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Abstract

Background: There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with
acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial
enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a
prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome.

Methods: This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of
acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample
availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care
unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular
injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to
identify the plasma biomarkers most predictive of 28-day ARDS mortality.

Results: From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict
mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly
higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor
antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype
B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04).

Conclusions: An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of
hospitalization.
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Introduction
Acute respiratory distress syndrome (ARDS) is a
devastatingly-intense inflammatory lung disorder charac-
terized by severe respiratory failure requiring mechanical
ventilation with a high mortality rate of 30–40% [1].
ARDS exhibits clinical and biological heterogeneity with
respiratory and multi-organ system failure in response
to diverse inciting stimuli. For example, in the USA,
sepsis and pneumonia are the major inducers of ARDS,
whereas in India, ARDS occurs in response to various

tropical infections (malaria, miliary tuberculosis, dengue in-
fections, etc.) [2]. The clinical and radiographic diagnostic
criteria for ARDS are relatively imprecise [3]. Diagnostic
uncertainty in ARDS further exacerbates disease heterogen-
eity and is a potential source of bias in conducting clinical
trials. Consequently, the development of novel therapies in
ARDS has been extremely challenging and contributes to
the abysmal track record of Phase II/III ARDS clinical trials
[4]. Scoring systems in critically ill patients such as the
APACHE II score [5] or the lung injury severity score [6]
successfully link to patient outcomes but fail to provide
consistent and accurate predictive estimates of the risk of
death in patient populations with a specific disease process.
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General severity scores lack specificity by failing to distin-
guish sepsis, ARDS, or acute kidney injury and are not
significantly different between ARDS survivors and non-
survivors [7]. Furthermore, general severity scores do not
have pathophysiologic input and, therefore, are unlikely to
guide personalized therapies. Attempts to characterize pre-
dictors of death in ARDS by developing a prognostic index
[8] remain controversial and have not yet been replicated
or validated. Thus, there is a compelling unmet medical
need to identify clinical and/or biochemical disease-specific
parameters that risk-stratify patients for both accurate
prognostication and clinical trial purposes. Stratification of
ARDS patients with reliable biomarkers predictive of mor-
tality would optimize participant selection for clinical trial
enrollment by focusing on those most likely to benefit from
new clinical interventions [9, 10].
We and others have used “omic” approaches and transla-

tional systems biology methods to identify a panel of
plasma protein biomarkers with diverse biological mecha-
nisms that suggest a possible association with ARDS mor-
tality [11–22]. The objective of the current study was to
utilize plasma protein biomarkers to derive a prognostic
model for predicting ARDS patients least likely to survive
to 28 days. We used latent class analysis and predictive ana-
lytics on eight plasma biomarkers collected from a well-
phenotyped combined ARDS cohort. Biomarkers included
cytokine-chemokines (interleukin-6 [IL-6], interleukin-8
[IL-8], interleukin-1 beta [IL-1B], and interleukin-1 recep-
tor antagonist [IL-1RA]), dual-functioning cytozymes, i.e.,
cytokine/intracellular enzymes (macrophage migration in-
hibitory factor [MIF], nicotinamide phosphoribosyltransfer-
ase [eNAMPT]) and vascular injury markers (sphingosine
1-phosphate receptor 3 [S1PR3], angiopoietin-2 [Ang-2]).
These analyses utilizing complementary analytical ap-
proaches, latent class analysis, classification and regression
tree (CART) analysis, and rank aggregation were consistent
and allowed the identification of six biomarkers that were
most predictive of ARDS mortality.

Materials and methods
Source of data
Clinical data and plasma samples from 252 well-phenotyped
ARDS patients including 203 patients enrolled in the Fluid
and Catheter Treatment Trial (FACTT) study [23], and 49
ARDS patients enrolled at the University of Arizona and
University of Illinois (IRB#1312168664R001 and #20120192
respectively) were studied.

Participants
All patients with ARDS who met the diagnostic criteria per
the American-European Consensus Conference (AECC)
[24] or the Berlin definition [3] were included.

Outcome
The primary outcome was mortality by day 28.

Predictors
Initial (D0) plasma samples were taken within 48 h of
meeting ARDS criteria, and for those who survived, a
second sample was collected on the seventh day (D7) for
biomarker measurements. The plasma levels of the fol-
lowing biomarkers were measured: IL-6, IL-8, IL-1RA,
IL-1B, MIF, eNAMPT, S1PR3, and Ang-2.

