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Abstract 

Introduction:  Pressure support ventilation (PSV) should allow spontaneous breathing with a “normal” neuro-ventila-
tory drive. Low neuro-ventilatory drive puts the patient at risk of diaphragmatic atrophy while high neuro-ventilatory 
drive may causes dyspnea and patient self-inflicted lung injury. We continuously assessed for 12 h the electrical activ-
ity of the diaphragm (EAdi), a close surrogate of neuro-ventilatory drive, during PSV. Our aim was to document the 
EAdi trend and the occurrence of periods of “Low” and/or “High” neuro-ventilatory drive during clinical application of 
PSV.

Method:  In 16 critically ill patients ventilated in the PSV mode for clinical reasons, inspiratory peak EAdi peak 
(EAdiPEAK), pressure time product of the trans-diaphragmatic pressure per breath and per minute (PTPDI/b and PTPDI/

min, respectively), breathing pattern and major asynchronies were continuously monitored for 12 h (from 8 a.m. to 
8 p.m.). We identified breaths with “Normal” (EAdiPEAK 5–15 μV), “Low” (EAdiPEAK < 5 μV) and “High” (EAdiPEAK > 15 μV) 
neuro-ventilatory drive.

Results:  Within all the analyzed breaths (177.117), the neuro-ventilatory drive, as expressed by the EAdiPEAK, was “Low” 
in 50.116 breath (28%), “Normal” in 88.419 breaths (50%) and “High” in 38.582 breaths (22%). The average times spent 
in “Low”, “Normal” and “High” class were 1.37, 3.67 and 0.55 h, respectively (p < 0.0001), with wide variations among 
patients. Eleven patients remained in the “Low” neuro-ventilatory drive class for more than 1 h, median 6.1 [3.9–8.5] h 
and 6 in the “High” neuro-ventilatory drive class, median 3.4 [2.2–7.8] h. The asynchrony index was significantly higher 
in the “Low” neuro-ventilatory class, mainly because of a higher number of missed efforts.

Conclusions:  We observed wide variations in EAdi amplitude and unevenly distributed “Low” and “High” neuro venti-
latory drive periods during 12 h of PSV in critically ill patients. Further studies are needed to assess the possible clinical 
implications of our physiological findings.
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Introduction
Compared to controlled mechanical ventilation, 
mechanical assistance to spontaneous ventilation has 
the potential to improve gas exchange, hemodynamics, 
diaphragmatic function and comfort in most critically ill 
patients [1–3]. Pressure support ventilation (PSV) is the 
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most used assisted mode of ventilation [4]. During PSV, 
the ventilator applies a constant (operator set) level of 
positive pressure throughout patient’s spontaneous inspi-
ration and the inspiratory flow results from the inter-
play between patient’s inspiratory effort, assistance level 
and respiratory system impedance (mainly, resistance 
and elastance). Cycling to the expiratory phase occurs 
when the instantaneous inspiratory flow decays below a 
pre-definite threshold, usually an adjustable percentage 
of peak inspiratory flow [5]. Theoretically, PSV should 
support the respiratory muscles allowing spontaneous 
breathing with a “normal” neuro-ventilatory drive [6–8]. 
Over-assistance would result in low neuro-ventilatory 
drive putting the patient at risk of diaphragmatic atro-
phy [9, 10] while, on the other hand, under-assistance 
would result in high neuro-ventilatory drive, dyspnea 
[11], diaphragmatic fatigue and patient self-inflicted lung 
injury (P-SILI) [12]. Assessing the neuro-ventilatory drive 
would be pivotal to set and monitor PSV, but, unfor-
tunately, is difficult to realize in clinical practice [13]. 
Accordingly, respiratory rate (RR), tidal volume (VT), 
patient-ventilator synchrony and gas exchange are taken 
into account to set PSV in the clinical setting [14–17]. To 
our knowledge, the neuro-ventilatory drive has not been 
continuously assessed during a prolonged period of PSV 
in critically ill patients.

