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Abstract

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2020.
Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2020.
Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://
www.springer.com/series/8901.

Introduction
The past century has witnessed a massive increase in
our ability to perform complex calculations. The devel-
opment of the transistor in the 1950s, followed by the
silicone integrated circuit, accelerated those capabilities
and gave rise to what is commonly known as Moore’s
Law. According to this principle, the number of transis-
tors packed into a dense integrated circuit doubles every
2 years. The corollary is that computation speed also
doubles at 2-year intervals. Figure 1 is a graphical inter-
pretation of Moore’s Law, showing an exponential in-
crease in computational power, in terms of calculations
per second that can be purchased with $1000 (constant
US, 2015). According to that graph, computing power
has increased by a factor of 1018 from the mechanical
analytical engine of the early 1900s to today’s core I7
Quad chip found in personal laptop computers.
The growth in computing power was made possible by

the relentless downsizing of integrated circuits, with
some components being produced in the sub-100 nm
range. As we approach the physical limits of silicone
chip downsizing, other materials are being developed. A
likely candidate is the carbon nanotube, composed of a
single sheet of carbon atoms arranged in a hexagonal
pattern. When rolled into itself, the sheet becomes a
tube approximately 2 nm in diameter, capable of form-
ing different circuit elements. This nascent technology,
along with the development of quantum computing, as-
sures the durability of Moore’s Law well into the future.

As processors grew in power, and personal computers
became ubiquitous appliances, the stage was set for the
development of the Internet, a digital network that
morphed from the ARPANET, a communication struc-
ture designed by the U.S. Advanced Research Projects
Agency (ARPA) to transfer information among com-
puters located at remote distances. The internet pro-
moted the free dissemination of software and provided
the impetus for computer scientists to develop powerful
algorithms aimed at simulating human intelligence.
According to the Encyclopedia Britannica, artificial

intelligence (AI) refers to a system “endowed with the
intellectual processes characteristic of humans, such as
the ability to reason, discover meaning, generalize, or
learn from past experience.” AI computer systems are
able to perform tasks normally requiring human
intelligence and that are considered “smart” by humans.
AI systems act on information, such as controlling a
self-driving automobile or influencing consumer shop-
ping decisions.
In the area of medicine, AI has been used in drug dis-

covery, personalized diagnostics and therapeutics, mo-
lecular biology, bioinformatics, and medical imaging. AI
applications are also capable of discerning patterns of
disease by scrutinizing and analyzing massive amounts
of digital information stored in electronic medical re-
cords. In a recent proposal aimed at regulating AI soft-
ware in medical devices, the U.S. Food and Drug
Administration states that “Artificial intelligence-based
technologies have the potential to transform healthcare
by deriving new and important insights from the vast
amount of data generated during the delivery of health-
care every day” [1].
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Machine Learning
Human intelligence is defined by the mental capability to
think abstractly, use reason to solve problems, make plans,
comprehend complex ideas, and learn from experience [2].
Much of human intelligence involves pattern recognition, a
process that matches a visual or other type of stimuli, to
similar information stored in our brains. Although
endowed with abstract thinking and capable of sublime
leaps in imagination, humans have a limited capacity for
memory. It is estimated that the brain cannot store more
than four “chunks” of short-term memory at any one time
[3]. Moreover, humans find it difficult to think in terms of
n-dimensional spaces or visualize patterns embedded into
large quantities of data. Conversely, computers have vast
memory storage, excel at handling multidimensional

problems and can discern even small or “fuzzy” associations
within massive data collections.
The use of computers to guide the treatment of critically

ill patients is not a new concept. With uneven results, com-
puterized systems have been proposed in the past to monitor
ICU patients [4], manage patients on mechanical ventilators
[5, 6], guide care in patients with acute respiratory distress
syndrome (ARDS) [7], and manage arterial oxygenation [8].
These early computer systems were programmed with highly
specific and sequential IF/THEN/ELSE logical expressions
that assessed the validity of a condition based on accepted
physiological principles and/or clinical experience (Fig. 2).
According to these expressions, IF a given condition was
judged to be “true,” THEN the program executed instruction
1, ELSE, it executed instruction 2.

