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Abstract 

Background:  Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by lung inflam‑
mation and pulmonary edema. Coronavirus disease 2019 (COVID-19) is associated with ARDS in the more severe 
cases. This study aimed to compare the specificity of the metabolic alterations induced by COVID-19 or Influenza A 
pneumonia (IAP) in ARDS.

Methods:  Eighteen patients with ARDS due to COVID-19 and twenty patients with ARDS due to IAP, admitted to 
the intensive care unit. ARDS was defined as in the American-European Consensus Conference. As compared with 
patients with COVID-19, patients with IAP were younger and received more often noradrenaline to maintain a mean 
arterial pressure > 65 mm Hg. Serum samples were analyzed by Nuclear Magnetic Resonance Spectroscopy. Multivari‑
ate Statistical Analyses were used to identify metabolic differences between groups. Metabolic pathway analysis was 
performed to identify the most relevant pathways involved in ARDS development.

Results:  ARDS due to COVID-19 or to IAP induces a different regulation of amino acids metabolism, lipid metabolism, 
glycolysis, and anaplerotic metabolism. COVID‐19 causes a significant energy supply deficit that induces supplemen‑
tary energy-generating pathways. In contrast, IAP patients suffer more marked inflammatory and oxidative stress 
responses. The classificatory model discriminated against the cause of pneumonia with a success rate of 100%.

Conclusions:  Our findings support the concept that ARDS is associated with a characteristic metabolomic profile 
that may discriminate patients with ARDS of different etiologies, being a potential biomarker for the diagnosis, prog‑
nosis, and management of this condition.
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Background
The current Coronavirus disease 2019 (COVID-19) pan-
demic, caused by the Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) [1], strained critical care 
resources in many countries, and the management of 
lung injury in these patients posed a tremendous chal-
lenge for clinicians [2]. Several patients with COVID-19 
developed severe acute respiratory distress syndrome 
(ARDS) with mortality rates around 30% [3] in the first 
pandemic wave. ARDS is characterized by lung inflam-
mation and hyperpermeability pulmonary edema. Cur-
rently, the diagnosis of ARDS is based on the presence 
of clinical, physiological, and radiological criteria [4–6]. 
Unlike other clinical conditions, to date, there are no 
specific molecular markers that help in the prognosis of 
this condition. Advancement in the understanding of the 
pathogenesis of ARDS is necessary for designing innova-
tive and effective therapeutic approaches.

Molecular approaches are needed to understand the 
mechanisms of ARDS induced by COVID-19. Of particu-
lar interest is the use of metabolomics for the characteri-
zation of this condition. The metabolome reflects early 
and specific alterations in the pathophysiological state 
of biological systems. In this context, Magnetic Reso-
nance Spectroscopy (MRS) emerges as a highly potential 

tool for studying metabolic disorders in respiratory dis-
eases [7]. Several studies have proved the potential of 
MRS-based metabolomics to monitor patients with 
ARDS induced by respiratory infections [8–10]. A previ-
ous study compared the specific metabolic fingerprint of 
ARDS patients with either influenza A pneumonia (IAP) 
caused by the H1N1-2009 influenza virus or pneumo-
nia caused by Streptococcus pneumoniae [11]. Here, we 
used a similar approach for the characterization of the 
metabolic fingerprint of COVID-19-induced ARDS. We 
compared COVID-19 and IAP patients to identify the 
metabolic reprogramming involved in these two condi-
tions. The identification of metabolic pathways involved 
in ARDS caused by the H1N1-2009 influenza virus or 
by SARS-CoV-2 will improve our understanding of the 
pathogenesis of COVID-19. Finally, as a proof of concept 
of the diagnostic potential of these metabolic biomarkers, 
we developed a predictive model to identify the etiologi-
cal pathogens responsible for ARDS.

Methods
Experimental design
Patients with Coronavirus disease 2019 (COVID-19, 
n = 18) were recruited from March 1, 2020, to June 
31, 2020, in Hospital Universitario de Getafe, Madrid. 
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Metabolic profile from ARDS patients with H1N1-2009 
influenza pneumonia was acquired and analyzed in our 
previous study [12]. Serum samples from ARDS patients 
with H1N1-2009 influenza virus pneumonia were 
obtained in Hospital Universitario de Getafe, Madrid, 
Spain (n = 10) and Hospital del Mar, Barcelona, Spain 
(n = 10) during the 2009 pandemic and stored at − 80 °C 
until NMR analysis in September of 2017. H1N1-2009 
infection was confirmed by RT-PCR or either naso-
pharyngeal swab samples or tracheal secretions. In all 
cases, serum samples were obtained within 24 h of pres-
entation to the emergency department. Blood samples 
were collected in BD Vacutainer tubes after each partici-
pant signed informed consent. After collection, the sam-
ple was left at room temperature for 30 min to clot. The 
clot was removed by centrifugation at 1500 × g for 10 min 
at 4 °C. The resulting supernatant was immediately trans-
ferred into 2 ml Eppendorf tubes and stored at − 80 °C.