The electrical diaphragmatic activity (EAdi) is the 
temporal sum of the electromyographic potentials of 
the crural diaphragm recorded by an array of electrodes 
mounted on the wall of a nasogastric tube [18, 19]. A ded-
icated software (Servo i, Getinge, Solna, SW) integrates 
and converts into a single amplitude/time signal the sig-
nals recorded by each electrode pair, taking into account 
the inspiratory displacement of the diaphragm [20]. The 
EAdi is a close surrogate of the neuro-ventilatory drive 
[13, 21–23] and is proportional to work of breathing [24].

In this study, we continuously assessed for 12  h the 
neuro-ventilatory drive (as expressed by the EAdi) in 
critically ill patients ventilated in the PSV mode. Due to 
different anatomical characteristics between patients, it is 
difficult to establish absolute reference EAdi values [25–
27]. Nevertheless, in order to favor data analysis, based 
on previous studies [7, 25, 28, 29] we identified periods of 
“Normal” (EAdiPEAK 5–15 μV), “Low” (EAdiPEAK < 5 μV) 
and “High” (EAdiPEAK > 15  μV) neuro-ventilatory drive. 
Our aim was to document the occurrence and entity of 
periods of “Low” and/or “High” neuro-ventilatory drive 
during clinical PSV application.

Methods
Patient selection
Patients admitted over a period of six months to the ICUs 
of the University of Bari and Ferrara Academic Hospitals 

were considered for enrollment in the study. The study 
was approved by the Ethics Committee of the Azienda 
Ospedaliero-Universitaria Policlinico di Bari (protocol 
no. 257) and of the Arcispedale Sant’Anna hospital, Fer-
rara, Italy (protocol no. 131084). Informed consent was 
obtained from each patient according to local regula-
tions. The study was conducted between January 2016 
and July 2016 in accordance with the Declaration of Hel-
sinki. A physician not involved in the study was always 
present for patient care.

Patients were eligible for the study if they were older 
than 18 years and excluded if they were affected by neu-
rological or neuromuscular pathologies, had known 
phrenic nerve dysfunction or any contraindication to the 
insertion of a naso-gastric catheter (for example: recent 
upper gastrointestinal surgery, esophageal varices).

Measurements
Patients were studied in the semi-recumbent position. 
All the patients were ventilated with a Servo i ventilator 
(Maquet Critical Care, Solna, Sweden) equipped with the 
neurally adjusted ventilatory assist (NAVA) software that 
includes the “neuro-ventilatory tool” for EAdi measure-
ment. At the beginning of the study, the standard naso-
gastric tube was replaced with a 16 Fr, 125  cm, EAdi 
catheter (Maquet Critical Care, Solna, Sweden) unless 
an EAdi catheter was already in place. The EAdi catheter 
was first positioned according to the corrected nose-ear 
lobe-xyphoid distance formula and subsequently through 
the EAdi catheter position tool (Servo i, NAVA software) 
[30].

Peak airway opening pressure (PAO PEAK) and positive 
end-expiratory pressure (PEEP) were measured from 
the PAO signal. Tidal volume (VT) was measured as the 
integral of the inspiratory flow. Mechanical respiratory 
rate (RR), inspiratory and expiratory time (Ti,MECH and 
Te,MECH, respectively) were measured by the flow and 
PAO signals. The inspiratory EAdi peak (EAdiPEAK), the 
slope of the EAdi from the beginning of inspiration to the 
peak (EAdiSLOPE) and the neural inspiratory time (TiNEUR) 
were measured from the EAdi waveform.