Blood collection and plasma biomarker measurements
Blood was collected within 48 h of ARDS onset (defined as
time of meeting all Berlin Criteria) in EDTA-treated tubes,
centrifuged within 1 h from sample collection (2000×g for
20min, RCF) and stored at − 80 °C (− 70 °C for FACTT
samples). Plasma concentrations of four biomarkers (IL-6,
IL-8, IL-1B, IL-1RA) were measured in duplicate using a
custom Bio-Plex Pro Human Cytokine 5-plex immunoassay
(Bio-Rad, Hercules, CA) and Bio-Plex MAGPIX instrument
following the manufacturer’s guidelines. Enzyme-linked im-
munosorbent assay (ELISA) techniques were utilized to
quantify plasma levels of eNAMPT (an internally developed
ELISA [25]), MIF (R&D System®, Minneapolis, MN), S1P3
[26], and Ang-2 (R&D System®, Minneapolis, MN) using
commercially available ELISAs according to the manufac-
turer’s instructions.

Statistical analysis
Exploratory analysis
Exploratory data analysis was performed for each bio-
marker (baseline and day 7). Median values and first and
third quartiles were calculated for the continuous vari-
ables. Percentage values were computed and reported for
categorical variables. The signed rank test was performed
to assess the differences between initial biomarker mea-
surements compared to those taken 7 days later.

Logistic regression
To identity biomarkers that potentially significantly con-
tribute to mortality, binary logistic regression and a mul-
tiple forward stepwise logistic regression was constructed
with APACHE, IL-6, IL-8, IL-1RA, IL-1B, MIF, eNAMPT,
S1PR3, and Ang-2 as covariates. In addition, a binary lo-
gistic regression was performed, where mortality was fit to
the difference in measurements (D0 and D7) for each bio-
marker to determine whether the mortality status of
patients is affected by a change in individual biomarker
measurements.

Latent class analysis
Eight plasma biomarkers (D0) were included as inputs in
the latent class analysis (LCA) model. A series of latent class
models were fitted with different class sizes, specifically, class
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sizes of two, three, four, and five. The criteria for select-
ing the optimal number of classes were based on Bayesian
Information Criteria (BIC), the Vuong-Lo-Mendell-Rubin
(VLMR) likelihood ratio test, and the size of the smallest
class. Latent class model estimation was based on full-
information maximum likelihood methods as implemented
in Mplus [9]. To understand how the biomarkers distin-
guished each class, study participants were assigned to
their most likely class and the mean values of the bio-
markers compared by class assignment. Once the number
of classes was determined, we tested the association be-
tween class assignment and 28-day mortality.

Classification and regression trees (CART)
CART analysis has been used in many areas for decision-
making purposes to develop models that can classify and
predict subjects into various risk categories [27]. We used
CART analysis to determine the optimal combination of
biomarkers and cut-offs predictive of mortality. The opti-
mal classification tree was derived with a random 80%
sampling of ARDS patients with D0 biomarker measure-
ments, while imposing a condition to the CART algorithm
of a minimum of 15 measurements needed to split a node.
Terminal nodes that did not improve the classification
based on class probability method were pruned. Weight-
ing of cases and costs for misclassification were not used.
The remaining 20% of patients with D0 biomarker mea-
surements were used for testing. As the test data (50 pa-
tients) was underpowered to generate a meaningful CART
algorithm, we used resampling techniques to create a new
data consisting of 200 patients. This was performed by
randomly selecting individuals with replacement. CART
analysis was performed on the resampled data and test
diagnostics calculated. Diagnostic statistics, presented as
sensitivity, specificity, positive predictive value, and nega-
tive predictive value of the risk classification model, were
computed separately for the derivation and test cohorts.

Ranking of biomarkers by importance after CART analysis
We tested ten iterations of the data in order to rank the
biomarkers by importance to the classification trees: (1)
all D0 and D7 biomarker measurements combined, (2)
D0 biomarker measurements only, (3) first half of D0
biomarker measurements, (4) second half of D0 bio-
marker measurements, (5) first half of D7 biomarker
measurements, (6) second half of D7 measurements, (7)
D7 measurements only, (8) 80% random sample of D0
cohort. (Additional file 2: Table S1). For each iteration,
the following conditions were imposed: (i) 15 or greater
observations required for a nodal split and (ii) splits
must decrease the overall lack of fit by a factor of 1e−5
(or 0.001%). The analyzed results from each of the 20
created CART outputs includes a list of biomarkers ar-
ranged by the importance to the classification tree along

with an associated numeric score where an elevated
score indicates increasing biomarker importance in pre-
dicting mortality. Finally, a rank aggregation algorithm
[28] was used to generate final ranking of biomarkers by
importance for each ordered list. All analyses were per-
formed in R (R Core Team, 2018) and Mplus v8.3 [29].

