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Abstract 

Background:  Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome, and the identification of 
homogeneous subgroups and phenotypes is the first step toward precision critical care. We aimed to explore whether 
ARDS phenotypes can be identified using clinical data, are reproducible and are associated with clinical outcomes 
and treatment response.

Methods:  This study is based on a retrospective analysis of data from the telehealth intensive care unit (eICU) col-
laborative research database and three ARDS randomized controlled trials (RCTs) (ALVEOLI, FACTT and SAILS trials). We 
derived phenotypes in the eICU by cluster analysis based on clinical data and compared the clinical characteristics 
and outcomes of each phenotype. The reproducibility of the derived phenotypes was tested using the data from 
three RCTs, and treatment effects were evaluated.

Results:  Three clinical phenotypes were identified in the training cohort of 3875 ARDS patients. Of the three pheno-
types identified, phenotype I (n = 1565; 40%) was associated with fewer laboratory abnormalities, less organ dysfunc-
tion and the lowest in-hospital mortality rate (8%). Phenotype II (n = 1232; 32%) was correlated with more inflamma-
tion and shock and had a higher mortality rate (18%). Phenotype III (n = 1078; 28%) was strongly correlated with renal 
dysfunction and acidosis and had the highest mortality rate (22%). These results were validated using the data from 
the validation cohort (n = 3670) and three RCTs (n = 2289) and had reproducibility. Patients with these ARDS pheno-
types had different treatment responses to randomized interventions. Specifically, in the ALVEOLI cohort, the effects 
of ventilation strategy (high PEEP vs low PEEP) on ventilator-free days differed by phenotype (p = 0.001); in the FACTT 
cohort, there was a significant interaction between phenotype and fluid-management strategy for 60-day mortality 
(p = 0.01). The fluid-conservative strategy was associated with improved mortality in phenotype II but had the oppo-
site effect in phenotype III.
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Introduction
According to the Berlin definition, acute respiratory dis-
tress syndrome (ARDS) is a clinical syndrome defined 
by acute-onset hypoxemia (partial pressure of arterial 
oxygen [PaO2] to fraction of inspired oxygen [FiO2] 
ratio < 300) and bilateral pulmonary opacities not fully 
explained by cardiac failure or volume overload [1]. A 
wide variety of etiologies and pathologies are included in 
this definition, leading to complex biological and clini-
cal heterogeneity [2]. This heterogeneity is recognized 
as the main contributor to negative treatment outcomes 
for ARDS in numerous randomized controlled trials 
(RCTs) with regard to pharmacological interventions [3, 
4]. In recent decades, positive results of trials of several 
supportive care interventions, including lung protec-
tive mechanical ventilation [5], neuromuscular blockade 
[6] and prone positioning [7], have led to improvements 
in ARDS survival. However, ARDS is still a major com-
plication in critically ill patients and has high morbidity 
and mortality rates [8–10]. Consequently, it is impor-
tant to identify distinct subgroups of ARDS patients 
and increase the efficacy of interventions with targeted 
subgroups.

Our understanding of the heterogeneity of critical ill-
ness syndromes has improved with the use of mathemati-
cal and statistical methods, such as cluster analysis and 
latent class analysis (LCA) [11]. Seymour and colleagues 
identified four clinical phenotypes of sepsis by cluster 
analysis, and they were correlated with host-response 
patterns and clinical outcomes [12]. Similarly, two ARDS 
subphenotypes (hyperinflammatory and hypoinflamma-
tory) have been identified from analyses of four cohorts 
of patients derived from the National Heart, Lung, and 
Blood Institute (NHLBI) ARDS Network RCT [13–15]. 
They had different mortality rates and different treat-
ment responses to randomized interventions. However, 
all these ARDS studies used plasma biomarkers as class-
defining variables, such as sTNFR-1 and interleukins 
(ILs), which are not routinely available and cannot be 
quantified rapidly at the bedside. Thus, the clinical appli-
cability of this classification system may be limited.

In this study, we hypothesized that more phenotypes 
could be identified by cluster analysis based on routine 
clinical data in a large ARDS target population and that 
these phenotypes were associated with clinical outcomes. 