The inspiratory pressure generated by the diaphragm 
(trans-diaphragmatic pressure, PDI) was calculated 
according to the method recently validated by Bellani and 
coworkers [7, 18, 21, 31]. Briefly, we first calculated the 
diaphragmatic neuro-muscular efficiency (NME) as the 
ratio between the negative deflection peak in PAO during 
a spontaneous inspiratory effort (recorded during a brief 
end-expiratory occlusion lasting 5–10  s) and the cor-
responding peak in the EAdi curve. The NME measures 
the diaphragmatic neuro-mechanical coupling, and can 
be used to convert the EAdi into PDI (PDI = EAdi * NME) 
[31, 32]. The inspiratory PDI pressure–time product per 
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breath (PTPDI/b) was calculated as the area under the PDI 
signal. The inspiratory PDI pressure–time product per 
minute (PTPDI/min) was calculated as:

The breathing pattern and EAdi-parameters, obtained 
from the RS232 port of the Servo i ventilator at a sam-
pling rate of 100 Hz, were stored in a personal computer 
(NAVA tracker software, Maquet Critical Care, Solna, 
Sweden) for subsequent analysis (ICU Lab automatic 
analysis software, Kleistek Engineering; Bari, Italy).

Study protocol
According to our institutional clinical protocol, patients 
were switched from controlled ventilation to the PSV 
mode as soon as possible in their clinical course, despite 
they were not deemed ready to be weaned, in order 
to improve patient-ventilator synchrony and comfort, 
decrease the need of sedation, improve the hemodynamic 
profile and preserve the diaphragmatic function [1, 3]. The 
shift from the controlled to the PSV mode was performed 
as soon as the following criteria were satisfied: (a) improve-
ment in the condition leading to acute respiratory failure; 
(b) ability to trigger the ventilator, i.e., to decrease pressure 
airway opening (PAO) > 3 cmH2O during a brief (5–10 s) 
end-expiratory occlusion test; PaO2 ≥ 60  mmHg or 
SpO2 ≥ 90% on FiO2 ≤ 0.60 and PEEP ≤ 15 cm H2O c) Rich-
mond Agitation Sedation Scale (RASS) between 0 and − 1 
[33] with no sedation or a continuous infusion of dexme-
detomidine (0.1–1.4  μg/kg/h); (d) hemodynamic stability 
without vasopressor or inotropes (excluding a dobutamine 
and dopamine infusion lower than 5 gamma/kg/min and a 
3 gamma/kg/min, respectively) and normothermia.

Patients were admitted to the study within 24  h after 
the shift in the PSV mode. At the beginning of the study, 

the PSV level was carefully titrated to obtain a VT 
between 5 and 8  ml/kg predicted body weight (PBW) 
and a RR between 20 and 30 breaths/min [6, 34, 35]. The 
inspiratory trigger was set in the flow-by mode, sensitiv-
ity level 5 (Servo i arbitrary units); the expiratory trigger 
was set at 30% of the peak inspiratory flow. Clinical PEEP 
and FiO2 levels were left unchanged. Starting from the 
end of the PSV titration phase, patients were studied for 
12 h, from 8 a.m. to 8 pm.

Throughout the study, the attending physicians could 
shift the patients from PSV to another ventilator mode, 
in the presence of any of the following conditions: a) need 
of a PSV level > 20 cmH2O or a PSV level + PEEP > 30 

PTPDI/min = PTPDI/b ∗ RR.

cmH2O, dyspnea, diaphoresis, paradoxical breathing, 
use of accessory respiratory muscles, need for neuro-
muscular blockade and/or deep sedation, hypoxemia 
(defined as a PaO2 ≤ 60 mmHg or SpO2 ≤ 90% or need of 
a FiO2 ≥ 0.60) or hypercapnia (pH lower than 7.35 for res-
piratory causes), hemodynamic instability.