Fig. 1 The growth of computer power, based on calculations per second purchased by $1000 USD (constant 2015) during the past century. Also
shown are significant developments in technology associated with increases in computer power. Modified from https://www.flickr.com/photos/
jurvetson/25046013104 (with license). Original graph in Ray Kurzweil. “The singularity is near: When humans transcend biology,” p67, The Viking
Press, 2006

Fig. 2 A logical IF expression. The condition is evaluated by the expression, and Instruction 1 is executed if TRUE, otherwise, Instruction 2
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AI is based on a fundamentally different approach to
traditional computer programming. Instead of instructing
the computer to evaluate a given condition, or to perform
a specific task according to detailed programmed instruc-
tions, AI algorithms, in a manner similar to the way chil-
dren absorb knowledge, learn from exposure to numerous
examples. AI algorithms establish their own rules of be-
havior and can even improve on their “intelligence” by in-
corporating additional experiences resulting from the
application of these rules.
Machine learning is a subset of AI in which machines

learn or extract knowledge from the available data, but do
not act on the information. Machine learning combines
statistical analysis techniques with computer science to
produce algorithms capable of “statistical learning.”
Broadly speaking, there are two types of machine learning
structures: supervised and unsupervised (Fig. 3).

Supervised Machine Learning
The objective of supervised machine learning is to de-
velop an algorithm capable of predicting a unique output
when provided with a specific input. In other words, the
machine is shown examples of input (x) and its corre-
sponding output (y), such that y = f(x). Machine learning
is predicated on large sets of data containing myriad ex-
amples that relate one or several input variables to a sin-
gle output. The expectations are that the resulting
algorithm will deliver accurate predictions when exposed
to new and never before seen data. Supervised learning

requires a great deal of human effort when building large
datasets to train and test the algorithm. There are two
major types of supervised learning: regression and
classification.

Regression Learning
Most clinicians are familiar with regression analysis, a stat-
istical technique producing a mathematical expression re-
lating one input variable to another (linear regression) or
many input variables to one dependent variable (multiple
regression). In regression analysis, the output is a continu-
ous function of the input. In other words, the predicted
variable will change in concert with the input variables.
Regression is used commonly to test hypotheses involving
causal relationships, with the choice of model being based
on its significance and goodness of fit.

Classification Learning
Classification supervised learning is a form of pattern
recognition designed to predict a single, nonnumerical
output, or “class,” from a predefined list of possibilities.
Classifier algorithms are trained with many lines of data,
with each line having several input variables and one de-
sired output. For example, a model designed to identify
a breed of dog may be trained with data listing their
traits or characteristics, e.g., height, type of hair, and
length of tail. Each line will be associated with a specific
breed. Once trained, the model can be asked to predict
the dog breed when given new set of input variables.

Fig. 3 Machine learning is a branch of artificial intelligence encompassing two major approaches: supervised and unsupervised learning. Shown
under each branch are algorithm types used in model development
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Two important steps are needed to build a classifier
model. The first is to establish the number of classes the
model will be required to identify. The second is to iden-
tify the number of variables required to describe the
classes. Fewer variables and classes require less training
data and result in simpler and more accurate models.
The simplest classification model is the binary kind, in
which the model is asked to choose between a “Yes” and
a “No” answer.
Classes may consist of physical objects (chair, table,

etc.), medical conditions (e.g., sepsis, ARDS, chronic ob-
structive pulmonary disease [COPD], etc.), clinical or
physiological observations (e.g., different types of
arrhythmia or ventilator asynchronies). Each class is as-
sociated with a number of input variables common to all
classes. In machine learning parlance, input variables are
known as “features,” with each line of data, or “instance,”
containing several features and a single class.
Let us say we want to develop a classifier algorithm to

identify five different kinds of animal (Fig. 4). In this ex-
ample, each line of data has one animal class and several
features to describe the animal’s characteristic, such as
sea or land dwelling, fish or mammal. This is a very sim-
ple example having only one instance per class. The
model, therefore, would be totally inadequate if its pur-
pose were to differentiate among different dog or cat
breeds. In that case, many more instances would be
needed to describe different types of dogs and cats. The
more specific one wishes to be, the more features are
needed to describe the classes. On the other hand, in-
creasing the number of features results in complex
models that require greater computing power and longer
time to run, a condition termed “the curse of dimension-
ality.” An important guiding principle in machine learn-
ing is the truism that “less is best.”