In addition, the derived phenotypes were assessed 
in other ARDS validation cohorts. Furthermore, we 
hypothesized that these ARDS phenotypes were associ-
ated with different treatment responses to randomized 
interventions.

Methods
Study design
Our study included one large database and three RCTs 
(Additional file  1: Figure S1). First, we derived clinical 
phenotypes by cluster analysis in the derivation cohort. 
A clustering model was trained in this step. Second, we 
cross-validated the clustering analysis results in the 
validation cohort and tested their stability. Third, we 
assessed the reproducibility of the derived ARDS pheno-
types using the data from three RCTs. Fourth, we com-
pared the treatment effects between phenotypes using 
the data from three RCTs. Finally, the derived clinical 
phenotypes were compared with traditional patient risk 
stratification metrics, such as the Berlin classification of 
ARDS and Acute Physiology and Chronic Health Evalua-
tion (APACHE) score.

Population
The analysis is based on the telehealth intensive care unit 
(eICU) collaborative research database, a multicenter 
ICU database with over 200,000 electronic medical 
records from 335 units at 208 hospitals across the USA 
[16]. We used the International Classification of Diseases, 
Ninth Revision, Clinical Modification (ICD-9-CM) codes 
and APACHE Admission Diagnosis entry to identify 
patients who met the ARDS diagnostic criteria. Patients 
were excluded based on a set of exclusion criteria, for 
example, expiration of patients within 24 h, disqualifying 
the P/F ratio, or missing over half of the clinical variables 
(SMethods and Additional file  1: Figure S2). Patients 
discharged from the hospital in 2014 were enrolled in 
the training cohort, and those discharged in 2015 were 
enrolled in the validation cohort.

All three RCTs were multicenter studies from the 
ARDS Network, funded by the NHLBI, and included 
the ALVEOLI, FACTT and SAILS trials [17–19]. The 
ALVEOLI trial was a multicenter randomized controlled 
trial that compared ventilation with lower versus higher 
positive end-expiratory pressure (PEEP) in patients with 

Conclusion:  Three clinical phenotypes of ARDS were identified and had different clinical characteristics and out-
comes. The analysis shows evidence of a phenotype-specific treatment benefit in the ALVEOLI and FACTT trials. These 
findings may improve the identification of distinct subsets of ARDS patients for exploration in future RCTs.

Keywords:  Acute respiratory distress syndrome, Phenotype, Cluster analysis, Clinical characteristics and outcomes, 
Treatment strategy
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ARDS. The FACTT trial compared liberal fluid therapy 
versus conservative fluid therapy in patients with ARDS. 
The SAILS trial compared a placebo with rosuvastatin in 
patients with ARDS. It is noteworthy that the three RCTs 
tested different clinical interventions, but all reported 
negative 60-day mortality results.

Selection of clinical variables
After the evaluation of data availability and the rate of 
missing clinical variables in the eICU dataset and the 
three RCTs (Additional file  1: Figure S2 and Table  S1), 
21 variables were selected as training variables for the 
derivation of ARDS phenotypes. These variables were 
sex; age; temperature; heart rate; respiration rate; systolic 
blood pressure (SBP); Glasgow Coma Scale score; potas-
sium, sodium, glucose, hematocrit, creatinine, blood urea 
nitrogen (BUN), bicarbonate, albumin, and total biliru-
bin levels; platelet count; white blood cell (WBC) count; 
paO2; paCO2; and pH. For each variable, we extracted 
the most abnormal value recorded in the 16-h time win-
dow surrounding the ARDS diagnosis (8 h before and 8 h 
after).

Statistical analysis
Prior to performing the cluster analysis, data clean-
ing, distribution transformation, extreme value bound-
ing, missing value imputation, and correlation analysis 
were performed to ensure the integrity of the data. After 
examining the distribution of the selected variables, data 
cleaning was performed to filter out erroneous measure-
ments (SMethods in the Additional file). Following data 
cleaning, we examined the skewness of the selected vari-
ables and applied log transformation to variables with a 
right-skewed distribution (Additional file  1: Table  S2). 
Extreme value bounding was then applied, and normali-
zation was subsequently performed. To address missing 
values, we excluded patients with 10 or more missing var-
iables and performed multiple imputation with a chained 
equation (MICE) (Additional file 1: Table S3). Finally, the 
correlation matrix of 21 clinical variables was evaluated 
(Additional file 1: Figure S3).