Data analysis
In order to continuously assess the neuro-ventilatory 
drive throughout the 12-h study period, the EAdi wave-
forms were analyzed through the automatic EAdi analysis 
software, a dedicated function of the ICU Lab software 
(Kleistek Engineering; Bari, Italy). This software identi-
fies the EAdi peaks corresponding to each single breath 
and transfers the EAdi-related data (EAdiPEAK, EAdiSLOPE, 
TiNEUR) in an excel sheet. Since the breathing pattern 
parameters (VT, RR, PaoPEAK, TiMECH) could not be 
examined continuously by the software, for each patient 
we analyzed manually the first 30 consecutive breaths 
available for each neuro-ventilatory drive class through 
the dedicated function of the Kleistek software.

Based on previous studies [7, 25, 28, 29] and on the 
manufacturer instructions (Maquet Critical Care AB, 
NAVA flow chart MX-6462 Rev 02/2015), we pre-defined 
three neuro-ventilatory drive classes: “Low”, for breaths 
with EAdiPEAK below 5  μV; “Normal”, for breaths with 
EAdiPEAK between 5 and 15  μV and “High” for breaths 
with EAdiPEAK higher than 15 μV.

Patient-ventilator asynchronies were assessed by tak-
ing into account in the first 20 consecutive min, for each 
EAdi class, based on the method proposed by Thille and 
coworkers [36]. Asynchronies were classified into six 
types: (a) ineffective triggering (missed effort); (b) inef-
fective inspiratory triggering; (c) double-triggering; (d) 
auto-triggering; (e) prolonged cycle; (f ) short cycle [36]. 
The Asynchrony Index (AI) was calculated as:

Statistical analysis
We assessed the number the percentage of time spent 
in each of the three pre-defined EAdiPEAK classes (i.e., 
“Low”, “Normal” and “High”). Differences between per-
centages were analyzed through the chi-square test. In 
order to estimate the average time spent in each of the 
three EAdi classes, we applied the Generalized Estimated 
Equation (GEE) model [37]. In the GEE model, the single 
breath is the first level unit, the time of each breath is the 
dependent variable, the class of EAdi is the independent 
variable and, finally, the patient is the second-level unit. 
Pairwise comparisons between the estimate times spent 
in each of the three neuro-ventilatory drive classes were 
adjusted according to Tukey.

AI = Total number of asynchronies/(mechanical cycles+missed efforts).
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Normally distributed continuous data are expressed 
as means and standard deviation (SD) and non-normally 
distributed data are expressed as median and interquar-
tile range (IQR). Normality of continuous data was tested 
through the Kolmogorov–Smirnov test. The ANOVA or 
the Friedman-repeated measure analysis of variance was 
used as appropriate. Pairwise comparisons were adjusted 
according to Tukey.

A multivariable multinomial logistic model for ordinal 
variables and repeated measures was applied to evaluate 
the effect of TiMECH, PaoPEAK, VT/PBW, RR and PS level 
on the probability of being in one of the three EAdiPEAK 
classes. All the statistical tests were two-tailed, and p-val-
ues of less than 0.05 were considered statistically signifi-
cant. Statistical analysis was performed by software SAS 
9.4 (SAS Institute, Cary NC).

Results
Of the 155 patients admitted in the study period, 31 were 
eligible to the study. Five of them declined to participate 
and 26 were enrolled. Ten were dropped out from the 
study: in 6 the ventilation mode was changed during the 
12-h study period and in 4 the EAdi trace was not reliable 
(Fig. 1). The demographical and clinical characteristics of 
the 16 studied patients are shown in Table 1.

Taking all the patients as a whole, 177.117 breaths 
were collected throughout the study period. The neuro-
ventilatory drive was “Low” in 50.116 breaths (28%), 
“Normal” in 88.419 breaths (50%) and “High” in 38.582 
breaths (22%) (chi-square = 45; p = 0.0001) (Fig.  2). The 
GEE model showed a significant difference between the 
time spent in the three different EAdi classes and esti-
mated an average time of 1.37 h for the “Low”, 3.67 h for 
the “Normal” and 0.55 h for the “High” class (p < 0.0001). 
The difference between the average time spent in the 
"Normal" and "High" class was statistically significant 
(p = 0.019). The intra-patient variability (± standard 
error) was 0.025 ± 0.104, while the residual variability 
was 0.908 ± 0.192. Accordingly, the intra-class correla-
tion coefficient was low (2.7%) and not statistically signif-
icant, indicating that, among the patients, the time spent 
in each neuro-ventilatory drive class was heterogenous.

