, as appropriate. Δ15-5: difference between 15 and 5 cmH2O of PEEP; Ca-vO2: arterial–venous oxygen content 
difference; Compliancers: respiratory system compliance; ScvO2 central oxygen venous saturation; PvO2 mixed venous oxygen tension

Variables Low
PaO2/FiO2 < 81.8
31 patients

High
PaO2/FiO2 ≥ 81.8
30 patients

p

Δ15-5 Plateau pressure, cmH2O 8 [10–11] 11 [10–13] 0.147

Δ15-5 Driving pressure, cmH2O 0 [− 2 to 1] 1 [0–3] 0.147

Δ15-5 Respiratory system elastance, cmH2O/L 0 [− 3 to 3] 3 [0–6] 0.126

Δ15-5 Lung elastance, cmH2O/L 2 [− 2 to 4] 3 [1–7] 0.257

Δ15-5 Chest wall elastance, cmH2O/L 0 [− 2 to 1] 0 [− 2 to 2] 0.373

Δ15-5 Lung stress, cmH2O 9 [7–11] 9 [8–13] 0.534

Δ15-5 Mechanical power, J/min 9 [8–11] 10 [9–11] 0.351

Δ15-5 Mechanical Power_Compliancers, J/min/(mL/cmH2O) 0.21 [0.12–0.34] 0.30 [0.17–0.37] 0.436

Δ15-5 PaO2, mmHg 26 [16–38] 16 [4–23] 0.012
Δ15-5 PaO2/FiO2, mmHg 31 [16–55] 28 [9–42] 0.212

Δ15-5 Right-to-left shunt, % − 16 [− 26 to − 10] 0 [− 11 to 0]  < 0.001
Δ15-5 PvO2, mmHg 3 [2–11] 1 [0–2]  < 0.001
Δ15-5 ScvO2, % 8.5 [4.4–13.4] 0.6 [− 1 to 3]  < 0.001
Δ15-5 Ca-vO2, mL 1.3 [0.9–1.8] 0.4 [0.0–0.6]  < 0.001
Δ15-5 PaCO2, mmHg 1 [− 2 to 3] 2 [1–5] 0.110

Δ15-5 Ventilatory ratio 0.04 [− 0.09 to 0.10] 0.08 [− 0.02 to 0.19] 0.065

Δ15-5 Estimated physiological dead space 0.01 [− 0.02 to 0.03] 0.02 [0.01–0.05] 0.070
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data on ARDS patients in which the lung gas volume (i.e., 
baby lung) was typically reduced [17, 32, 33].

In a recent review analyzing the available data about 
mechanical ventilation setting in CARDS, it was reported 
that PEEP values ranged from 9 to 16.5 cmH2O [8]. The 
PEEP was selected mainly according to the change in 
oxygenation or to a PEEP/FiO2 table [34, 35].

Response to 5–15 cmH2O of PEEP on partitioned respiratory 
mechanics, gas exchange and dead space
In this study we choose to evaluate the effects of two 
different PEEP levels (5 and 15 cmH2O) based on pre-
vious studies which defined as “low” and “moderate–
high” PEEP [17, 36]. The higher PEEP levels significantly 
increased the oxygenation and reduced the alveolar 
shunt. However, at the same time, in the majority of 
patients the ventilatory ratio was higher indicating a less 
efficiently CO2 clearance (i.e., higher dead space) as well 
as the respiratory system compliance decreased. Similar 
data was also found by Mauri et  al. in a small group of 
CARDS (10 patients), in which 15 cmH2O of PEEP was 
associated with a better oxygenation and higher arterial 
carbon dioxide [25]. In patients with ARDS it has been 
observed that increasing PEEP the arterial oxygenation 
increased by a reduction in the intrapulmonary shunt 
with also an increase in the dead space [37].

More importantly, in our patients the increase of PEEP 
significantly increased the arterial–venous difference in 
oxygenation and the central venous oxygenation.

Thus, the ameliorating in oxygenation at higher PEEP 
levels seems more related to the modification of the ven-
tilation/perfusion ratio in the lung areas with low ven-
tilation/perfusion rather than a lung recruitment (i.e., 
reopening of collapsed lung regions) [11]. The reduction 
in the alveolar shunt could also be due to a decrease in 
cardiac output by the higher levels of PEEP [37–39].

Although the plateau airway pressure and driving pres-
sure are commonly used as surrogate of the VILI, the real 
distending force of the lung is the transpulmonary pres-
sure [4, 40, 41]. The transpulmonary pressure computed 
by the esophageal balloon technique is closely related 
to the lung stress [41, 42]. Thus, in the present study 
we assessed both the lung elastance and the lung stress. 
The enrolled patients have a relatively normal chest wall 
elastance which contributes to the elastance of the res-
piratory system by approximately 20–30% [41]. By note, 
at higher PEEP levels the lung elastance and lung stress 
were significantly higher. In a previous small study, apply-
ing the electrical impedance tomography technique 
(EIT), higher PEEP levels were associated with higher 
lung elastance and to higher lung overdistension evalu-
ated by EIT technique [43]. In addition to evaluate the 
overall effect of different levels of PEEP, we computed the 

mechanical power which depends on the driving pres-
sure, tidal volume, respiratory rate and PEEP. The res-
piratory rate and tidal volume did not change throughout 
the study; thus, the mechanical power resulted from the 
interaction of PEEP and driving pressure. By increas-
ing PEEP, the mechanical power and the normalized 
mechanical power for the compliance of respiratory sys-
tem (i.e., to take into account the size of the lung) were 
much higher compared to low PEEP level.