Inclusion criteria for both studies were: age ≥ 18 years, 
diagnosis of ARDS, confirmed infection by SARS-CoV-2 
or H1N1-2009 influenza virus by real-time reverse tran-
scription-polymerase chain reaction (RT-PCR) of naso-
pharyngeal swab samples, and admission to the Intensive 
Care Unit (ICU). ARDS was defined as in the Ameri-
can-European Consensus Conference (AECC) [13]. All 
patients were mechanically ventilated.

Clinical information was obtained by retrospective 
chart review, and data of the Sequential Organ Failure 
Assessment (SOFA) and the Simplified Acute Physiologic 
Score-II (SAPS II) scores on admission, the presence of 
renal or cardiovascular failure (SOFA score of the respec-
tive component > 2) [14] and status at hospital discharge 
(hospital mortality) were collected.

NMR data acquisition
Serum samples were collected after each participant 
signed informed consent within 24  h of ICU admission 
and examined (40 µl of serum) by high-resolution magic 
angle spinning (HR-MAS) NMR operating at 4  °C to 
reduce metabolic degradation. HR-MAS NMR was per-
formed at 500.13  MHz using a Bruker AMX500 spec-
trometer 11.7 T. HR-MAS NMR has several strengths for 
clinical studies [15]; (1) signals in NMR spectrum have 
the same sensitivity independently of the properties of 
the metabolite; (2) a combination of NMR techniques 
enables the unambiguous identification of metabolic sig-
nals; (3) HR-MAS NMR enables analysis of intact sam-
ples, which is essential considering that factors associated 
with sample preparation contribute to analytical variabil-
ity; (4) metabolite profiles obtained by NMR are virtually 
independent of the operator and instrument used, which 
provides a high degree of reliability to the derived results.

Samples were placed into a 50  μl zirconium oxide 
rotor using a rinsed with a cylindrical insert, together 
with 15 µl of 0.1 mM solution of TSP in deuterium water 
(D2O), and spun at 4000 Hz spinning rate to remove the 
effects of spinning sidebands from the acquired spectra. 
Several bidimensional homonuclear and heteronuclear 
experiments such as standard gradient-enhanced correla-
tion spectroscopy (COSY), 1H–1H total correlated spec-
troscopy (TOCSY), and gradient-selected heteronuclear 
single quantum correlation (HSQC) protocols were per-
formed to carry out component assignments. Between 
consecutive two-dimensional (2D) spectra, a control 1H 
NMR spectrum was continuously measured to detect 
metabolic degradation or microbiologically contamina-
tion. No metabolic differences were noted in the signals 
of multiple spectra acquired under the same conditions. 
Standard solvent-suppressed spectra were grouped into 
32,000 data points, averaged over 256 acquisitions [16]. 
The data acquisition lasted 13  min using a sequence 
based on the first increment of the nuclear Overhauser 
effect spectroscopy (NOESY) pulse sequence to effect 
suppression of the water. Sample acquisitions were per-
formed using a spectral width of 8333.33 Hz before Fou-
rier transformation, and the free induction decay (FID) 
signals were multiplied by an exponential weight func-
tion corresponding to a line broadening of 0.3 Hz. Spec-
tra were referenced to the TSP singlet at 0 ppm chemical 
shift.

NMR data were processed for statistical analysis and 
metabolic quantification. The chemical shifts region 
from 5.00 to 5.20  ppm was excluded from the analysis 
to remove the random and known effects of variation in 
the water resonance suppression. Similarly, the chemical 
shifts region from 0 to 0.04 ppm containing the internal 
reference (TSP) was excluded from the statistical analy-
sis. Phase and baseline correction (Whittaker method) 
were performed automatically using MestRenova v. 8.1 
software (Mestrelab Research S.L., Santiago de Com-
postela, Spain). For statistical analysis, 1H NMR spectra 
were automatically data-reduced to integral segments 
or buckets of equal length (δ = 0.01 ppm) to compensate 
for variations in resonance positions [17], and they were 
normalized to the total sum of the spectral regions. For 
metabolic quantification, full resolution spectra were 
normalized to the total sum of the spectral regions too. 
Relative intensity was calculated as the initial intensity 
normalized to the total sum of the spectral regions.