Results
Characteristics of the cohort
The demographic and clinical characteristics of the ARDS
subjects are presented in Table 1. Mortality among ARDS
patients was 22% with non-survivors significantly older
than survivors. There were no other significant differences
in the clinical characteristics between ARDS survivors and
non-survivors (Table 1). The medians (IQR) for all eight
biomarkers for ARDS patients at day 0 and day 7 are pre-
sented in Table 2. Of the eight biomarkers, only eNAMPT
was significantly higher on day 7 compared to day 0 (35%
higher) (Table 2). Values of IL-6, IL-1RA, IL-8, Ang-2,
and S1PR3 were significantly higher on day 0 compared to
day 7. There was no significant difference between levels
of MIF and IL-1B on days 0 and 7.

Results of logistic regression
Logistic regression analysis assessing the ability of each
biomarker measured at D0 to predict mortality failed to
show any biomarker to be statistically significant after
adjustment for covariates (Additional file 2: Table S2).
For measurements taken at D7, only Ang-2 levels were
significantly associated with an increase in mortality

Table 1 Demographics and clinical characteristics of the ARDS
cohort

Variable ARDS cohort P value

Alive = 197 Dead = 55

Sex, female, N (%) 100 (51%) 22 (40%) 0.16

Age, median (Q1, Q3) 48 (39, 56) 58 (49, 70) < 0.0001

APACHE II Score, median (Q1, Q3) 76 (56, 101) 91 (28, 124) 0.10

Race/ethnicity, N (%)

Black or African American 30 (15%) 16 (29%) 0.05

White 163 (83%) 39 (71%)

Other* 4 (2.0%) 0 (0%)

ARDS etiology, N (%)

Sepsis 89 (45%) 31 (56%) 0.14

Trauma 17 (8.6%) 5 (9%) 1.0

Pneumonia 127 (64%) 37 (67%) 0.7

Source of cohort data

FACTT cohort 162 41

University of Illinois cohort 8 9

University of Arizona cohort 27 5

*Other indicates: any race/ethnicity other than Black or White
FACTT Fluids and Catheters Treatment Trial
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(Additional file 2: Table S3). There was no significant
association between the change in biomarker measure-
ments taken at the two time points and mortality
(Additional file 2: Table S4).

Latent-class modeling and characteristics of each
phenotype
A summary of the model fits for two through five classes is
presented in Additional file 2: Table S5 with a two class
model for the eight biomarkers providing the optimal fit.
The average latent class probabilities were 0.77 for phenotype
B and 0.23 for phenotype A (Additional file 1: Figure S1).
Compared to phenotype B, phenotype A exhibited
considerably higher plasma levels of Ang-2, IL-6,
eNAMPT, MIF, IL-8, and IL-1RA (Fig. 1). There was
no significant phenotype difference between levels of
IL-1B and S1PR3. In order to determine whether the
two phenotypes exhibit differing natural histories, we

tested the association between each phenotype and
28-day mortality. Phenotype A subjects exhibited sig-
nificantly higher mortality compared to phenotype B
subjects (32% vs 19%, p = 0.04).

Derivation and testing of classification tree
Maximum accuracy for predicting ARDS mortality was
achieved with four of the eight candidate biomarkers:
MIF, IL-8, IL-6, and eNAMPT (Fig. 2). No single demo-
graphic or clinical variable improved ARDS mortality
prediction accuracy. Two low risk nodes (TN1 and TN3,
mortality 15% and 17% respectively), two medium risk
nodes (TN2 and TN4, mortality 24% and 45%, respect-
ively), and one high risk node (TN5 with mortality of
83%) were identified. The test characteristics of the
biomarker-based ARDS Mortality Risk Stratification
Model decision trees are shown in Table 3.