Figures 3 and 4 show, respectively, the individual trend 
of the neuro-ventilatory drive throughout the study 
and the percentage of study time in which each patient 
remained in the “Low”, “Normal” and “High” neuro-
ventilatory drive class. Eleven patients remained in the 
“Low” neuro-ventilatory drive class for more than one 
hour, median 6.1 [3.9–8.5] h. Six patients remained in the 
“High” neuro-ventilatory drive class for more than one 
hour, median 3.4 [2.2–7.8] h.

Table 2 reports the breathing pattern, EAdi and work of 
breathing parameters referred to the three neuro-ventila-
tory drive classes. Compared to the “Low” class, tidal vol-
ume was significantly higher in the “Normal” and “High” 
neuro-ventilatory drive class. Both PTPDI/b and PTPDI/
min significantly increased going from the “Low” to the 
“High” class.

Table  3 shows the major patient-ventilator asynchro-
nies in the three classes. The asynchrony index was sig-
nificantly higher in the “Low” neuro-ventilatory class, 
mainly because of a higher number of missed efforts.

Figure  5 shows that, according to the multivari-
able multinomial logistic model, the risk of being in the 

Fig. 1  Flow diagram of patient’s enrollment. NG = naso-gastric; 
EAdi = electric diaphragmatic activity
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“High” neuro-ventilatory drive class increased exponen-
tially with VT (Panel A) and with RR (Panel B). The odds 
ratio of being in a neuro-ventilatory drive class different 
than “Normal” increased by 1.41 [CI 95%, 1.16–1.70], 
p = 0.0019, for each deviation of 1 ml/kg PBW from the 

median VT (7.4  ml/kg PBW) and by 1.1 [CI 95%, 1.0–
1.24], p = 0.0472, for each deviation of 1 breath/min from 
the median RR (18.5 breaths/min). TinspMECH, PaoPEAK 
and the PSV level were not included in the model because 
not significant at the univariate analysis.

Discussion
By monitoring for 12 h the EAdi in critically ill patients 
ventilated in the PSV mode, we observed unevenly dis-
tributed periods of “Low” and/or “High” neuro-ventila-
tory drive.

By amplifying the patient’s breathing effort, mechanical 
assistance should normalize the neuro-ventilatory drive 
when the respiratory muscles are challenged by an abso-
lute or relative increase in workload [16, 38, 39]. How-
ever, the PSV algorithm leaves to the clinician the task of 
setting the level of assistance and, therefore, of estimating 
patient’s work of breathing and neuro-ventilatory drive 
[17, 40, 41]. Physiological observations during stepwise 
PSV titration suggest that excessive or insufficient assis-
tance (over and under-assistance, respectively) are asso-
ciated with peculiar breathing patterns. Briefly, low VTs 
(i.e., lower than 5 ml/kg PBW) and high RRs (i.e., higher 
than 30 breaths/min) denote under-assistance, whereas 
high VTs (i.e., higher than 8  ml/kg PBW) and low RRs 
(i.e., lower than 20 breaths/min) denote over-assistance 

Fig. 2  Percentage of the collected breaths (including all the patients 
and the whole study period) belonging to the “Low” (28%), “Normal” 
(50%) and “High” (22%) neuro-ventilatory drive class (chi-square = 45; 
p = 0.0001)