In cluster analysis, ordering points to identify the 
clustering structure (OPTICS) are applied to determine 
the appropriate clustering algorithm. K-means cluster-
ing (K-means) was used as the clustering model, and 
gap and gap* statistics were calculated to determine the 
optimal number of clusters. Consensus clustering (CC) 
was applied to evaluate the optimal number of clusters 
and cluster assignments of K-means under resampling 
(SMethods in Additional file 1). After the optimal pheno-
types were derived, the results were visualized with t-dis-
tributed stochastic neighbor embedding (t-SNE), line and 
rank plots.

To evaluate derived clinical phenotypes, we evaluated 
the clustering model in the eICU validation cohort and 
the three RCTs. First, data cleaning, normalization, and 
imputation were performed, and the clinical phenotypes 
were predicted (SMethods in Additional file). We studied 
the stability of the clinical characteristics, frequency, and 
mortality of each phenotype across different cohorts. In 
the three RCTs, heterogeneity of treatment effect (HTE) 
was also evaluated by the interaction test. To confirm 
that the derived clinical phenotypes were not a simple 
reconstruction of traditional patient risk stratification 
systems, we studied (1) the conditional distribution of 
the APACHE score with respect to different phenotypes, 
(2) an alluvial plot of the distribution of phenotypes with 
respect to the Berlin classification of ARDS, and (3) the 
predictive power of the APACHE score and P/F ratio for 
the clinical phenotypes.

The clinical characteristics of the phenotypes are pre-
sented as the counts with percentages, means with stand-
ard deviations (SDs) or medians with interquartile ranges 
(IQRs), as appropriate. Chi-square and Kruskal–Wallis 
tests were performed where appropriate. Heterogene-
ity of the treatment effect was tested by the interaction 
term of the logistic regression for mortality and Poisson 
regression for ICU-free days (IFD) and ventilator-free 
days (VFD). Level of significance for test of interaction 
was adjusted to 0.0167 according to Bonferroni correc-
tion. Analyses were performed with Python 3.6.7 (Python 
Software Foundation) and R version 3.6.3 (R Foundation 
for Statistical Computing).

Results
Patients in the study
For the eICU database, a total of 10,291 patients met 
the diagnostic criteria for ARDS, and 7545 patients 
were enrolled in the study. Among the enrolled popula-
tion, 3875 patients were included in the eICU derivation 
cohort, and 3670 patients were included in the eICU vali-
dation cohort (Additional file  1: Figure S4). The in-hos-
pital mortality rates and severity of illness measured by 
APACHE IV scores were similar across the two cohorts 
(Additional file 1: Table S4). A total of 2289 patients (549 
from ALVEOLI, 995 from FACTT and 745 from SAILS) 
from the three RCTs were enrolled in the study. The clini-
cal characteristics of patients from the three RCTs can be 
found in Additional file 1: Table S5.

Derivation of three ARDS phenotypes
Based on OPTICS, gap statistics, cluster consensus and 
clustering stability, the optimal number of clusters was 
determined to be 3 (Additional file  1: Figure S5-9). The 
derived phenotypes were visualized by line and t-SNE 
plots (Additional file  1: Figure S10-11). The sizes and 
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baseline characteristics of the three phenotypes in the 
eICU derivation cohort are presented in Table  1 and 
Additional file 1: Table S6. The three phenotypes had dif-
ferent clinical characteristics and organ failure patterns. 
We ranked the contribution of each variable to the clini-
cal phenotype in Fig. 1. Phenotype I was associated with 
fewer abnormal laboratory values and less organ failure. 
Phenotype II was characterized by a higher WBC count, 
temperature, heart rate and respiratory rate, a lower SBP 

and a younger age. Phenotype III was characterized by an 
older age, elevated serum creatinine and BUN levels, and 
lower serum bicarbonate levels. Intraphenotype differ-
ences in sex, glucose level, sodium level, and partial pres-
sure of oxygen were not significant. The reproducibility 
of the derived clinical phenotypes was evaluated, and 
we found that both the phenotype size and clinical char-
acteristics of the validation cohort and the three RCTs 
were similar to those of the derivation cohort (Additional 