In mathematical terms, a feature matrix contains n
features and m instances, and it is associated with an m
length classification vector:

x11x12…xn1 ¼ y1
x12x22…x2n ¼ y2
xm1x2m…xnm ¼ ym:

Developing a classifier model
Perhaps the most important step in developing a ma-
chine learning model is to have a clear definition of the
problem and to determine its suitability for machine
learning. The next step is to determine the size of the
feature matrix and the classification vector (Fig. 5).
Whereas humans develop generalized concepts on the
basis of just a few examples, training a machine learning
algorithm requires large quantities of data. The creation
of a large feature matrix with its classification vector is
accomplished by gathering as many instances as pos-
sible. Once satisfied that we have collected an adequate
number of examples to be presented to the computer,
we split the feature matrix into a “training” dataset, for
model development, and a “test” dataset. The data are
split by a random process that assigns instances from
the original data to each dataset. A common practice is
to use 70% or 80% of the data for training and the re-
mainder for testing.
The purpose of the “test” dataset is to assess the algo-

rithm’s accuracy when exposed to never before seen data.
Accuracy is defined as the percentage of correct answers
made by the algorithm on the unknown “test” dataset.
Should accuracy fall below a chosen expected value, we
can choose to gather more “training” data or to use an-
other type of machine learning algorithm altogether.

Fig. 4 An example of a classification problem showing features describing five classes of animal. Each line represents an instance
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Several types of classifier algorithms may be used to
create the machine learning model. Among them are de-
cision trees, random forests, k-nearest neighbors, and
many others (Fig. 3). A popular type of classifier algo-
rithm is the neural network, modeled on the way human
neurons are thought to process information. The basic
element of the neural network, the perceptron, produces
a single binary output from several inputs. A neural net-
work results from the interacting of several perceptrons.
Advanced machine learning systems encompassing sev-
eral layers of stacked complex neural networks are called
deep learning.
It is beyond the purpose of this chapter to describe the

theory and application of these algorithms (listed in
Fig. 3), but the reader interested in pursuing this line of
investigation can access “scikit-learn” (https://scikit-
learn.org/stable/), an open source machine learning li-
brary written with the Python programming language
(https://www.python.org/). This library of programs
makes it relatively easy to develop classification super-
vised machine learning algorithms.
When building a classifier model, it is imperative to

generalize its utility to make accurate predictions using both
the “training” and the “test” datasets. One should beware of
models of high complexity that may conform closely to the
“training” set, but have poor accuracy when applied to the
“test” dataset, a phenomenon called “overfitting.”

Unsupervised Machine Learning
In this type of machine learning, no instructions are
given to the algorithm on how to process the data. In-
stead, the computer is asked to extract knowledge from
a large set of unclassified data with no known output or
a set of rules. Given the lack of label information, a
major challenge for the investigator when evaluating an
unsupervised algorithm is how to determine the utility
of the results, or whether the right output has been
achieved. Unsupervised algorithms, however, can be very
useful in exploratory attempts to understand large col-
lections of data. The techniques most commonly used
are clustering, anomaly detection, and dimensionality
reduction.
In clustering, algorithms are asked to identify or

partition large data sets into subsections and patterns
sharing similar characteristics. In anomaly detection
the algorithm is asked to detect atypical patterns in
the dataset, such as searching for outliers. Dimension-
ality reduction is useful when analyzing data having
many features, or dimensions. These algorithms may
be able to present the data in a simpler form, sum-
marizing its essential characteristics and making it
easier for humans or other machine learning algo-
rithms to understand.
An important point to keep in mind is that no machine

learning algorithm, regardless of its accuracy, is the only

Fig. 5 The process of creating a machine learning (ML) model
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possible choice for a model. Other algorithms may be capable
of providing a good fit and derive additional useful inferences
from the data. For those wishing to delve deeper into the de-
velopment of machine learning models, a good source of in-
formation is the book by Müller and Guido [9] and the
website (https://www.geeksforgeeks.org/learning-model-build-
ing-scikit-learn-pythonmachine-learning-library/).