Fig. 3  Individual neuro-ventilatory drive trend throughout the study. Each point represents the electric diaphragmatic activity peak (EAdiPEAK) of a 
single breath. The two red lines represent the 5–15 μV EAdiPEAK range depicting the “Normal” neuro-ventilatory drive
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Fig. 4  Individual percentage of study time in which each patient remained in the “Low”, “Normal” and “High” neuro-ventilatory drive class. Eleven 
patients remained in the “Low” neuro-ventilatory drive class for more than one hour, median 6.1 [3.9–8.5] h. Six patients remained in the “High” 
neuro-ventilatory drive class for more than one hour, median 3.4 [2.2–7.8] h

Table 2  Physiological parameters, referred to the three EAdi-defined neuro-ventilatory drive classes

Data expressed as median and interquartile range [IQR]

EAdi = diaphragmatic electrical activity; VT = tidal volume; PBW = predicted body weight; RR = respiratory rate; PEEP = positive end expiratory pressure; 
Pao,PEAK = peak airway opening pressure; Ti,MECH = mechanical inspiratory time; Ti,NEUR = neural inspiratory time; EAdiPEAK = peak diaphragmatic electrical activity; 
EAdiSLOPE = slope from the beginning of inspiration to EAdiPEAK; PTPDI/b = inspiratory pressure–time product of the diaphragm, per breath; PTPDI/min = inspiratory 
pressure–time product of the diaphragm, per minute
*  p < 0.05 compared to the “Low” EAdi class
#  p < 0.05 compared to the “Normal” EAdi class

“Low” class
(EAdiPEAK < 5 μV)

“Normal” class
(EAdiPEAK 5–15 μV)

“High” class
(EAdiPEAK > 15 μV)

VT/PBW (ml/kg) 7.2 [6.2–8.3] 7.5 [6.3–9.2]* 8.8 [6.9–9.5]*

RR (breaths/min) 19.7 [15.0–28.9] 19.1 [15.8–22.7]* 15.6 [14.8–21.7]*#

PEEP (cmH2O) 6.2 [5.2–9.9] 7.2 [5.9–8.0] 7.8 [6.7–12.1]

Pao,PEAK (cmH2O) 17.5 [14.4–20.9] 18.0 [16.8–18.7] 19.3 [18.0–20.0]*#

Ti,MECH (s) 0.97 [0.76–1.18] 1.02 [0.86–1.17] 1.01 [0.80–1.14]*#

Ti,NEUR (s) 1.05 [0.81–1.27] 1.17 [0.93–1.41] 1.13 [0.83–1.38]*#

EAdiPEAK (μV) 3.2 [2.1–4.1] 8.0 [6.5–10.1] 19.9 [17.2–28.5]*#

EAdiSLOPE ( μV/s) 2.6 [1.9–3.7] 6.4 [5.1–9.3]* 21.1 [14.7–27.8]*#

PTPDI/b (cmH2O/s) 2.2 [1.4–3.4] 6.6 [3.8–9.3]* 12.4 [8.0–17.3]*#

PTPDI/min (cmH2O/s/min) 46 [29–76] 110 [73–164]* 213 [160–309]*#
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[17, 42, 43]. In this study, according to these physiologi-
cal observations and to a consolidated clinical protocol 
[6, 34, 44], we titrated PSV to a VT between 5 and 8 ml/
PBW and a RR between 20 and 30 breaths/min. The fact 
that we found wide variations in neuro-ventilatory drive 
since the beginning of the study challenges the “classical” 
approach to PSV setting (Fig. 3). Despite our study was 
physiologically oriented and conducted in a small cohort 
of patients, we believe that these findings could be of 
clinical interest for studies aiming at defining more physi-
ological protocols for setting the assistance level during 
PSV.