Table 1  Characteristics of the phenotypes on eICU derivation cohort

eICU, telehealth intensive care unit; APACHE, Acute Physiology and Chronic Health Evaluation; CABG, coronary artery bypass graft; COPD, chronic obstructive 
pulmonary disease; BPM, beats per minute; SD, standard deviation; IQR, interquartile range; PaO2, partial pressure of oxygen; PaCO2, partial pressure of carbon 
dioxide; WBC, white blood cell count

*Berlin classification for 1693 patients with valid arterial blood gas (ABG) test in eICU derivation cohort
† In-hospital days calculated as the time difference in days between ICU admission and hospital discharge

Characteristic eICU derivation phenotype-I phenotype-II phenotype-III

No. of patients (%) 3875 1565 1232 1078

Age, mean (SD), years 66.0 (15.5) 67.3 (14.6) 61.2 (16.7) 69.6 (13.9)

Gender—female, No. (%) 1825 (47.1%) 787 (50.3%) 593 (48.1%) 445 (41.3%)

Past history

 Hypertension (%) 2177 (56.7%) 905 (58.4%) 569 (46.6%) 703 (65.6%)

 Insulin-dependent diabetes (%) 608 (15.8%) 228 (14.7%) 131 (10.7%) 249 (23.2%)

 COPD (%) 975 (25.4%) 506 (32.7%) 223 (18.3%) 246 (22.9%)

 CABG (%) 248 (6.5%) 102 (6.6%) 47 (3.8%) 99 (9.2%)

APACHE IV Score, mean (SD) 62.6 (26.1) 52.6 (20.5) 65.4 (27.6) 74.2 (26.3)

Berlin classification*

 Mild (%) 424 (25.0%) 185 (27.2%) 106 (19.5%) 133 (28.4%)

 Moderate (%) 743 (43.9%) 345 (50.7%) 217 (39.9%) 181 (38.6%)

 Severe (%) 526 (31.1%) 150 (22.1%) 221 (40.6%) 155 (33.0%)

Temperature, mean (SD), °C 37.3 (0.8) 37.0 (0.6) 37.8 (0.9) 37.0 (0.7)

Heart rate, mean (SD), BPM 104.2 (22.7) 97.4 (19.0) 117.5 (22.2) 98.8 (21.3)

Respiratory rate, mean (SD), breaths/min 28.6 (8.3) 26.3 (7.1) 32.6 (9.1) 27.4 (7.1)

Systolic blood pressure, mean (SD), mm Hg 102.2 (21.9) 109.6 (21.5) 96.6 (18.9) 98.3 (23.0)

Glasgow Coma Scale score, mean (SD) 12.3 (3.7) 13.1 (3.2) 11.4 (4.1) 12.1 (3.6)

Potassium, mean (SD), mg/L 4.1 (0.7) 4.1 (0.6) 3.7 (0.5) 4.5 (0.7)

Sodium, mean (SD), mg/L 137.5 (5.7) 137.9 (5.3) 137.9 (6.0) 136.3(5.7)

Glucose, median (IQR), mg/dL 131.0 (107.0–168.0) 134.0 (110.0–170.0) 125.0 (104.0–153.0) 135.0 (105.0–185.0)

Hematocrit, mean (SD), g/dL 33.8 (7.2) 37.3 (6.5) 32.3 (6.7) 30.6 (6.4)

Creatinine, median (IQR), mg/dL 1.2 (0.8–1.9) 1.0 (0.7–1.3) 1.0 (0.7–1.4) 2.6 (1.8–4.4)