AI Applications in Critical Care
There are numerous opportunities in the hospital setting
to apply AI. Unsupervised machine learning techniques
have been used to explore massive amounts of data
encoded in electronic medical records. Models have
been developed to obtain important information in a pa-
tient’s chart [10] and identify high-cost patients [11].
Supervised machine learning algorithms, given their poten-
tial for automated pattern recognition of images, have
proven their utility in radiology [12] and histopathology
[13]. Machine learning has been used extensively in the
fields of surgery, as it pertains to robotics [14], in cardiology
[15] for early detection of heart failure [16], and in cancer
research to classify tumor types and growth rates [17].
Although the introduction of machine learning to the

ICU is in its infancy, several studies have already been
published describing the application of this technology
in the management of the critically ill patient. Some
have used large population datasets to predict length of
stay, ICU readmission and mortality rates, and the risks
of developing medical complications or conditions such
as sepsis and ARDS. Other studies have dealt with
smaller datasets of clinical and physiological data to aid
in the monitoring of patients undergoing ventilatory
support.

Length of Stay
Houthooft et al. [18] trained a support vector machine
model to forecast patient survival and length of stay
using data from 14,480 patients. The model’s area under
the curve (AUC) for predicting a prolonged length of
stay was 0.82. This is in contrast to a clinical study
showing the accuracy of physicians to be only 53% when
predicting ICU length of stay [19]. A hidden Markov
model framework applied to physiological measurements
taken during the first 48 h of ICU admission also pre-
dicted ICU length of stay with reasonable accuracy [20].
The problem of ICU readmission was investigated with a
neural network algorithm applied to the Medical Infor-
mation Mart for Intensive Care III (MIMIC-III) data-
base. This is an open source, freely available database
collected from patients treated in the critical care units
of the Beth Israel Deaconess Medical Center between
2001 and 2012. The algorithm was able to identify pa-
tients at risk of ICU readmission with 0.74 sensitivity
and AUC of 0.79 [21].

ICU Mortality
Awad et al. [22] applied several machine learning algo-
rithms, including decision trees, random forest, and
naïve Bayes to 11,722 first admission MIMIC-II data to
predict ICU mortality. Features included demographic,
physiological, and laboratory data. These models outper-
formed standard scoring systems, such as APACHE-II,
sequential organ failure assessment (SOFA), and Simpli-
fied Acute Physiology Score (SAPS), a finding that was
confirmed by the same group in a follow-up study using
time-series analysis [23]. A Swedish system using artifi-
cial neural networks applied to >200,000 first-time ICU
admissions also showed superior performance in pre-
dicting the risk of dying when compared to SAPS-3 [24].
Machine learning models have also been proposed to
predict mortality in trauma [25] and pediatric ICU pa-
tients [26].
The abovementioned ICU survival models, while offer-

ing improved performance when compared to standard
mortality prediction scoring systems, are somewhat
cumbersome to use, require a large number of variables
and have yet to be tested prospectively.

Complications and Risk Stratification
Yoon et al. [27] developed a method to predict instability
in the ICU based on logistic regression and random for-
est models of electrocardiogram (EKG) measures of
tachycardia, reporting an accuracy of 0.81 and AUC of
0.87. The publication of the study is accompanied by an
excellent and highly recommended editorial by Vistisen
et al. [28] that thoroughly analyzes the strengths and pit-
falls of machine learning methods as predictors of com-
plications in the ICU.
A recent study applied a random forest classifier to

over 200,000 electronic health records of hospitalized
patients to predict the occurrence of sepsis and septic
shock. Although the algorithm was highly specific (98%),
it only had a sensitivity of 26%, severely limiting its util-
ity [29]. Other studies have been published describing
the use of machine learning models in generating
patient-specific risk scores for pulmonary emboli [30],
risk stratification of ARDS [31], prediction of acute kid-
ney injury in severely burned patients [32] and in general
ICU populations [33], prediction of volume responsive-
ness after fluid administration [34] and identification of
patients likely to develop complicated Clostridium diffi-
cile infection [35].