Table 2 Biomarker plasma levels at day 0 and at day 7 in ARDS cohort

Biomarker D0 median (Q1, Q3) (N) D7 median (Q1, Q3) (N) P value1

IL-6 (pg/ml) 27 (7, 92) 145 12 (4, 54) 115 < 0.01

IL-8 (pg/ml) 150 (67, 359) 201 108 (44, 298) 200 0.001

IL-1RA (pg/ml) 3072(1241, 6545) 229 2755 (1067, 5695) 225 0.04

MIF (ng/ml) 45(29, 78) 242 49 (31, 84) 247 0.07

NAMPT (ng/ml) 60 (34, 74) 248 81 (55, 113) 248 < 0.001

S1PR3 (ng/ml) 577(227, 1458) 231 399 (97, 1066) 233 < 0.001

Ang-2 (ng/ml) 12 (7, 23) 247 7 (4, 12) 247 < 0.001

IL-1B (pg/ml) 44(24, 68) 228 39 (20, 61) 233 < 0.01
1P value from Wilcoxon signed rank test comparing the measurements for D0 and D7 for all eight biomarkers. IL-6 interleukin-6, IL-8 interleukin-8, IL-1RA
interleukin-1 receptor antagonist, MIF Macrophage migration inhibitory factor, NAMPT nicotinamide phosphoribosyltransferase, S1PR3 sphingosine 1-phosphate
receptor 3, Ang-2 angiopoietin-2, IL-1B interleukin 1 beta

Fig. 1 Differences in biomarker levels by phenotype. Graph showing estimated means for eight biomarkers. Phenotype A is characterized by
higher levels of Ang-2, MIF, IL-8, IL-1RA, IL-6, and NAMPT compared to phenotype B
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Ranking of biomarkers by importance
Output from CART analysis allowed for a ranking of
biomarkers by order of importance in terms of predict-
ing mortality resulting in identification of the top six
biomarkers: Ang-2, MIF, IL-8, IL-1RA, IL-6, and
eNAMPT (Additional file 2: Table S6).

Discussion
We initially included eight ARDS-relevant plasma bio-
markers derived from specific pathobiologic groups in-
cluding: (i) inflammatory cytokine-chemokines (IL-6, IL-8,
IL-1B, and IL-1RA), (ii) dual-functioning cytozymes, i.e.,

an intracellular enzyme that also functions as a cytokine
when secreted (macrophage migration inhibitory factor,
eNAMPT), and iii) vascular injury markers (S1PR3, Ang-
2). Our findings indicate that a panel of six biomarkers
potentially predict ARDS survival. In the latent class mod-
eling we performed, a biomarker-based phenotype with
higher plasma levels of Ang-2, MIF, IL-8, IL-1RA, IL-6,
and eNAMPT was associated with significantly higher
mortality (Fig. 1). The complementary CART analysis re-
vealed that the maximum accuracy for predicting high
mortality was achieved by four out of these six biomarkers
(MIF, IL-8, IL-6, and eNAMPT) (Fig. 2). Finally, rank

Fig. 2 Biomarker-based ARDS Mortality Risk Stratification Model decision tree. The derived biomarker-based ARDS Mortality Risk Stratification
Model decision tree from the random 80% derivation cohort (n = 202, 44 non-survivors). The tree contains the mortality probability, macrophage
migration inhibitory factor (MIF), interleukin 8 (IL-8), interleukin 6 (IL-6), and extracellular nicotinamide phosphoribosyltransferase (NAMPT).
Biomarker concentrations are expressed in ng/ml. Terminal nodes (TN) 1 and TN3 were low risk (15% and 17% risk of death), TN2 and TN4 were
intermediate risk (24% and 45% risk of death, respectively), and TN5 high risk (85% risk)

Table 3 Test characteristics of the biomarker-based ARDS Mortality Risk Stratification Model decision trees

Variables Derivation, 80% day 0, (n = 202, 44 non-survivors) Test, 20% day 0, resampled to n = 200

Values 95% CI Values 95% CI

True negatives 5 – 28 –

False positives 19 – 7 –

True positives 104 – 131 –

False negatives 1 – 8 –

Sensitivity 0.99 (0.95, 0.99) 0.94 (0.88, 0.97)

Specificity 0.21 (0.07, 0.42) 0.80 (0.63, 0.97)

Positive predictive value 0.85 (0.81, 0.87) 0.95 (0.91, 0.97)