Statistical analysis
Quantitative and qualitative variables were compared by 
the Student´s t-test or the Chi-square test, respectively. A 
p value less than 0.05 was considered statistically signifi-
cant. The statistical package SPSS IBM Statistics 19.0 was 
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used for the analysis. Descriptive data are presented as 
mean (SD) for continuous variables and percentages for 
discrete variables.

Principal Components Analysis (PCA) [18] was per-
formed over binned NMR spectral data using the Meta-
bonomic package (rel.3.3.1) [19] to analyze in ARDS 
patients the differences between SARS-CoV-2 and 
H1N1-2009 influenza infection. In PCA, the data col-
lected on a set of samples are resolved into principal 
components. The first principal component is defined 
by the spectral profile (loadings) in the data that 
describes most of the variation; the second principal 
component, orthogonal to the first, is the second-best 
profile describing the variation, and so on. The princi-
pal components are composed of so-called scores and 
loadings. Loadings contain information about the vari-
ables (chemical shifts) in the dataset, and scores hold 
information on samples (intensities) in the dataset. 
Before PCA, NMR processed data were centered, and 
Pareto scaled [20]. Hotteling’s T2 test [21] identified the 
NMR areas (NMR bins) from the PCA loading matrix 
responsible for group clustering. The NMR signals in 
the identified NMR areas were individually integrated 
into full resolution spectra for metabolic quantification 
using the Global Spectral Deconvolution algorithm of 
MestRenova v. 8.1 (Mestrelab Research S.L., Santiago 
de Compostela, Spain). Metabolites identification was 
performed manually using Chenomx Profiler tool [22]. 
Metabolites assignments were confirmed by analyzing 
2D-NMR spectra using MestRenova software and the 
Human Metabolome Database [23].

For the metabolic quantification, statistical significance 
was determined using a Bonferroni corrected Student’s 
t-test [24], assuming unequal variance with p < 0.05 con-
sidered significant.

Partial Least Square Discriminant Analysis (PLS-DA) 
[25] was developed as a classificatory model using Meta-
boAnalyst v.5.0 [26] to differentiate in ARDS patients 
those due to IAP from those due to COVID-19. PLS-DA 
models have commonly used classification methods for 
analyzing high-dimensional data. The number of latent 
variables used to develop the PLS-DA model were evalu-
ated by R2 and Q2 robustness parameters. R2 can be 
considered a metric of how the algorithm fits the training 
data, and Q2 is a metric of algorithm performance on test 
data [27]. Q2 parameter, which evaluates the classifica-
tion functions derived from the probability of belonging 
to each group, was computed by leave-one-out cross-
validation (LOOCV) to minimize the variance in training 
[28]. Three PLS components were selected to develop a 
classificatory model based on the best robustness results 
(R2 = 0.94; Q2 = 0.89). Model performance was evalu-
ated by Prediction accuracy during cross-validation and 
the Area Under de Curve Receiver Operating Charac-
teristic (AUC-ROC). AUC-ROC curve is a performance 
measurement for classification problems at various 
threshold settings. The ROC curve is plotted with True 
Positive Rate (sensitivity) against the False Positive Rate 
(1-specificity).

Metabolic pathways analyses
Metabolic pathway analysis was performed using The 
Pathway Analysis module [29] of Metaboanalyst v.5.0 
[26] that combines results from robust pathway enrich-
ment analysis [30] with pathway topology analysis [31] 
to help researchers identify the most relevant pathways 
involved in the conditions under study.

Briefly, pathway enrichment analysis examines whether 
metabolites in predefined pathways are at the top or bot-
tom of a ranked list. In contrast, pathway topology anal-
ysis applies graph theory to measure the importance of 
an experimentally identified metabolite in a predefined 
metabolic pathway. KEGG metabolic pathways were 
used as the backend knowledgebase, the selected path-
way enrichment analysis method was GlobalAncova [32], 
node importance measure for topological analysis was 
out-degree centrality. Centrality is a standard metric used 
in graph theory to estimate the relative importance of 
individual nodes to the overall network [33]. Out-degree 
is the number of outgoing links or the number of succes-
sor nodes.