Mechanical Ventilation
Whereas present day mechanical ventilators work ex-
ceedingly well in delivering air to diseased lungs, they
are “feed-forward” or open loop systems where the input
signal, or mode of ventilation, is largely unaffected by its
output, the adequacy of ventilation. As such, ventilators
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lack the capacity to assess the patient’s response to the
delivered breath. A desirable solution is the development
of the autonomous ventilator, a device that could moni-
tor the patient’s response to ventilation continuously,
while adjusting ventilatory parameters to provide the pa-
tient with a comfortable, optimally delivered breath. Al-
though we are far from this ideal device, significant
strides are being made toward making it into a reality.
Over the past decade, there has been considerable

interest in detecting and classifying patient-ventilator
asynchrony, a phenomenon indicating the degree of
coupling or response of the patient to ventilatory sup-
port [36]. Machine learning methods of detecting
patient-ventilator asynchrony have been based on mor-
phological changes of the pressure and flow signals.
Chen et al. [37] developed an algorithm to identify inef-
fective efforts from the maximum deflection of the ex-
piratory portion of airway pressure and flow. Ineffective
effort was present in 58% of the 24 patients enrolled in
their study. Analysis of 5899 breaths yielded sensitivity
and specificity for the detection of ineffective efforts
>90%. An algorithm developed by Blanch at al [38].
compared a theoretical exponential expiratory flow curve
to actual flow tracings. A deviation exceeding 42% was
considered indicative of ineffective effort. They com-
pared the predictions of the algorithm in a random se-
lection of 1024 breaths obtained from 16 patients, to
those made by five experts and reported 91.5% sensitiv-
ity and 91.7% specificity with 80.3% predictive value. As
proof-of-concept, this group also reported monitoring
airway signals in 51 mechanically ventilated patients and
were able to predict the probability of an asynchrony oc-
curring from one breath period to the next using a hid-
den Markov model [39]. The system used in these trials
has been commercialized as Better Care®, and it is cap-
able of acquiring, synchronizing, recording, and analyz-
ing digital signals from bedside monitors and
mechanical ventilators [38].
Rhem et al. [40] and Adams et al. [41] developed a set

of algorithms to detect two types of asynchrony associ-
ated with dynamic hyperinflation, double triggering, and
flow asynchrony. Based on a learning database of 5075
breaths from 16 patients, they developed logical opera-
tors to recognize double triggering based on bedside
clinical rules. Dynamic hyperinflation was identified
from the ratio of exhaled to inhaled tidal volume. The
algorithms were validated with data drawn from another
patient cohort (n = 17), resulting in sensitivity and speci-
ficity >90%.
Sottile at al [42]. evaluated several types of machine

learning algorithms, including random forest, naïve
Bayes, and AdaBoost on data recorded from 62 mechan-
ically ventilated patients with or at risk of ARDS. They
chose 116 features based on clinical insight and signal

description and were able to determine the presence of
synchronous breathing, as well as three types of patient-
ventilator asynchrony, including double triggering, flow
limited and ineffective triggering, with an AUC >0.89.
The authors did acknowledge that their algorithm does
not identify all types of patient-ventilator asynchrony, in
particular premature ventilator terminated breaths, or
cycling asynchronies.
Gholami et al. [43] trained a random forest classifier

algorithm from a training data set produced by five ex-
perts who evaluated 1377 breath cycles from 11 mechan-
ically ventilated patients to evaluate cycling
asynchronies. Patients were ventilated with pressure-
controlled volume ventilation. The model accurately de-
tected the presence or absence of secondary synchrony
with a sensitivity of 89%. Mulqueeny et al. [44] used a
naïve Bayes machine learning algorithm with 21 features,
including measures of respiratory rate, tidal volume, re-
spiratory mechanics and expiratory flow morphology to
a dataset of 5624 breaths manually classified by a single
observer, resulting in an accuracy of 84%, but a sensitiv-
ity of only 59%. Loo et al. [45] trained a convolutional
neural network with 5500 abnormal and 5500 normal
breathing cycles aimed at developing an algorithm cap-
able of separating normal from abnormal breathing cy-
cles, reporting 96.9% sensitivity and 63.7% specificity.