Response to 5–15 cmH2O of PEEP according to the 
compliance of respiratory system and severity of hypoxemia
In ARDS patients several studies evaluated the possible 
factors associated with PEEP response [4, 6]. We found 
a comparable median response to PEEP in both patients 
with a low and high respiratory system compliance and 
with high and low PaO2/FiO2 in whom the oxygenation 
improved, the mechanical power significantly increased 
while the ventilatory ratio and respiratory mechanics, 
although deteriorating, showed high heterogeneity. Per-
ier et  al., comparing two CARDS subgroups based on 
the compliance of the respiratory system assessed at low 
PEEP level, found a similar behavior in terms of collapse, 
hyperdistention and oxygenation by applying a range of 
PEEP from 6 to 18 cmH2O [44]. In our population, the 
more hypoxemic group, which seems to improve the oxy-
genation when PEEP was increased from 5 to 15 cmH2O, 
showed the same quantitative radiological features at 
the CT scan at 5 cmH2O compared with less hypox-
emic group. This can partially explain that the changes 
in the partitioned respiratory system elastance and gas 
exchange were similar between the two groups. Similarly, 
the group with low and high respiratory system com-
pliance presented the same amount of not and poorly 
inflated tissue, with similar changes in the partitioned 
respiratory system elastance and gas exchange between 
the two groups.

Response to Empirical PEEP on partitioned respiratory 
mechanics, gas exchange and dead space
In ARDS patients the use of PEEP-FiO2 tables is a quite 
common approach in clinical practice mainly due to 
the greater ease of application [4]. Several PEEP-FiO2 
tables have been proposed over the decades [4, 6]. In 
two ARDS randomized clinical trials that compared a 
lower and higher PEEP-FiO2 table, the arterial oxygena-
tion increased with the higher PEEP table, suggesting a 
higher lung recruitment a better outcome [6]. In ARDS 
patients the PEEP-FiO2 table was able to provide PEEP 
levels according to the lung recruitability [7]. In the pre-
sent study applying a PEEP-FiO2 combination table com-
monly suggested in ARDS, the proposed average PEEP 
level was 18 ± 1 cmH2O. However, this Empirical PEEP 
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level was associated with a significantly higher oxygena-
tion but to a worsening in ventilatory ratio and lung 
elastance compared to 15 cmH2O. Tsolaki et al., applying 
the ARDS net protocol, according to the Surviving sep-
sis campaign, found that the suggested PEEP level was 
18 cmH2O instead of a mean level of 8 cmH2O of PEEP, 
when the best combination of respiratory system compli-
ance, CO2 clearance and hemodynamic was used [45]. In 
a small study of 15 CARDS comparing the PEEP selected 
by the EIT technique to obtain to the best compromise 
between lung collapse and overdistension, with PEEP/
FiO2 table approach, the latter suggested higher PEEP (17 
vs 12 cmH2O) [46]. Thus, if we followed in CARDS the 
Empirical PEEP-FiO2 table, significantly higher PEEP lev-
els should have been applied in lungs with almost normal 
compliance with possible detrimental consequences.

This study has several strengths: Firstly, it is the first 
study which computed the lung compliance and mechan-
ical power during the change of PEEP; secondly, it evalu-
ated two PEEP levels (low and moderate/high) compared 
to an Empirical PEEP-FiO2 table, which is suggested in 
ARDS patients.

Limitations
The possible limitations of this study were the absence of 
any data regarding the computation of lung recruitability 
at 15 cmH2O of PEEP and regarding the changes of car-
diac output at the different PEEP levels.

Conclusions
In conclusion, the main finding of this study evaluat-
ing different PEEP levels with constant tidal volume was 
that the effects of raising PEEP are highly variable among 
CARDS patients and cannot easily be predicted by res-
piratory system characteristics, because of the heteroge-
neity of the disease, including with respect to respiratory 
system compliance and hypoxia that is mainly due to 
low V/Q respond less than to true shunt. Moreover, the 
PEEP adjusted according to the Empirical PEEP-FiO2 
table resulted in an unnecessary much higher PEEP lev-
els possibly which was not related to the pathophysiol-
ogy of CARDS patients. Moderate PEEP levels are able 
to redistribute the pulmonary blood flow, ameliorate 
oxygenation and avoid the lung over stress and strain and 
the impairment of cardiac function with a higher need of 
fluids and vasopressor. Thus, in CARDS tailoring PEEP 
based on a “PEEP test,” represents an invaluable option to 
set a protective lung ventilation and prevent further dam-
age to the lungs.
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