Results
Characteristics of study patients and laboratory findings 
on admission
We compared ARDS patients with COVID-19 (n = 18) 
with ARDS patients with IAP (n = 20). Compared to 
patients with COVID-19, patients with IAP were younger 

Table 1  Clinical characteristics of the study groups

Values are medians (percentile 25th–percentile 75th), or n and percentage

SAPS II, Simplified Acute Physiology Score II; SOFA score, Sequential Organ 
Failure Assessment score; AKI, acute kidney injury

*Chi-square test (or Fisher’s exact for cells counts < 5) for qualitative variables or 
Mann Whitney U test for quantitative variables

Clinical characteristic IAP (n = 20) COVID-19 (n = 18) p value*

Age 49 (38–71) 60 (54–72) 0.035

Sex (female) 8 (40) 5 (28) 0.506

SAPS II 31 (23–39) 31 (27–34) 0.784

SOFA score 5 (4–7) 4 (3–8) 0.621

PaO2/FiO2 179 (73–230) 118 (99–219) 0.759

Nonsurvivors 3 (15) 5 (28) 0.438

AKI 8 (45) 9 (45) 1.000

Patients receiving 
noradenaline

14 (70) 4 (22) 0.004
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Fig. 1  Principal component analysis (PCA) performed on the NMR data of serum samples from ARDS patients diagnosed with Coronavirus disease 
2019 (COVID-19) and H1N1-2009 influenza pneumonia (IAP). A Score plot discriminated between groups along PC2. B PCA 2 loading plot identified 
the resonances that induce the clustering between IAP and COVID-19 groups. The figure highlights the significant metabolites



Page 6 of 11Lorente et al. Critical Care          (2021) 25:390 

and received more often noradrenaline to maintain a 
mean arterial pressure > 65  mm Hg (Table  1). Disease 
severity as measured by SAPS II score, SOFA score ad 
mortality was similar in both groups.

Metabolomic analysis
An unsupervised classification study with PCA was car-
ried out to analyze in ARDS patients the differences 
between SARS-CoV-2 and H1N1-2009 influenza infec-
tion. PCA (Fig.  1A) provided nearly perfect discrimina-
tion between the two groups of subjects. The resonances 
identified as significantly different by PCA loadings anal-
ysis (Fig.  1B) were individually integrated for metabolic 
quantification. The resonances were identified according 
to Chenomx Profiler database (Fig. 2) and characteristic 
cross-peaks from 2D spectra to help in the unequivocal 
assignation of these metabolites. ARDS patients induced 
by COVID-19 showed higher metabolic concentrations 
of free fatty acids, acetone, creatinine, and lactate, and 
lower metabolic concentrations of valine, 2-hydroxybu-
tyrate, proline, methyl-guanidine, glucose, and tyrosine 
(Table 2; Additional file 1: Figure S1).

The specific metabolic fingerprint (unassigned 1H NMR 
spectra) was then used to develop a partial least squares 
discriminant analysis (PLS-DA) to identify SARS-CoV-2 
infection. PLS-DA successfully discriminated COVID-19 
from IAP (Fig. 3) (Prediction accuracy during cross vali-
dation = 100%; AUCROC = 1).

Metabolic pathway analysis was performed to identify 
the most relevant pathways involved in ARDS develop-
ment (Fig.  4; Additional file  1: Table  S1). This pathway 
analysis identified alterations in amino acids biosynthesis 
and metabolism, glycerolipid metabolism and fatty acid 
degradation, glycolysis, and anaplerotic metabolism.

Discussion
The description of the metabolic alterations induced by 
SARS-CoV-2 infection in ICU patients is fundamental for 
a better understanding of the pathobiology of the disease. 
In the present study, we compared the metabolomic pro-
file of ARDS due either to IAP or to COVID-19 by MRS 
using untargeted multivariate statistical analysis and met-
abolic pathway analysis. We found that the activation of 
many metabolic pathways was different between ARDS 
patients with COVID-19 or IAP. Furthermore, the serum 
metabolite profile of patients with ARDS discriminates 
the specific virus infection (H1N1-2009 influenza pneu-
monia versus SARS-CoV-2 pneumonia). PLS-DA model 
provided a classification accuracy of 100%. These findings 
are helpful for the understanding of the pathogenesis of 
severe COVID-19. Specifically, the metabolomic profile 
of ARDS in these patients suggests alterations in energy 
pathways, inflammatory response, and oxidative stress.