Blood urea nitrogen, median (IQR), mg/dL 24.0 (16.0–39.0) 20.0 (14.0–28.0) 18.0 (12.0–27.0) 50.0 (36.0–67.0)

Bicarbonate, mean (SD), mmol/L 25.3 (6.4) 29.3 (5.8) 23.4 (5.1) 21.5 (5.2)

Platelets, median (IQR), × 109 /L 206.0 (150.0–275.0) 217.0 (171.8–286.2) 196.0 (131.0–264.0) 191.0 (129.0–265.0)

White blood cell count, median (IQR), × 109 /L 11.6 (8.2–16.1) 10.9 (8.1–14.6) 12.4 (8.5–17.5) 12.1 (8.3–17.0)

Albumin, mean (SD), g/dL 2.9 (0.7) 3.3 (0.6) 2.7 (0.7) 2.8 (0.7)

Total Bilirubin, median (IQR), mg/dL 0.6 (0.4–1.0) 0.5 (0.4–0.8) 0.7 (0.5–1.2) 0.7 (0.4–1.2)

PaO2, mean (SD), mm Hg 73.0 (59.0–97.0) 74.0 (60.0–95.0) 71.0 (58.0–96.0) 75.4 (59.6–100.0)

PaCO2, mean (SD), mm Hg 41.0 (34.0–51.0) 51.0 (42.5–65.0) 36.0 (31.0–41.0) 38.0 (31.0–45.0)

pH, mean (SD), unit 7.3 (0.1) 7.3 (0.1) 7.4 (0.1) 7.3 (0.1)

In-hospital days†, median (IQR), d 6.0 (3.0–11.0) 5.0 (3.0–9.0) 7.0 (4.0–13.0) 6.0 (3.0–11.0)

In-hospital mortality, No. (%) 572 (14.8%) 117 (7.5%) 219 (17.8%) 236 (21.9%)
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file 1: Table S7-10). The biomarker IL-6 was assessed in 
the ALVEOLI trial. Phenotype II patients have higher 
IL-6 levels (median: 421.5, IQR: 149.5–1447.2) than Phe-
notype I patients (median: 164.0, IQR: 67.0–398.5) and 
Phenotype III patients (median: 246.0, IQR: 95.5–939.0) 
(Table S8).

Relationship between phenotypes and clinical outcomes
The three derived phenotypes had distinct clinical out-
comes, and those distinctions were consistent in the 
other four cohorts. All cohorts showed significant dif-
ferences in mortality by phenotype (p < 0.05, Fig.  2). 
In the eICU derivation and validation cohorts, pheno-
type I patients had a much lower in-hospital mortal-
ity rate (7.5% and 7.4%) than phenotype II (17.8% and 
17.1%) and phenotype III (21.9% and 21.7%) patients. In 
the three RCTs, the mortality rate followed similar pat-
terns, where phenotype I had the lowest 60-day mortal-
ity rate (18.8–22.7%) and phenotype III had the highest 
60-day mortality rate (33.5–40.5%). The three derived 

phenotypes demonstrated significant differences in VFD 
and IFD across the three RCTs (p < 0.001, Additional 
file  1: Table  S11). Patients assigned to phenotype I had 
the most VFD (median: 19–22  days) and IFD (median: 
17–19  days), whereas patients assigned to phenotype 
III had the least VFD (median: 10–17  days) and IFD 
(median: 7–14 days).

Heterogeneity of treatment effects
Heterogeneity in treatment effects was detected in two 
RCTs. In the ALVEOLI trial, significant effects of the 
interaction between phenotype and PEEP strategy were 
identified for VFD and IFD (Additional file 1: Figure S12; 
p < 0.01). Patients treated with higher PEEP had fewer 
VFD and IFD in phenotype I (Table  2). In the FACTT 
trial, we identified a significant effect of the interaction 
between phenotype and treatment strategy on 60-day 
mortality (Additional file 1: Figure S13; p = 0.011); mor-
tality among phenotype II patients was 22% with the fluid 
conservative strategy versus 32% with the fluid liberal 

Fig. 1  Rank plot of variable mean among paired phenotypes on eICU derivation cohort
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Fig. 2  Morality by phenotypes
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strategy, while mortality among phenotype III patients 
was 45% with the fluid conservative strategy versus 36% 
with the fluid liberal strategy (Table  3). No strong HTE 
was observed in the SAILS trial (Additional file 1: Figure 
S14).