As reviewed elsewhere [8, 11, 26], the neuro-ventila-
tory drive originates from the respiratory centers, a net-
work of interconnected neurons in the pons and medulla 
and is modulated by gas exchange, physical exercise, 
sleep, emotional and behavioral inputs, pain, discomfort, 
sedation and analgesia. In pathological conditions, air 
trapping, decreased lung and/or chest wall compliance, 

increased airway resistance and/or respiratory muscle 
weakness may alter the coupling between patient’s effort 
and diaphragmatic excursion (neuro-ventilatory cou-
pling), increasing the neuro-ventilatory drive [16, 45–47]. 
In our patients, we observed wide variations in neuro-
ventilatory drive despite the sedation level was kept 
constant throughout the study period (i.e., RASS score 
between 0 and − 1) [33]. To explain these findings, one 
can hypothesize that our patients underwent to subclini-
cal episodes of discomfort or pain, able to increase the 
neuro-ventilatory drive, or, on the contrary to excess of 
sedation or sleep able to decrease the neuro-ventilatory 
drive. Indeed, sleep rhythm and architecture are dis-
rupted in critically ill patients [48–50]. These variations 
in neuro-ventilatory drive would have been “primary”, 
i.e., independent from the ventilatory assistance. Another 
possible hypothesis, however, is that the metabolic status 
and/or the mechanical workload posed on the respiratory 
muscles varied during the study and the PSV mode was 

Table 3  Main asynchronies and asynchrony index

“Low” class
(EAdiPEAK < 5 μV)

“Normal” class
(EAdiPEAK 5–15 μV)

“High” class
(EAdiPEAK > 15 μV

Missed efforts (n/min) 0.12 ± 0.04 0.05 ± 0.04* 0.07 ± 0.05*#

Ineffective inspiratory triggering (n/min) 0.05 ± 0.007 0.02 ± 0.03 0.03 ± 0.03

Double triggering (n/min) 0.007 ± 0.004 0.01 ± 0.006 0.003 ± 0.002

Prolonged cycles (n/min) 0.005 ± 0.004 0.00 ± 0.002 0.003 ± 0.003

Short cycles (n/min) 0.00 ± 0.00 0.00 ± 0.002 0.00 ± 0.001

Asynchrony index (%) 20.6 ± 3.5 10.1 ± 9.6* 12.3 ± 4.9*#

Fig. 5  According to the multivariable multinomial logistic model, the risk of being in the “High” neuro-ventilatory drive class increased 
exponentially with respiratory rate (RR, Left Panel) and tidal volume/predicted body weight (VT/PBW, Right Panel)
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not able to appropriately “satisfy” the changing patient’s 
requirements. In the latter case, it would have been 
appropriate to classify the “Low” and “High” neuro-ven-
tilatory drive periods as over or under-assistance, respec-
tively [38]. Unfortunately, our study design does not allow 
to outline if the neuro-ventilatory drive varied for a pri-
mary or a secondary mechanism and, accordingly, we are 
not able to classify as over- or under-assistance the “Low” 
or “High” neuro-ventilatory drive episodes recorded in 
our patients.

It is worth remarking that during PSV the assistance 
level is fixed and it has been shown that the response to 
a sudden metabolic [51] or elastic load [16] is “not physi-
ologically oriented” (i.e., rapid shallow breathing). At 
variance with PSV, during the neurally adjusted ventila-
tory assist mode (NAVA) the assistance is proportional 
to the EAdi [19, 52], during the proportional assist ven-
tilation plus mode (PAV) the assistance is proportional to 
the patient’s inspiratory effort [38, 39, 53] and during the 
adaptive support mode (ASV) the ventilator adapts the 
assistance according to a closed-loop algorithm to opti-
mize the WOB through the Otis Equation [54, 55]. Thus, 
an attracting hypothesis is that the “proportional” modes 
or the ASV would stabilize the neuro-ventilatory drive 
more than PSV [28, 56].