Previous studies that have analyzed the metabolism 
of patients with COVID-19 [34–39] were designed to 
compare the metabolic profile of COVID-19 patients 
with healthy controls or to evaluate the metabolic differ-
ences between patients with a positive or negative out-
come. Thus they cannot discern between the metabolic 
dysregulation due to SARS-CoV-2 infection or due to 
ARDS development. To the best of our knowledge, this 
is the first study designed to compare the metabolic pro-
file of ICU patients with similar severity of ARDS due to 
COVID-19 or to other viral respiratory infections, e.g. 
IAP.

We have found specific metabolic differences between 
ARDS patients induced by COVID-19 or IAP. Most of 
these metabolic alterations have been previously reported 
as biomarkers of ARDS or ARDS severity [8–10]. For 

Fig. 2  Representative 1H HR-MAS NMR spectrum serum sample from COVID-19 ARDS patient. The figure highlights metabolic assignments
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example, a similar serum metabolic profile including pro-
line, glutamate, phenylalanine, and valine was reported 
as a sensitive biomarker of ARDS severity (mild, moder-
ate, and severe) [40]. However, we have to consider that, 
unlike previous studies, in which metabolic changes 
induced by the viral infection itself or by the occurrence 
of ARDS cannot be distinguished, IAP and COVID-19 
patients in the present study all met the criteria for the 
diagnosis of ARDS, and disease severity was similar. Thus 
differences in the metabolic profile herein reported are 
better explained by virus-specific pathogenetic mecha-
nisms rather than by the occurrence of ARDS or by dis-
ease severity.

The ability of patients to normalize energy metabo-
lism has been reported as one of the critical factors 

determining the COVID-19 progression [39]. Compared 
with IAP patients, COVID-19 patients showed up-reg-
ulation of energy-generating pathways, i.e. glycolysis, 
fatty acid degradation, CoA biosynthesis, glycerolipids, 
and glycerophospholipids metabolism. The increase of 
lactate-to-glucose ratio found in COVID-19 patients 
is a biomarker of the up-regulation in the glycolysis 
pathway [41]. In the same context, dysregulation of the 

Table 2  Relative change in the concentration of the identified 
metabolites

IAP, influenza A pneumonia

Statistical significance was determined using a Bonferroni corrected Student’s t 
test assuming significant unequal corrected variance with p < 0.05

Metabolite IAP COVID-19 P value Relative 
change 
(%)

Fatty acids 73.57 85.22 0.0375 16

Isoleucine 3.41 2.88 0.1477 − 15

Valine 4.46 3.59 0.0237 − 19

Isobutyrate 0.09 0.09 0.9932 0

Methylsuccinate 0.14 0.12 0.6781 − 15

Alanine 5.60 5.29 0.6368 − 6

2-Hydroxybutyrate 4.50 2.31 0.0003 − 49

Lysine 1.44 1.65 0.7029 14

Acetate 1.81 1.93 0.8101 7

Proline 74.87 64.23 0.0049 − 14

Acetone 2.78 4.02 0.0424 45

Glutamate 4.66 7.15 0.0807 53

Glutamine 6.81 6.17 0.6102 − 9

Citrate − 0.18 0.04 0.1807 − 123

Aspartate 0.43 0.19 0.0597 − 56

Methylguanidine 2.45 0.56 0.0041 − 77

Creatine 0.88 0.91 0.8831 3

Creatinine 0.76 0.57 0.0358 − 25

Choline 0.96 1.04 0.5691 9

Phosphocholine 1.27 1.42 0.2644 12

Glycerophosphocholine 2.61 2.72 0.6764 4

Glycerol 7.69 8.72 0.2456 13

Creatinine 0.45 1.39 0.0144 211

Lactate 8.80 11.10 0.0257 26

Glucose 5.86 9.42 0.0005 61

Tyrosine 0.34 0.12 0.0051 − 66

Phenylalanine 1.24 0.60 0.0619 − 52

Fig. 3  A Predicted class probabilities plot (average of the 
cross-validation) for each sample using the best classifier (based on 
R2 = 0.94 and Q2 = 0.89 PLS robustness parameters) of the PLS model 
(3 PLS components). As a balanced subsampling approach is used 
for model training, the classification boundary is always at the center 
(x = 0.5, the dotted line). B Area under de curve receiver operating 
characteristic (AUCROC) of PLS-DA. COVID, COVID-19; H1N1, influenza 
A pneumonia
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choline metabolism and elevated levels of free poly-
unsaturated fatty acids are biomarkers of the energy defi-
ciency reported in COVID-19 patients [42]. However, 
other authors [34, 43] have associated the dysregulation 
of lipid metabolism with a higher atherosclerotic risk in 
COVID-19 patients. In the same line, COVID-19 patients 
showed a higher phenylalanine-tyrosine ratio that has 
been associated with an adverse outcome [39] and may 
indicate a higher cardiovascular risk [44] in COVID-19 
patients [45]. Other supplementary energy-generating 
pathways were also up-regulated. The excess of ketone 

bodies such as acetone suggests that they are used as an 
alternative energy source. Ketosis could be explained in 
the context of acute illness and lack of adequate caloric 
intake.