Finally, we evaluated the relationship between the 
derived clinical phenotypes and other measures of illness 
severity. We estimated the distribution of the APACHE 
score for each phenotype and confirmed that they largely 
overlapped with each other (Fig.  3). The alluvial plot 
shows that each Berlin severity level has a significant 
presence in all clinical phenotypes (Additional file 1: Fig-
ure S15). Finally, a logistic regression model was fitted to 
classify the clinical phenotype using the APACHE score 
and P/F ratio as predictors. A low ROC AUC confirmed 
that the derived clinical phenotypes cannot be sim-
ply explained by the APACHE score or PaO2/FiO2 ratio 
(Additional file 1: Figure S16).

Discussion
We identified three clinical phenotypes in a retrospec-
tive analysis of the eICU database using only routinely 
available clinical data. The ARDS phenotypes as defined 
by cluster analysis differed in demographics, patterns 
of organ failure, laboratory abnormalities, and general 

illness severity, and the Berlin classification could not 
fully explain the derived phenotypes. These results were 
validated across all additional cohorts and trials and were 
consistent. Furthermore, the three phenotypes were cor-
related with mortality and other clinical outcomes. We 
identified a significant interaction between the pheno-
types and treatment strategies in both the ALVEOLI 
and FACTT trials. No strong heterogeneity of treatment 
effects was observed in the SAILS trial.

To our knowledge, this is the largest study identify-
ing homogeneous phenotypes in ARDS; this study used 
data from 9834 patients. In addition, three phenotypes 
were derived from a non-RCT database with more het-
erogeneous ARDS samples, and only routinely available 
clinical data were used in the cluster analysis to ensure 
the generalizability of the model. Indeed, the population 
characteristics of the ARDS patients in the three RCTs 
were not exactly the same as those in the eICU database. 
For example, only 75% of patients in the eICU database 
had a PaO2/FiO2 ratio < 200. However, in the ALVEOLI 
and FACTT trials, this number was above 90%. In addi-
tion, subjects enrolled in the SAILS trial all had infec-
tion-related ARDS [19]. Interestingly, even though the 
eICU cohorts and RCTs had vastly different ARDS popu-
lations, the frequency, clinical characteristics and clinical 

Table 2  Differences in response to PEEP strategy by phenotype (ALVEOLI cohort)

For test of interaction, 60-day mortality of phenotype-I versus II p = 0.25, phenotype-I versus III p = 0.25, phenotype-II versus III p = 0.99; ventilator-free days (VFD) of 
phenotype-I versus II p = 0.002, phenotype-I versus III p = 0.001, phenotype-II versus III p = 0.67; ICU-free days (IFD) of phenotype-I versus II p < 0.001, phenotype-I 
versus III p < 0.001, phenotype-II versus III p = 0.47. VFD: number of days during the 28-day period where patients are both alive and free of mechanical ventilation; 
IFD: number of days during the 28-day period where patients are both alive and free of ICU care; ALVEOLI, randomized controlled trials of higher versus lower PEEP; 
PEEP, positive end-expiratory pressure; ICU, intensive care unit

PEEP Strategy phenotype-I phenotype-II phenotype-III

Low PEEP 
(n = 108)

High PEEP 
(n = 115)

Low PEEP (n = 97) High PEEP 
(n = 82)

Low PEEP (n = 68) High 
PEEP 
(n = 79)

60-day mortality 14.8% 22.6% 28.9% 28.1% 35.3% 34.2%

Ventilator-free days 18.0 15.5 12.1 12.3 10.7 11.3

ICU-free days 16.1 14.2 9.9 10.8 9.1 10.4

Table 3  Differences in response to fluid strategy by phenotype (FACTT cohort)