The Issue of Accuracy Versus Reliability
The accuracy of a machine learning algorithm is judged
by its ability to correctly predict the unseen test dataset.
Models are created and tested with instances culled from
the same data population, and it is common to find re-
ports of algorithms having very high accuracy scores in
the machine learning literature. Given a judicious selec-
tion of features, a sufficiently large number of instances,
and a wise choice of algorithm, the most likely outcome
will be a highly accurate model. If the data are true and
verifiable, the model’s predictions are also bound to be
reliable. On the other hand, when a model trained with
untested or faulty data is presented with data drawn
from the same population, the predictions are likely to
be accurate but totally unreliable. As some have suc-
cinctly put it, rubbish in, rubbish out.
This begs the question of what are the limits of model

reliability. Whereas AI is able to consider numerous var-
iables and minimize human bias in data classification, it
cannot insure model reliability. Therefore, the greatest
challenge when creating a clinical machine learning
model lies in identifying the gold standard to be used in
the classification. A great deal of what we see and do in
medicine is highly subjective, and unanimity of opinion
is seldom found among intensivists. For example, a study
[46] on interobserver reliability of clinicians in diagnos-
ing ARDS according to the Berlin definition found only
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a moderate degree of reliability (kappa = 0.50). The main
driver of the variability was the interpretation of chest
radiographs. Similar findings were noted in clinicians
evaluating optic disk photographs for glaucoma (kappa
0.40–0.52) [47]. It is therefore unlikely that model reli-
ability in the ICU will ever exceed 60–70%, even in the
best of hands.

Conclusion
Experienced intensivists excel at collecting, classifying,
and analyzing snapshots of clinical information to ex-
peditiously reach a diagnosis and decide on treatment
options. In the data-intensive environment of today’s
ICUs, however, intensivists must cope with a relent-
less flow of information, some of it useful, most of it
not. According to a thoughtful essay by Alan Morris
[48], intensivists must contend with no less than 236
variables when caring for patients on ventilatory sup-
port. The ability to catalog, correlate, and classify
these variables on a continuous basis lies well beyond
the capabilities of even the most knowledgeable and
perceptive of clinicians.
The judicious application of AI technology can be

of assistance in helping us deal with information
overload. Machine learning algorithms have been used
to analyze data stored in electronic medical records
to predict ICU mortality and length of stay. They also
have furthered our understanding of populations who
may be at risk of disease progression or likely to ex-
perience medical complications. These retrospective
studies, useful as they may be in the early identifica-
tion and stratification of patients, represent only the
low-lying fruit in AI research.
A more difficult task, but perhaps one with far greater

potential, is the development of intelligent machine
learning monitors capable of continuously assessing the
human response to critical illness with a high degree of
certainty. The development of such monitors will pro-
vide the knowledge and experience needed for the cre-
ation of the semi-autonomous ICU, an environment
where intelligent machines provide most of the care de-
livered today by humans.
The full potential of AI will be realized once it be-

comes a trustworthy clinical adjunct to intensivists. By
helping us cope with information overload, AI endowed
machines may allow our faculties of reflection, imagin-
ation, and compassion to come to the fore when caring
for fellow humans in distress. The future of AI in the
ICU is indeed bright. As with all new technologies, there
will be zealots and pharisees, ups and downs, elations
and disappointments, as well as thorny ethical quandar-
ies. I have no doubt, however, that AI is here to stay,
and it behooves us to become familiar with this technol-
ogy for the betterment of our patients.
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