Alteration in amino acidic metabolism has been 
reported as one of the key features of ARDS develop-
ment [8, 9], and it has also been found significantly 
up-regulated in COVID-19 patients [34, 39, 46, 47]. 
However, when we compared the metabolic profile of 
patients with ARDS due to COVID-19 or to IAP, we 
found that the amino acidic metabolism was decreased 

Fig. 4  Summary of metabolic pathway analysis. Y axis represents the statistical p values from enrichment analysis, and the X axis represents the 
pathway impact value calculated from pathway topology analysis
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in COVID-19 patients. The serum concentrations 
of branched-chain amino acids (BCAAs), including 
isoleucine and valine, were decreased in COVID-19 
compared with IAP patients. As elevated circulating 
BCAAs may promote oxidative stress [48], the lower 
levels of BCAAs in patients with COVID-19 may result 
in less intense inflammatory response as compared to 
patients with influenza A [49]. Downregulated BCAAs 
may also be considered a potential marker of the infec-
tion and its further involvement in the dysregulation of 
pantothenate and CoA biosynthesis [47], as confirmed 
by the enrichment analysis. Pantothenic acid (vitamin 
B5) is required for coenzyme A formation and is also 
essential for α-ketoglutarate and pyruvate dehydro-
genase complexes as well as fatty acid oxidation, com-
promising the mitochondrial energy metabolism [50]. 
The increase in 2-hydroxybutyric acid, a readout of 
hepatic glutathione synthesis and marker of oxidative 
stress [50], and essential amino acids such as proline 
[51] confirmed more marked inflammatory and oxi-
dative stress responses [52] in IAP than in COVID-19 
patients. A previous study also identified dysregula-
tion of propanoate metabolism as a novel pathway in 
the progression of COVID-19 [46], suggesting potential 
roles played by gut microbiota in the immune response 
[53]. Finally, the methyl-guanidine-to-creatinine ratio is 
an index of hydroxyl radical formation in the lung, and 
it was identified previously as a specific metabolic pat-
tern of IAP [11].

Several limitations of the study should be acknowl-
edged. First, the metabolic concentrations reported 
are relative to the total metabolic concentration, and 
baseline clinical differences among groups should be 
taken into consideration when interpreting the results. 
We did not perform absolute quantification because 
of limitations in sample manipulation for HR-MAS 
NMR analysis. External validation is required before 
the application of the specific metabolic fingerprint in 
clinical practice. Second, despite the overall similarity 
in disease severity (as measured by the SAPS II score, 
the SOFA score, and the mortality), patients differed 
in some characteristics, such as age and the require-
ment of noradrenaline, that could have an impact on 
the metabolic profile. Also, oxygenation impairment 
differed in the two groups, although the difference did 
not reach statistical significance. Third, some aspects 
of patients management could differ in the cohorts, 
as they span some years apart. Specifically, the way 
patients were mechanically ventilated could have had 
an impact on the metabolic profile. After the publica-
tion of the ARMA trial in 2000 [54], different studies 
reported changes in the way mechanical ventilation 
was used, i.e., a lower tidal volume and slightly higher 

PEEP levels [55, 56]. However, other studies have failed 
to show significant changes after 2010 [57, 58]. Thus, it 
is unlikely that the metabolic changes reported in the 
present study are due to different mechanical ventila-
tion strategies in the two groups. Fourth, ARDS was 
diagnosed according to the AECC, followed when the 
first cohort was recruited.

Conclusions
In summary, we have characterized a specific metab-
olomic fingerprint that allows the discrimination 
between ARDS due to SARS-CoV-2 or to H1N1-2009 
influenza virus in ARDS patients. The description of 
the metabolic alterations herein reported will help bet-
ter understand the pathobiology of ARDS and its differ-
ent causes and may have translational implications for 
biomarker discovery and the design of novel therapeu-
tic targets.
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