For test of interaction, 60-day mortality of phenotype-I versus II p = 0.61, phenotype-I versus III p = 0.05, phenotype-II versus III p = 0.01. Ventilator-free days (VFD) 
of phenotype-I versus II p = 0.39, phenotype-I versus III p = 0.27, phenotype-II versus III p = 0.08; ICU-free days (IFD) of phenotype-I versus II p = 0.15, phenotype-I 
versus III p = 0.29, phenotype-II versus III p = 0.83. VFD: number of days during the 28-day period where patients are both alive and free of mechanical ventilation. 
IFD: number of days during the 28-day period where patients are both alive and free of ICU care. FACTT, randomizedcontrolled trials of liberal fluid therapy versus 
conservative fluid therapy; ICU, intensive care unit

Fluid-management strategy phenotype-I phenotype-II phenotype-III

Conservative 
(n = 200)

Liberal (n = 188) Conservative 
(n = 164)

Liberal (n = 149) Conservative 
(n = 137)

Liberal (n = 157)

60-day mortality 14.5% 19.2% 22.0% 32.2% 45.3% 36.3%

Ventilator-free days 16.8 14.2 14.3 11.6 10.6 9.4

ICU-free days 14.9 13.0 12.7 10.4 9.4 7.8
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outcomes of the phenotypes were similar across the five 
cohorts in our study, which demonstrates the universal-
ity of the three phenotypes derived from our clustering 
model.

To date, progress has been made in several studies with 
regard to the phenotyping of patients with ARDS. Calfee 
et al. previously reported two distinct ARDS phenotypes 
(hyperinflammatory and hypoinflammatory) from a ret-
rospective study of two RCTs, where the patients were 
clustered by LCA using biomarker and clinical data [13]. 
Then, a two-phenotype model was reported in the other 
three RCTs [14, 15, 20] and in one observational cohort 
[21]. The hyperinflammatory phenotype was character-
ized by higher plasma concentrations of inflammatory 
biomarkers and higher mortality than the hypoinflamma-
tory phenotype. Sinha et al. recently reported that hyper-
inflammatory and hypoinflammatory phenotypes can be 
accurately predicted without biomarker data using super-
vised learning [22]. In this study, we generated a three-
phenotype model clustered by K-means using clinical 
data only. Phenotype I was similar to the hypoinflamma-
tory phenotype since both subgroups had fewer abnor-
mal vital and laboratory results, with the lowest mortality 
risk; it also resembles the previously reported phenotype 
called ‘rapidly improving ARDS’ or ‘class 3’ [23, 24]. Phe-
notype II was correlated with inflammation and shock 
and was associated with a higher mortality rate than phe-
notype I. Interestingly, phenotype II was similar to the 
hyperinflammatory phenotype in many ways; specifically, 
patients in both subgroups had elevated IL-6, elevated 

heart rate, elevated respiratory rate, and decreased SBP. 
Phenotype III was correlated with organ dysfunction, 
older age, and acidosis and had the highest mortality 
rate. It is possible that organ dysfunction and older age 
may contribute more to an increased mortality rate than 
inflammation in these ARDS patients. Compared with 
the two-phenotype model derived from RCTs, our three-
phenotype model may be more comprehensive. The iden-
tification of these subsets can help us better understand 
the heterogeneity of ARDS. Furthermore, the identifica-
tion of three phenotypes in our study may be useful to 
propose interventions for patients with a higher risk of 
mortality (prognostic enrichment). The pathophysiologi-
cal mechanisms underlying these different phenotypes 
warrant further exploration.