During PSV, a “Low” neuro-ventilatory drive puts the 
patients at risk of diaphragmatic atrophy and patient-
ventilator asynchrony [9, 10, 57]. Interestingly, we found 
an asynchrony index of 20.6 ± 3.5% during the “Low” 
neuro-ventilatory drive periods (Table  3), well above 
the 10% threshold, that predicts prolonged weaning and 
ICU length of stay [36, 58]. On the other hand, an “High” 
neuro-ventilatory drive may induce diaphragmatic dis-
function and patient self-inflicted lung injury [13, 59–61]. 
Previous data from our group suggest that a prolonged 
PSV period (48 h) does not improve diaphragmatic effi-
ciency [7]. Based on the present data, we speculate that 
the concurrence of “Low” and “High” neuro-ventilatory 
drive periods could explain our previous findings.

Overall, our physiological data support the idea that 
the neuro-ventilatory drive should be continuously mon-
itored during PSV in critically ill patients. The EAdi tool 
may represent a reasonable approach, since the EAdi is 
a “close” peripheral surrogate of the neuro-ventilatory 
drive, but there are several drawbacks that must hamper 
any over-enthusiasm. First, the relation between EAdi 
amplitude and breathing effort is not linear but depends 
from the neuro-ventilatory coupling [38]. For example, 
in case of diaphragmatic atrophy, the EAdi signal may be 
detectable in the absence of detectable pneumatic breath-
ing efforts [62]. Second, the EAdi tool is commercially 
available in one ventilator only. Third, in several patients 
it is technically difficult or even impossible to obtain a 

reliable EAdi monitoring, even in experienced hands [7]. 
In the present study, we were not able to obtain a read-
able EAdi signal in 4 out of 26 patients (15.4%), despite 
our groups are experienced in clinical EAdi monitor-
ing (Fig.  1). This suggests caution when trusting on the 
EAdi monitoring in the clinical context. According to 
the expert’s opinion, monitoring the breathing effort 
through esophageal manometry or estimating it through 
diaphragmatic echography could be an alternative [13, 
26, 27, 42]. However, it should be kept in mind that EAdi 
amplitude and breathing effort convey different informa-
tion [25].

We must acknowledge the following study limitations. 
First: the EAdiPEAK thresholds applied in the present 
study to classify the neuro-ventilatory drive are empiri-
cal, although based on previous studies [7, 25, 28, 29] 
and on the manufacturer’s instructions (Maquet Criti-
cal Care AB, NAVA flow chart MX-6462 Rev 02/2015). 
Indeed, the EAdi signal is burdened by interindividual 
variability [63]. Nevertheless, we identified a rather broad 
“Normal” EAdiPEAK range similar to the one recently 
observed by Piquilloud and coworkers in healthy volun-
teers supported with different level of PSV [25] and by 
Liu and coworkers in patients [64]. Another important 
issue in favor of our approach is that in our patients the 
median PTPDI/min (a parameter of work of breathing) 
was 110 [73–164] cmH2O/s/min in the “Normal” EAdi 
class (Table  2), largely within the normal PTPDI/min 
range identified by classical physiological studies, i.e., 
between 50 and 150 cmH2O/s/min [65]. On the other 
hand, despite the absolute EAdi thresholds are debatable, 
our data clearly document a wide EAdi variability over 
time in otherwise clinically stable patients during PSV 
(Fig. 3), and therefore, despite the absolute EAdi thresh-
olds remain debatable, our study effectively quantified 
the neuro-ventilatory drive trend during PSV Second: 
an important issue to interpret our results is how the 
PSV level was set. As discussed above, our intent was to 
reproduce the “real life” in the clinical scenario [66–68]. 
However, we cannot exclude that different approaches to 
PSV setting would have a different impact on the neuro-
ventilatory drive [28]. Third: ours was a physiologically 
oriented study and thus we have no data on the impact 
of the neuro-ventilatory drive patterns on diaphragmatic 
and pulmonary functions.

Conclusions
We observed wide variations in EAdi amplitude and 
unevenly distributed “Low” and “High” neuro-ventilatory 
drive periods during 12 h of PSV in critically ill patients. 
Further studies are needed to assess the possible clinical 
implications of these physiological findings.
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