Negative predictive value 0.83 (0.39, 0.98) 0.78 (0.64, 0.87)
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aggregation identified Ang-2, MIF, IL-8, IL-1RA, IL-6, and
eNAMPT as the most important in contributing to mortal-
ity (Additional file 2: Table S6).
The pathogenesis of ARDS includes a combination of

endothelial injury, epithelial injury, an intense inflammatory
cascade, dysregulated coagulation, fibrosis, and apoptosis in
response to diverse stimuli. Studies exploring the byproducts
of acute dysregulation of various cellular pathways have gen-
erated more than 45 potential biomarkers [30, 31]. However,
no single biomarker or clinical variable has demonstrated
adequate prognostic or predictive ability to identify sub-
phenotypes of ARDS [9, 10, 32, 33]. The ability to stratify
ARDS patients by pathobiology and likelihood of treatment
response would greatly enrich future clinical trials and en-
hance the ability to detect a treatment effect [34]. Sub-
phenotyping/endotyping has been successfully accomplished
in airways diseases such as asthma and COPD with import-
ant therapeutic implications [35, 36] and may exist within
severe sepsis [4, 37, 38]. However, there is a paucity of data
elucidating ARDS sub-phenotypes/endotypes. Recent stud-
ies [9, 39], utilizing two ARDSnet cohorts, identified two
ARDS sub-phenotypes that markedly differed in natural
history, clinical and biological characteristics, biomarker pro-
files, response to positive end-expiratory pressure (PEEP),
and ventilator- and organ failure free days and in mortality.
The hyperinflammatory ARDS sub-phenotype is character-
ized by a higher prevalence of sepsis and severe shock, high
plasma levels of inflammatory biomarkers (IL-6, IL-8, etc.),
greater vasopressor use, and metabolic acidosis. In contrast,
the low inflammatory ARDS sub-phenotype exhibited less
severe inflammation and shock. Surprisingly, the level of
ARDS severity (PaO2/FiO2 ratio), renal or hepatic injury
severity, or leukocytosis level failed to distinguish these two
phenotypes [9]. The hyperinflammatory phenotype was
associated with higher mortality, fewer ventilator-free and
organ failure-free days, and altered responses to ventilator
strategies when compared to the low inflammatory pheno-
type [40]. Importantly, no single clinical or biological vari-
able was sufficient to identify the sub-phenotype including
the severity of ARDS APACHE scores (PaO2/FiO2 ratio),
severity of renal or hepatic failure, or leukocytosis, suggest-
ing that phenotype membership was not merely a reflection
of severity of illness as measured by traditional indices [40].
Our findings are strengthened by the use of three

complementary approaches, including predictive analyt-
ics, to identify a common biomarker combination that is
important in predicting ARDS survival. We also used a
well-phenotyped cohort of ARDS patients, the majority
of whom were enrolled as part of a large multicenter
trial. Therefore, the participants represent a demograph-
ically diverse cohort of patients with ARDS strengthen-
ing the generalizability of our findings.
Our study has several limitations including the relative

low observed mortality of 22% in the examined cohort

compared to the expected ARDS mortality of 30–40%.
This is likely due to the selection criteria we utilized
where only patients surviving to day 7 were included in
order to analyze both days 0 and 7 samples, i.e., patients
who died before day 7 were not included. A second limi-
tation of our work is that we had limited statistical
power to detect significant differences in the predictive
modeling algorithms. Finally, we recognize the lack of an
external validation of our ARDS biomarker-based risk
model in an independent cohort. Clearly, despite our
utilization of a random sample of 80% of ARDS patients
at D0 for the derivation and resampling technique on
the remaining 20% of patients to demonstrate good test
characteristics (Table 3), we plan to next evaluate our
mortality panel an independent cohort to determine the
reproducibility of these six biomarkers in predicting
ARDS survival.

Conclusion
We have used complementary analytic approaches to
identify six biomarkers (Ang-2, MIF, IL-8, IL-1RA, IL-6,
eNAMPT) that show promise in predicting survival in
ARDS. These biomarkers provide an important proof-of-
concept that a combination of ARDS biomarkers can
improve sub-phenotyping and enhance predictive and
prognostic ability at the time of diagnosis. This information
could be useful for guiding enrollment in clinical trials and
represents an important step towards better patient stratifi-
cation at the time of presentation to enhance the likelihood
of a positive clinical trial in this vexing disorder.
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Not applicable.
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S2. Logistic regression analysis of mortality prediction capacity of the
eight ARDS biomarkers-Day Zero. Table S3. Logistic regression analysis of
mortality prediction capacity of the eight ARDS biomarkers-Day Seven.
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