In our study, three RCTs that had been used to derive 
the two-phenotype model were selected as validation 
cohorts to assess the interaction between phenotype and 
treatment. According to a previous study, the FACTT 
trial did not show an overall benefit for 60-day mortality 
based on the type of fluid management received. How-
ever, Famous et  al. reported that the hyperinflamma-
tory phenotype was associated with different treatment 
responses to fluid management than the hypoinflamma-
tory phenotype in a two-phenotype model. Our study 
also revealed the heterogeneity of treatment effects in 
the FACTT population, and we identified a significant 
interaction between phenotype and fluid-management 
strategy in 60-day mortality; specifically, phenotype 
II patients had lower mortality when randomized to a 

Fig. 3  Estimated conditional distribution of APACHE IV score over phenotypes
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conservative strategy, while phenotype III patients had 
higher mortality when randomized to the same strategy. 
In other words, the conservative fluid therapy strategy 
reduced the 60-day mortality of phenotype II patients. 
It is possible that more proinflammatory factors are 
released into the lung and extrapulmonary organs during 
severe infection, resulting in microvascular damage [25]. 
Extravascular fluid tends to accumulate, which can be 
ameliorated by fluid restriction. Phenotype II derived in 
our study is similar to the hyperinflammatory phenotype 
reported by Famous et al., both in clinical characteristic 
and in response to fluid management. In addition, phe-
notype III suggests that we should pay attention to fluid 
management in ARDS patients with renal failure and old 
age.

In the ALVEOLI trial, significant effects of the interac-
tion between phenotype and PEEP strategy were identi-
fied for VFD and IFD in our study. Patients treated with 
higher PEEP had fewer VFD and IFD in the phenotype 
I group. It is possible that these patients had no clini-
cally objective positive oxygenation response to a higher 
PEEP [26]. Similar to the original trial, no treatment ben-
efit of the PEEP strategy with regard to mortality was 
found for any of the phenotypes. There was no treatment 
benefit associated with rosuvastatin in any of the three 
phenotypes in the SAILS trial, and the same result was 
found in the two-phenotype model. In addition, a retro-
spective study of SAILS revealed that rosuvastatin may 
increase the risk of death by raising plasma IL-18 lev-
els [27]. Therefore, it is possible that the negative result 
may be due to reasons related to the clinical trial design, 
patient populations and statin choice [11]. Although this 
study used the same RCT cohorts as the two-phenotype 
study of Calfee et al. and Sinha et al., the content of our 
study was not exactly the same. We derived a three-
phenotype model in the eICU and validated it in three 
RCTs rather than through repeated modeling in different 
RCTs. Furthermore, all reanalyses of three RCTs revealed 
two ARDS phenotypes, but they differed in the derived 
variables and clinical characteristics [28]. The variables 
of the phenotype model in our study were consistent 
across the five cohorts. Finally, the studies used different 
analytical approaches. Our study partially overlaps with 
the previous work of Calfee et  al., who used a different 
methodology, lending credibility to the hypothesis that 
subphenotypes of ARDS are biologically real.

Our study has some limitations. First, we were not 
able to obtain the biomarker data for the three RCTs and 
were not able to perform a head-to-head comparison to 
hyper-inflammatory or hypo-inflammatory phenotypes. 
Due to the lack of biomarker data, we cannot determine 
the biological characteristics of the phenotypes directly 
and precisely. Second, our study on the three RCTs was 

a retrospective study, which requires additional valida-
tion before treatment benefits can be confirmed. The 
interaction test only confirms that the two phenotypes 
responded differently to treatment. Third, missing data 
were common for some features in the clinical datasets, 
and we performed multiple imputation before statisti-
cal analysis. The missing data could result in some bias 
in our result. Forth, many data preprocessing decisions 
had to be made, including variable acquisition time win-
dows, variable selection, and distribution transformation. 
Changes in decisions may lead to changes in the cluster-
ing results and characteristics of phenotypes. Fifth, some 
patients were excluded from the derivation cohort due 
to a high level of missing data. However, the empirical 
studies showed cluster characteristics remained the same 
when those patients were included.

Conclusion
Three clinical phenotypes were identified by using rou-
tinely available clinical data in a retrospective analysis 
of the ARDS population in the eICU database, and the 
derived phenotypes had different clinical characteristics 
and outcomes. These results were reproduced across all 
additional cohorts and trials. The analysis provided evi-
dence of a phenotype-specific treatment benefit in the 
ALVEOLI and FACTT trials. All these findings increase 
the awareness of the heterogeneity of ARDS and may 
improve the identification of distinct subsets of patients 
with ARDS in future randomized controlled trials.
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